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METHODOLOGY

Active learning with point supervision 
for cost-effective panicle detection in cereal 
crops
Akshay L. Chandra1, Sai Vikas Desai1, Vineeth N. Balasubramanian1*, Seishi Ninomiya2 and Wei Guo2* 

Abstract 

Background: Panicle density of cereal crops such as wheat and sorghum is one of the main components for plant 

breeders and agronomists in understanding the yield of their crops. To phenotype the panicle density effectively, 

researchers agree there is a significant need for computer vision-based object detection techniques. Especially in 

recent times, research in deep learning-based object detection shows promising results in various agricultural studies. 

However, training such systems usually requires a lot of bounding-box labeled data. Since crops vary by both envi-

ronmental and genetic conditions, acquisition of huge amount of labeled image datasets for each crop is expensive 

and time-consuming. Thus, to catalyze the widespread usage of automatic object detection for crop phenotyping, a 

cost-effective method to develop such automated systems is essential.

Results: We propose a point supervision based active learning approach for panicle detection in cereal crops. In our 

approach, the model constantly interacts with a human annotator by iteratively querying the labels for only the most 

informative images, as opposed to all images in a dataset. Our query method is specifically designed for cereal crops 

which usually tend to have panicles with low variance in appearance. Our method reduces labeling costs by intel-

ligently leveraging low-cost weak labels (object centers) for picking the most informative images for which strong 

labels (bounding boxes) are required. We show promising results on two publicly available cereal crop datasets—

Sorghum and Wheat. On Sorghum, 6 variants of our proposed method outperform the best baseline method with 

more than 55% savings in labeling time. Similarly, on Wheat, 3 variants of our proposed methods outperform the best 

baseline method with more than 50% of savings in labeling time.

Conclusion: We proposed a cost effective method to train reliable panicle detectors for cereal crops. A low cost 

panicle detection method for cereal crops is highly beneficial to both breeders and agronomists. Plant breeders can 

obtain quick crop yield estimates to make important crop management decisions. Similarly, obtaining real time visual 

crop analysis is valuable for researchers to analyze the crop’s response to various experimental conditions.

Keywords: Plant phenotyping, Crop detection, Deep learning, Active learning, Weak supervision, Point supervision, 

Faster R-CNN
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Background

The widespread success of deep learning has spawned a 

multitude of applications in computer vision based plant 

phenotyping. State-of-the-art convolutional neural net-

works have been shown to perform well on a wide vari-

ety of phenotyping tasks. The applications of CNNs in 

plant phenotyping include image classification tasks such 
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as plant species identification [1], stress identification 

[2], object detection and counting tasks such as panicle 

or spike detection [3–7], leaf counting [8], fruit detec-

tion [9]; as well as pixel-wise segmentation based tasks 

such as panicle segmentation [10, 11] and crop-weed seg-

mentation [12]. We refer the reader to [13, 14] for a full 

treatment of deep learning in agriculture and plant phe-

notyping tasks.

Despite many studies showing success in plant pheno-

typing tasks, the practical usage of deep learning in plant 

phenotyping poses a fundamental problem: requirement 

of large labeled datasets. Depending on the complexity of 

the phenotyping task and desired accuracy, large training 

sets may be needed to train deep learning models. How-

ever, there is a scarcity of publicly available agricultural 

image datasets. Since plant phenotyping tasks can be very 

specific to certain environmental and genetic conditions, 

finding labeled datasets with exact such conditions is 

often very difficult. This results in the researchers having 

to acquire and curate their own datasets which is a time-

consuming and expensive task. Due to the emergence 

of services such as Amazon Mechanical Turk (AMT),1 

crowd-sourcing annotations has evolved to become a low 

cost solution to address the issue of efficiently creating 

large scale visual datasets. Crowd-sourcing [15–21] has 

been effectively used to generate datasets to train deep 

learning models for visual tasks. Vijayanarasimhan and 

Grauman [18] have attempted to combine the advantages 

of crowd sourcing and active learning to train models 

with minimal amount of supervision. However, to reap 

the benefits of crowd-sourcing, effective planning and 

sufficient quality control measures are required [22, 23], 

which constitutes additional overhead. In our work, we 

focus on reducing annotation time using active learning. 

Moreover, our work can be seamlessly extended to work 

with a crowd-sourcing platform to obtain bounding box 

annotations.

In this paper, we focus on panicle detection in cereal 

crop images. Efficient panicle detection models greatly 

assist cereal crop phenotyping since they provide quick 

panicle count estimates which can be used for yield esti-

mation. High throughput yield estimation methods are 

highly beneficial for both agronomists and breeders. 

Crop breeders will potentially make effective selection in 

large scale breeding programs. Also, real time yield esti-

mation techniques can be used for crop monitoring dur-

ing controlled crop experiments in various genetic and 

environmental conditions. However, such panicle detec-

tion models require a lot of labeled data to train, which 

makes these methods less applicable for new crops for 

which datasets are not available. To address this prob-

lem, we employ point supervision based active learning 

to reduce the number of labeled samples to train efficient 

detection models.

Point supervision is a form of weak supervision which 

has been used for training deep neural networks for tasks 

such as object detection [24, 25], semantic segmenta-

tion [25, 26] and object tracking [27, 28]. It involves 

pointing to objects of interest on an image using mouse 

clicks. Point supervision is significantly inexpensive 

and less time-taking to obtain, when compared to the 

conventional full supervision methods such as bound-

ing box drawing and pixel-wise image labeling. In the 

context of object detection, point supervision can pro-

vide valuable information about the location of objects. 

Such location information can typically be used to train 

models with novel loss functions or incorporate multiple 

instance learning techniques. In terms of obtaining point 

supervision, the closest literature to our work is Papa-

dopoulos et al. [24]. They propose a method to integrate 

point supervision to a Multiple Instance Learning (MIL) 

approach to train per-class SVMs for each object class, 

which is generally used for Weakly Supervised Object 

Localization (WSOL) [29, 30]. Similar to [24], we obtain 

point supervision in the form of object center clicks. 

However, instead of directly training an object detector 

using point supervision alone, we use it in conjunction 

with an active learning approach. Using point supervision 

alone limits the performance of the model and results in 

weak-learners since accurate labels are not provided to 

the model. Hence, we employ point supervision to help 

choose the best samples for which full supervision can be 

queried. To the best of our knowledge, our work is the 

first to use point supervision to assist an active learning 

approach to pick the most informative samples for labe-

ling. In our paper, we use the terms weak labels to denote 

labels obtained through point supervision and strong 

labels to denote labels obtained through full supervision.

Active learning [31], an iterative training approach 

that curiously selects the best samples to train, has been 

shown to reduce labeled data requirement when train-

ing deep classification networks [32–34]. Research in 

the area of active learning for object detection [18, 35, 

36] has been limited. These efforts propose various met-

rics to compute on the unlabeled data that help pick the 

best subsets to be labeled. However, they show results on 

standard public datasets like PASCAL VOC [37] and MS 

COCO [38]. In this study, we focus on object detection for 

agricultural crop datasets which have a few important dif-

ferences from standard object detection datasets such as 

PASCAL VOC or MS COCO: (1) objects, generally, are of 

a single class or just a few classes, (2) number of objects 

per image are often high (25–100+), (3) objects can 

be under heavy occlusion due to factors like surround-

ing leaves, weed, shadows etc; and (4) background can 
1 Amazon Mechanical Turk is available at https ://www.mturk .com/.

https://www.mturk.com/
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often look like the foreground (e.g. green color). Owing 

to these factors, labeling crop images is tricky and time-

consuming. Taking into account these important differ-

ences, we propose an active learning framework based on 

point supervision to reduce annotation efforts for panicle 

detection in crop images. We measure annotation cost 

in terms of time taken. Weakly supervised annotations 

such as object-center clicks take significantly less time to 

obtain when compared to regular bounding box annota-

tions. These clicks provide valuable localization cues to 

the object detection model in our framework. Formally, 

we define two forms of image annotation: (i) object center 

clicking (Type-1) and (ii) bounding box drawing (Type-

2). To select the best subset of images to annotate, we 

incorporate point supervision into our active learning 

query function, which has never been done before to the 

best of our knowledge. In our setting, we train our model 

in a slightly varied version of standard pool-based active 

learning (see Figs. 1 and 2) where we obtain weak labels 

of the images samples from unlabeled pool and maintain 

a separate weak labeled pool. Our experiments show that 

using affordable-to-obtain weak labels can be used to cre-

ate better query functions to find out the most informa-

tive samples, leading to a reduction in annotation costs. 

Our methodology can be seamlessly extended to any crop 

detection task other than panicle detection.

Methodology

Annotation methods

Throughout our experiments, our image annotator a.k.a 

oracle provides annotations of objects of interest in 

images in two ways. These two methods differ in terms 

of the label quality and cost (in time units). Estimation of 

labeling costs of these methods is discussed in “Experi-

mental setup” section. See Fig. 3 for visual illustration of 

these methods.

Type-1 annotation For each object in a given image, 

the oracle clicks approximately on the center of the 

imaginary bounding box that encloses the object. Since 

we obtain the center of each bounding box but not its 

dimensions, the label quality in Type-1 annotation is 

weak. The annotation cost in this case, is lower than that 

of a Type-2 annotation.

Type-2 annotation Given an image and its Type-1 

annotations (weak labels), the oracle provides bounding 

boxes that tightly enclose the objects present. The labels 

in this case are strong since we get tight bounding boxes. 

Querying Strong

Labels From

Oracle

Labeled 

Pool

Object 

Detector

Actively 

Sample 

Images

Re-train Using

Updated

Labeled Pool

Unlabeled

Pool

Fig. 1 Standard pool-based active learning cycle. The most 

informative images are actively sampled from the unlabeled pool and 

are queried for annotation

Querying Weak 

Labels From

Oracle

Unlabeled

Pool

Labeled 

Pool

Object 

Detector

Querying Strong

Labels From

Oracle

Actively Sample
Images Using

Standard Methods

Re-train Using Updated

Labeled Pool

Weak

Labeled

Pool

Actively Sample
Images Using 
Our Methods

Fig. 2 Proposed pool-based active learning cycle. We introduce point supervision into the pool-based active learning cycle
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Since the oracle is already given the weak labels, the 

annotation cost for Type-2 labels is lesser than the anno-

tation cost for drawing bounding boxes from scratch. 

This is because the weak labels i.e., the object centers 

guide the oracle in locating the objects, thereby reducing 

the annotation cost.

Overview of two stage object detection

We use Faster R-CNN [39] as our chosen object detector 

in all our experiments. Faster R-CNN belongs to the fam-

ily of two stage object detection networks. Two stage net-

works typically use a coarse to fine prediction approach. 

The first stage consists of generating possible object pro-

posals on a given image. The second stage consists of 

(i) detecting the presence of an object within each pro-

posal, (ii) classifying the object into one of the available 

categories and (iii) adjusting the proposals dimensions to 

tightly enclose the object. In Faster R-CNN, the first stage 

is implemented using a CNN based image level feature 

extractor (which is known as the backbone network) and 

a Region Proposal Network (RPN). First, the input image 

is passed through the base network to obtain image level 

features. Subsequently, the region proposal network 

(RPN) generates possible object proposals. The second 

stage consists of using RoI pooling [39] to obtain fixed 

dimension feature vectors for each object proposal. Each 

of these feature vectors is passed through a fully con-

nected neural network with two heads: one for predicting 

the object class and the other for adjusting the bounding 

box coordinates. We use two stage object detection in our 

work because the output of RPN i.e., the first stage gives 

valuable information about model uncertainty which we 

use for efficient sample selection in active learning.

Standard pool‑based active learning framework

The key assumption behind active learning is that a 

machine learning algorithm can achieve greater accu-

racy with fewer training labels if it is allowed to choose 

the data from which it learns. An active learner may pose 

queries, usually in the form of unlabeled data instances 

to be labeled by an oracle (for instance, a human anno-

tator). Active learning is well-motivated in many modern 

machine learning problems, where unlabeled data may 

be abundant or easily obtained, but labels are difficult, 

time-consuming and expensive to obtain. Active learning 

involves a class of methods that are used to train machine 

Type-2 Annotation

Type-1 Annotation

No Labels Oracle

Weak Labels Strong LabelsOracle

Weak Labels

Fig. 3 Annotation methods. Type-1 annotation includes weak labeling (top) and Type-2 annotations include strong labeling given weak labels 

(bottom)
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learning models with limited labeled data by carefully 

picking the most valuable data points to be labeled. In 

case of deep neural networks, active learning is generally 

implemented under a setting known as pool-based active 

learning, see Fig. 1. This typically consists of the following 

five components: (1) model, (2) labeled pool of data, (3) 

unlabeled pool of data, (4) an active query function that 

samples data points from the unlabeled pool and (5) an 

oracle which provides labels when queried. The model is 

trained in cycles as follows: First, the model is trained on 

the available labeled pool. Using the model and unlabeled 

pool as input, the query function calculates an informa-

tiveness measure for each data point in the unlabeled pool 

and greedily samples the most informative data points. 

Labels for these points are obtained from the oracle, fol-

lowing which, these points are moved from the unlabeled 

pool to the labeled pool. Now, the model is retrained on 

the updated labeled pool and this process is repeated in 

iterations until the model converges to a desirable perfor-

mance or until the annotation budget is exhausted.

Various techniques [31] have been proposed to calcu-

late informativeness measures effectively. One popular 

technique is to estimate the model uncertainty on each 

data point. So the motivation is to pick the data points 

for labeling that confuse the model i.e. which have high 

model uncertainty and further not pick the data points on 

which the model is already confident about. In this paper, 

we propose a novel way of estimating the uncertainty of 

the model on images using their weak labels, in an object 

detection setting. Also, we modify the standard pool 

based active learning setting by obtaining weak labels 

instead of strong labels first and then make better active 

decisions on which data points to pick for strong labeling.

Active learning with point supervision

The primary contribution of our paper is a novel method 

that incorporates point supervision to query uncertain 

images. To this end, we introduce a weak labeled pool 

into the standard pool-based active learning framework 

for training a deep object detector as shown in Fig. 2. Our 

method is designed for region proposal based two stage 

object detection networks such as Faster R-CNN and 

Mask R-CNN which usually have superior detection per-

formance. Given an object detection model and weakly 

labeled pool of images, our query method takes the fol-

lowing steps: (1) Region proposal filtering using weak 

labels and (2) Estimate uncertainty using region propos-

als. The subsequent steps are similar to standard pool-

based active learning. In other words, images with high 

uncertainty are picked by the proposed query function 

and strong labels are queried. Later, the labeled images 

are added to the labeled pool on which our object detec-

tion model is trained. This model is used in the next cycle 

of active learning (see Algorithm 1). Detailed description 

of the steps in our proposed query method are given in 

the following subsections.
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Region proposal filtering (RPF)

We run the model on each image in the weakly labeled 

pool and obtain a set of region proposals from the Region 

Proposal Network (RPN). We now incorporate the point 

supervision signal i.e., the click annotations to filter out 

spurious region proposals from the set (see Fig. 4). For a 

proposal to be retained, (1) it must contain the click loca-

tion, (2) it must have its center within ε distance from 

the click location and (3) its area should not exceed a 

threshold α . Here, ε and α are hyperparameters which 

we set using the following dataset statistics from the ini-

tial labeled pool: mean minimum distance between two 

objects (to set ε ) and average area of the bounding boxes 

(to set α ). More about selecting these hyperparameters is 

explained in “Discussion” section. Using the above filter-

ing conditions, the region proposal filtering step effec-

tively retains those region proposals which are likely to 

enclose some object in the image.

After this step, we have a set of object center clicks and 

a set of region proposals assigned to each weak label as 

shown in Fig. 4b. We use their prediction scores to esti-

mate uncertainty.

Estimating uncertainty

We consider sets of filtered proposals for each image 

from the weak labeled pool. We then estimate uncer-

tainty of a model based on the following hypothesis. If 

the model is confident and certain about an object, the 

model’s predictions should be invariant to slight changes 

in the location of bounding boxes. For the sake of illustra-

tion, consider one of the five objects present in Fig.  4b. 

For the set of associated proposals of a given object, a 

confident model’s prediction scores on those proposals 

would ideally not exhibit high variance. If there exists a 

high variation in the probabilities of the proposals, the 

model is deemed to be highly uncertain about that object. 

We define the following three metrics to estimate our 

model’s uncertainty:

1.  Max-variance (mv) We calculate variance amongst 

the prediction scores of the filtered region proposals 

for each class. For each image Xi , we obtain filtered 

region proposal predictions for a each weak label w 

in a vector Piw . The variance based uncertainty uvar
i

 is 

calculated as:

2.  Max-entropy (me) For each weak label w, the sum 

of entropy at each associated proposal. The entropy 

based uncertainty uent for an image is the maximum 

of such entropy values obtained:

3. Max-Ent-Var (mev) We take a linear combination of 

the above two metrics and use it as an uncertainty 

metric uve . Max-Variance metric is used as it is but a 

variant of Max-Entropy is used. For each weak label 

w, we calculate the average of entropy values of its 

associated proposals. Here �1, �2 ∈ R are hyperpa-

rameters and we define the metric as follows:

The motivation behind this metric and how the 

hyperparameters �1 and �2 are chosen is explained in 

“Discussion” section.

(1)uvari = max
w

1

|Piw|

∑

p∈Piw

(p − mean(Piw))2

(2)

uenti = max
w

1

|Piw|

∑

p∈Piw

−p log2 p − (1 − p) log2(1 − p)

(3)u
ev

i
= �1u

ent

i
+ �2u

var

i

Fig. 4 Region proposal filtering. Before filtering-after filtering illustration on a Sorghum and b Wheat. For ease of clarity, weak labels (yellow dots) 

are only shown on the b Wheat example
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2 Images and their bounding box annotations were sliced and resized using 

the library available at: https ://image -bbox-slice r.readt hedoc s.io/.

As detailed in Algorithm 2, in each episode of the active 

learning cycle, we query bW  images from the unlabeled 

pool DU for Type-1 annotation and move the images to 

the weakly labeled pool DW  . We run the model on DW  , 

which is followed by the RPF step. The region propos-

als retained after the RPF step are then used to estimate 

uncertainty of the model on weakly labeled pool ( DW  ) 

using our methods. We then query bS images from the 

weakly labeled pool DW  for Type-2 annotation i.e., the 

ones the model deems uncertain. Once these images are 

queried for strong labels, they are moved to the labeled 

pool DL.

Experimental setup

Wheat dataset

This dataset contains high definition images of wheat 

plants. We refer the reader to Madec et al. [40] for details 

on data acquisition steps, data preparation procedure 

and field experiments conducted. To avoid potential stor-

age and computation resource overheads, we preproc-

essed the original images of size 4000 × 6000 to create 

a dataset suitable for training a deep object detection 

network. We first down sampled the images by a fac-

tor of 2 (to 2000 × 3000 ) using a bi-linear aggregation 

function. Then, we sliced the down sampled images into 

image tiles of size 500 × 500 with no overlap.2 Post resiz-

ing and slicing if only partial objects are present or if a 

slice doesn’t contain an object at all, we ignore the image 

entirely to avoid adding potential noise to the model. This 

preprocessing method was inspired by results reported 

on the Wheat dataset in Madec et al. [40].

Of the obtained 5506 preprocessed images, we used 

3304 (60%) images for active learning and the remaining 

2202 (40%) for testing our methods. From the 60% chunk, 

we start the active learning cycle with just 50 images in 

the labeled pool. At the beginning of each episode, 50 

( bW  ) images are queried for Type-1 annotation and are 

moved to weakly labeled pool, of which 25 ( bS ) most val-

uable images are queried for Type-2 annotation and are 

moved to the labeled pool.

Sorghum dataset

This dataset contains high quality aerial images of Sor-

ghum (Sorghum bicolor L. Moench), a C4 tropical grass 

that plays an essential role in providing nutrition to 

humans and livestock, particularly in marginal rainfall 

environments. We refer the reader to Guo et  al. [6] for 

details on data acquisition steps, data preparation pro-

cedure and field experiments conducted. We sliced each 

original image of size 300 × 1200 into four 300 × 300 

pixel images, with no overlap. After slicing if partial 

objects are present in a slice, we ignore their respective 

annotations to avoid adding potential noise.

Of the obtained 4641 preprocessed images, we used 

2784 (60%) images for active learning and the remaining 

1857 (40%) for testing our methods. From the 60% chunk, 

we start the active learning cycle with just 50 images in 

the labeled pool. At the beginning of each episode, 30 

( bW  ) images are queried for Type-1 annotation and are 

moved to weakly labeled pool, of which 15 ( bS ) most 

https://image-bbox-slicer.readthedocs.io/
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valuable images are queried for Type-2 annotation and 

are moved to the labeled pool. The parameter choices for 

both the datasets are shown in Table 1. Examples of pre-

processed images can be seen in Fig. 7.

Implementation details

All the experiments are conducted with Faster R-CNN 

[39, 41] as the object detector. The intermediate region 

proposal layer in Faster R-CNN makes it a natural choice 

for us and the experiments can be easily extended to any 

segmentation task which uses Mask-RCNN [42]. The 

residual network ResNet101 [43] was used as the base 

network for both the datasets. We trained all our models 

to minimize the Cross-Entropy loss function with Sto-

chastic Gradient Descent as the optimizer with a learn-

ing rate of 0.004 and a mini-batch size of 4 images. The 

learning rate was decayed every 5 steps by 0.1. After run-

ning some initial set of experiments and closely monitor-

ing the loss value trends on both the datasets, we decided 

to train the models in each active learning cycle for 10 

epochs.

We first train a baseline model with a randomly chosen 

labeled subset of the available data. This model is used 

as the starting point for active learning. A model trained 

in a particular cycle is used in the cycle that follows it. 

As shown in Table 1, we start with a labeled pool DL and 

an unlabeled pool DU and a weakly labeled pool DW  . In 

every cycle, a batch of bW  images from DU are queried 

for point supervision and added to DW  , then a batch of 

bS images from DW  are queried for strong supervision 

which are added to DL . The images which are queried for 

point supervision but not queried for strong supervision 

in every cycle are stored in DW .

Comparison with baselines

We compare our proposed methods with the following 

baselines:

• Random (rand) Samples are selected randomly from 

the unlabeled pool.

• Least Confident (lc) Confidence for an image is calcu-

lated as the highest bounding box probability in that 

image. Images with least confidence are selected. This 

criterion is taken from the min-max method speci-

fied in Roy et al. [36].

• Margin (mar) For a predicted bounding box, margin 

is calculated as the difference between probabilities 

of the top two model predictions. Intuitively, low 

margin means that the model is uncertain about the 

data point. For each image, margin is chosen to be 

the summation of margins across all the predicted 

bounding boxes in the image. This is taken from 

Brust et al. [35].

• Entropy (ent) Samples with high entropy in the prob-

ability distribution of the predictions are selected. 

This is taken from Roy et al. [36].

Since our proposed methods are two-stage in nature (in 

the first stage we query images for Type-1 annotation and 

then for Type-2 in the second stage) we denote them on 

the result in {Query_For_Weak}_{Query_For_Strong} 

format. So lc_mv denotes that images were queried for 

Type-1 annotation using Least Confidence query method 

and then in stage two, images are queried for Type-2 

annotation based on Max-Variance uncertainty metric 

described in “Methodology” section.

Evaluation criteria

Performance of active learning methods is usually evalu-

ated by plotting a curve between model performance and 

number of training samples. For each query method, we 

report every model’s Mean Average Precision or mAP 

on a held-out test set against the number of images it 

was trained on. mAP is the most commonly used evalu-

ation criteria in the object detection space. A predicted 

bounding box is considered correct (true positive, TP) if 

it overlaps more than the IOU (intersection-over-union) 

threshold with a labelled bounding box. Otherwise the 

predicted bounding box is considered as false positive 

(FP). When the labelled bounding box have an IOU with 

a predicted bounding box lower than the threshold value, 

it is considered as false negative (FN). The standard IOU 

threshold value of 0.5 was used. The precision and recall 

are then computed using:

The score associated to each bounding box allows eval-

uating the trade-off between false positive and false 

(4)

Precision =
TP

TP + FP
& Recall =

TP

TP + FN

Table 1 Hyperparameter choices in methodology implementation

Parameters D
L

D
U bW bS ε α

Wheat 50 4481 50 25 80 20,000

Sorghum 50 3505 30 15 20 1400
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negative. The average precision (AP@0.5IOU) [44] was 

used to quantify the detection performances. The stand-

ard average precision metrics, is the area under the 

precision-recall curve obtained for different bounding 

box scores. The average precision balances the precision 

and recall performances terms that may be strongly cor-

related. It varies between 0 (TP = 0) to 1 (FN = 0). We 

also measure the efficiency of our method by examin-

ing the annotation cost estimates. The annotation costs 

(measured in units of time) are calculated using Eqs.  5 

and 6 discussed in the following subsection. We sanc-

tion “Results” section of the paper to discuss and validate 

effectiveness of our proposed active learning methods, 

which is why we report the best model’s crop density per-

formance in “Discussion” section.

Estimating annotation costs

As the annotation times of the datasets were unavail-

able, we used statistics of the popular ImageNet dataset 

for consistency. Su et  al. [45] and Papadopoulos et  al. 

[24] report the following median times per image on 

ImageNet: 25.5  s for drawing one box, 9.0  s for verify-

ing its quality and 7.8  s for checking whether there are 

other objects in the image yet to be annotated and 3.0 s 

to click on an object’s center. Taking these into account, 

we calculate that Type-1 annotation (object clicking + 

checking whether there are other objects) requires 10.8 s. 

And Type-2 annotation requires 34.5s, 7.8s less than how 

much traditional bounding box annotations take since 

there is no need to check whether there are other object 

in the image. So for baseline methods, given a batch of 

queried images of size Q, with a total of bQ objects in it, 

we calculate annotation time (in seconds) using the fol-

lowing formula:

In case of our proposed methods, given a images batch of 

size QW  , with a total of bQW  objects queried for Type-1 

annotations and a batch of size QS , with a total of bQS 

objects queried for Type-2 annotation, we calculate 

annotation time using the following formula:

Results

Results on Wheat

Figure 5a shows how test mAP increased with the num-

ber of training examples, Fig.  5b compares annotation 

costs (time in hours) incurred by our methods with 

respect to the annotation cost incurred by the best stand-

ard PBAL (Pool Based Active Learning) baseline method 

(black dashed line). From the plot, it is clear that after 

(5)Time = 7.8 × Q + 34.5 × bQ

(6)Time = 7.8 × QW + 34.5 × bQS + 3 × bQW

just 2 episodes all our methods start to maintain a higher 

mAP compared to that of the baselines. The best base-

line is the entropy based standard PBAL (ent) with 0.7631 

mAP, which required the oracle to label 900 images, cost-

ing 29.14 hours of annotation. As shown in Fig.  5b, 3 

variants of the Max Ent-Var method (mar_mev, lc_mev 

and ent_mev) outperform the best baseline method with 

approximately 60% lesser images (350) costing the oracle 

approximately 50% lesser annotation time (10.52, 11.13 

and 12.72 hours respectively). Object detectors trained 

using all variants of our proposed methods have perfor-

mances better than those of the best baseline method at 

the end of the active learning episodes (900 images).

Results on Sorghum

Similar to wheat plots, Fig.  6a shows how test mAP 

increased with the number of training examples, Fig. 6b 

compares annotation costs (time in hours) incurred by 

our methods with respect to the annotation cost incurred 

by the best standard PBAL baseline method (black 

dashed line). Unlike in the case of Wheat, object detec-

tor’s performance on Sorghum improves steeply in the 

beginning. Even in the case of Sorghum, the best base-

line is the entropy based standard PBAL (ent) with 0.8136 

mAP, which required the oracle to label 500 images, cost-

ing 106.76 h of annotation. As shown in Fig. 6b, 6 of the 

proposed methods outperform the best baseline method 

with less than 60 h of annotation costs, which is more 

than 55% in savings when compared to cost incurred by 

the best baseline method. Object detectors trained using 

10 out of 12 variants of our proposed methods have per-

formances better than that of the best baseline method at 

the end of the active learning episodes.

Discussion

Analysis of most valuable images

To better understand the performance of our proposed 

methods, we observe the kinds of images queried across 

different episodes of active learning. Figure 7 shows the 

most informative images sampled using Max-Ent-Var 

method in episodes 1, 2 and 3. By observing the queried 

samples, we can see that in the first episode, the model 

is uncertain about images with objects which are either 

blurred, occluded or in bad lighting conditions. For 

images containing such adversarial features, this behav-

iour intuitively makes sense as it is often hard for the 

model to find even simple patterns like edges and corners 

and thus the prediction variance is naturally expected 

to be high for them. In episode 2, although images with 

blurred objects are queried, our model also sampled 

images with bad lightning conditions. In episode 3 on 

wheat, all the top 5 sampled images have dry leaves. 

We believe the reason for this might be the fact that it 
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is difficult to detect wheat ears with dry background. In 

case of Sorghum, sampled images in episode 3 indicate 

that the model is struggling to correctly detect and local-

ize objects in bright light where the sorghum head is 

almost white in colour.

On similarities between region proposal filtering 

and non‑maximum suppression

Non-maximum suppression (NMS) has been widely used 

in several key aspects of computer vision. It is an integral 

part of tasks such as edge, corner and object detection 

Fig. 5 Results on Wheat dataset. a No. of Images vs. mAP. b Annotation costs comparison. In b, dashed lines is the annotation cost of the best (in 

mAP) baseline method, Entropy (ent)

Fig. 6 Results on Sorghum dataset. a No. of images vs. mAP. b Annotation costs comparison. In b, dashed lines is the annotation cost of the best (in 

mAP) baseline method, Entropy (ent)
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[46–50]. In the context of object detection, the apparent 

similarity between NMS and Region Proposal Filtering 

(RPF) is that they both filter out unwanted region pro-

posals. NMS removes the region proposals which highly 

overlap the region proposal with maximum confidence. 

Its effect can be controlled by specifying the overlap-

ping criterion, intersection-over-union (IoU) which is a 

hyperparameter. The goal of NMS therefore is to retain 

only one region proposal per each prediction group, cor-

responding to the precise local maximum of the model’s 

output, ideally obtaining only one bounding box per 

object. The motivation behind RPF is quite different. In 

active learning, a sampling function samples the most 

informative data points for labeling. An uncertainty sam-

pling function [31] essentially quantifies the informative-

ness based on how uncertain the model predictions are. 

Fig. 7 Most valuable images. Examples of most informative images in episodes 1, 2 and 3 on Wheat (top) and Sorghum (bottom), sampled by our 

Max-Ent-Var method
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This motivates our RPF method, where we aim to keep 

region proposals that overlap each other by a great deal 

but also vary slightly, in contrast with NMS. We utilize 

RPF to validate our hypothesis that a detection model’s 

predictions on an object can be considered uncertain if 

they significantly vary with a slight change in the object’s 

environment i.e., image areas immediately surrounding 

the object. In other words, we quantify uncertainty by 

estimating the variance in the model’s confidence values 

for similar looking proposals. Our experimental results 

and ablation studies support this hypothesis and show 

that the model queries images with blurry object back-

grounds and other occlusions in the early stages of train-

ing. Also, the model generalizes faster with fewer training 

data points when proposed RPF method is used.

Tuning hyperparameters for region proposal filtering

Region Proposal Filtering (RPF), shown in Fig.  4, is a 

novel and a very crucial step in our proposed method-

ology and there are two hyper-parameters ε and α to be 

tuned to make it work the best. We select the value for 

ε by examining (a) the distribution of minimum distance 

between any two objects (bounding box centers) and 

select the value for α by observing (b) the distribution of 

area of the boxes. To avoid the problem of having two 

objects in a same region proposal at the same time, post 

RPF step, we pick the 20th percentile of (a) as ε for both 

datasets. The 20th percentile of (a) for the Wheat dataset 

was 18 so we rounded it to 20, for the Sorghum dataset it 

was close to 77 so we rounded it to 80. Statistically with 

these values, after the RPF step, filtered region propos-

als will not have a second object in the image 80% of the 

time. We believe this is robust enough since by default, 

RPF adds an extra filter by dropping all proposals that 

contain other weak labels, other than the weak-label-of-

interest. With similar motivation, we pick 90th percentile 

of (b) for both datasets which suggests that statistically, 

just 10% of the time after the RPF step, filtered region 

proposals will not include the actual bounding box. The 

90th percentile of (b) for Wheat was 20,448, rounded to 

20,000, for Sorghum it was 1404, rounded to 1400.

Choosing �1, �2 in Max‑Ent‑Var (mev)

The performance of our best active sampling method, 

Max-Ent-Var (mev), is highly dependant on �1, �2 hyper-

parameters. In our attempt to combine two quantities 

(entropy and variance) which have different ranges, dif-

ferent motivation, basically different roles to perform. 

We theoretically and empirically examine the upper 

bounds of both quantities in an effort to combine them 

efficiently. The motivation to combine them is explained 

with the following toy example: Imagine that the follow-

ing are the probabilities of region proposals left around 

a particular object after RPF layer—[0.5, 0.5, 0.5, 0.5, 0.5]. 

Clearly, the model is highly uncertain about the object so 

our entropy based metric outputs its maximum value (for 

this object) of 1, which is ideal. But our variance based 

metric Max-Variance (mv) outputs its minimum value of 

0 which indicates that the model is highly certain about 

the object. To overcome these rarely occurring shortfalls 

of our methods, we decided to come up with a linear 

combination of both the metrics.

To combine both entropy and variance metrics, we 

first make sure they are on similar scales i.e., have similar 

minima and maxima. In case of entropy, the theory sug-

gests that the range of entropy of a distribution with n 

number of outcomes is given by:

In our case n is 2 (object or not) so we can say that 

u
ent

i
∈ [0, 1] . In case of variance, we use the Bhatia–Davis 

inequality [51] to find the upper bound on variance of 

values from a known distribution. Suppose a distribution 

has minimum m, maximum M, and expected value µ . 

Then the inequality says:

In our case, m is 0, M is 1 and we can safely assume the 

worst case of µ as 0.5. Plugging in the values into Eq. 8, 

we get that uvar
i

∈ [0, 0.25] . So the most straightforward 

thing to do here to bring them to same scale would be to 

multiply uvar
i

 by 4.

Figure 8 includes empirical analysis of these metrics. In 

Fig.  8a, you can see the distribution of uent
i

 . Both origi-

nal and scaled distributions of uvar
i

 can be seen in Fig. 8b, 

c respectively. These values calculated during the active 

learning cycle on Wheat dataset. Figure  8c reassures, 

empirically, that scaling uvar
i

 by 4 indeed makes its fea-

sible to add it with uent
i

 as they have similar ranges and 

similar contribution to the uev metric. Figure  8e shows 

a scatter plot between corresponding uent
i

 and scaled 

u
var

i
 values and it is interesting to see a pattern appear 

between them where after an apparent threshold value, 

the both values are never simultaneously high. This 

explains why the uev
i

 has almost a perfect normal distribu-

tion centered at 0.7, as shown in Fig. 8d.

Motivation for margin and entropy sampling methods

We refer the readers to section 3.1 of Settles [31] where 

it has been summarized why margin and entropy based 

sampling methods are often favoured by active learning 

practitioners. We merely reiterate the same explanation 

and illustrate a simple example here to further convince 

the readers on the benefits of these methods. By defini-

tion, the least confidence method uses only the maximum 

(7)0 ≤ Entropy ≤ log2(n)

(8)σ 2
≤ (M − µ)(µ − m)
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probability value to calculate model’s confidence/uncer-

tainty value and throws away information available in the 

rest of the distribution. Considering x as input, y as target 

labels, ŷ as predicted labels and x∗ as the most informa-

tive instance (i.e., the best query), least confidence is cal-

culated as follows:

where ŷ = arg maxy Pθ (y|x) , or the class label with the 

highest posterior probability under the model θ . To 

correct the shortcomings in least confident strategy, 

(9)x∗
LC = arg max

x
1 − Pθ (ŷ|x)

margin based sampling method upgrades slightly on 

the least confidence method by using more information 

- the probabilities of top two labels. To calculate mod-

el’s uncertainty, margin sampling takes the difference 

between the probabilities of first and second most prob-

able labels as follows:

where ŷ1 and ŷ2 are the first and second most probable 

class labels. The lower the margin, the higher the uncer-

tainty of the model thus knowing the true label would 

(10)x∗
M = arg min

x
Pθ (ŷ1|x) − Pθ (ŷ2|x)

Fig. 8 The Entropy-Variance plots. a Histogram plot of uent
i

 . b Histogram plot of uvar
i

 . c Histogram plot of both uent
i

 and 4 times the uvar
i

 . d Histogram 

plot of uev
i

 . e Scatter plot of 1700 randomly sampled corresponding uent
i

 and 4 ∗ u
var
i

 values
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help the model discriminate more effectively between 

them. Entropy is a more general uncertainty sampling 

strategy that uses the entire distribution:

where yi ranges over all possible labels. Entropy, an infor-

mation-theoretic measure that represents the amount of 

information needed to encode a distribution, is thought 

of as a measure of uncertainty in machine learning.

Consider a 5-class classification task, a trained model’s  

three output probability distributions could be  

ŷ1 = [0.05, 0.5, 0.2, 0.05, 0.2] , ŷ2 = [0.02, 0.5, 0.2, 0.03, 0.15]  

and ŷ3 = [0.1, 0.5, 0.2, 0.1, 0.1] . These seemingly similar 

distributions are quite different from each other in the 

context of uncertainty. Least confidence and margin sam-

pling, as illustrated in Table 2, find it hard to discriminate 

these particular examples as the calculated uncertainty 

values are same for all. For these examples, least confi-

dent and margin sampling methods are no better than 

random. On the other hand, entropy takes advantage of 

the entire distribution to overcome the extant shortcom-

ings to query ŷ3.

Verifying crop density performance

Throughout the paper, we evaluated detection mod-

els learned using our methodology on the basis of their 

Mean Average Precision (mAP) but here we also evalu-

ate our model on one of the tasks that measures grain 

yield-crop density estimation. We see that the models 

trained on our best method Max-Ent-Var (mve) show 

exceptional performance in crop density estimation 

task, evaluated on Pearson’s Correlation Coefficient and 

Root Mean Squared Error. Pearson’s correlation coeffi-

cient, commonly represented by r, is a measure of how 

similar two data distribution are. Given paired data 

{{x1, y1}, . . . , {xn, yn}} consisting of n pairs, rxy is defined 

as:

Where n is sample size, xi, yi are the individual sample 

points indexed with i, x̄ =
1

n

∑
n

i=1
xi is the mean of all 

x values and analogously for ȳ . The root-mean-squared 

deviation (RMSD) or root-mean-squared error (RMSE) 

(11)
x∗
H = arg max

x
−

∑

i

Pθ (yi|x) log Pθ (yi|x)

(12)rxy =

∑n
i=1

(xi − x̄)(yi − ȳ)
√

∑n
i=1

(xi − x̄)2
√

∑n
i=1

(yi − ȳ)2

is a common measure of the differences between values 

predicted by a model and the values observed. Given the 

same pair of values mentioned before Eq. 12, the formula 

to calculate RMSE is:

Figure  9 shows the scatter plots between model pre-

dicted crop count and actual crop count of models 

trained on both Wheat and Sorghum datasets in Fig. 9a, 

b respectively. The plots include correlation coefficients 

and RMSE values at the bottom. In case of Wheat, the 

Pearson’s correlation coefficient (r) is 0.8147 while RMSE 

is 1.2080. In case of Sorghum, r is 0.9097 (high) while 

RMSE is 2.7069. We report these results on a large test 

sets—2202 images in case of Wheat and 1857 images in 

case of Sorghum.

Extensibility to multi class datasets

In our experiments, we report results on only single class 

detection datasets. However, our methods can be read-

ily applied on multi-class datasets because the concepts 

of entropy and variance can be easily generalized to work 

with multiple classes. In the future, we hope to extend 

our work to multi-class detection datasets. Since the 

datasets in our current experiments have a single class, 

we simply use the objectness scores of the region proposal 

network (RPN) as the bounding box predictions in our 

implementation. Methodology wise, the same technique 

can be seamlessly extended to multi-class detection data-

sets by instead looking at the final output vector. This is 

because the objectness scores alone may not be the best 

estimator for the uncertainty of the model.

Other forms of weak supervision

After running preliminary experiments on VOC [37], a 

dataset with 20 classes, we found that our methodology 

works decently when provided with localization based 

weak signals (object center clicks) but doesn’t work well 

with a much more affordable image level weak signal i.e., 

in the Type-1 annotation step, the annotator only pro-

vides classes of objects present in images as weak labels. 

In our future work, we will compare the effect of various 

forms of weak supervision on the active learning process.

(13)RMSE =

√

√

√

√

1

n

n
∑

i=1

(xi − yi)2

Table 2 Uncertainty sampling example

Sampling method ŷ1 ŷ2 ŷ3 Queried sample

Least confidence 1–0.5 = 0.5 1–0.5 = 0.5 1–0.5 = 0.5 ŷ1 or ŷ2 or ŷ3

Margin 0.5–0.2 = 0.3 0.5–0.2 = 0.3 0.5–0.2 = 0.3 ŷ1 or ŷ2 or ŷ3

Entropy 1.86 1.66 1.96 ŷ3
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Conclusion

The methodology described in this work demonstrates a 

novel, effective active learning method for object detec-

tion in crop images based on point supervision. By per-

forming extensive experiments on Sorghum and Wheat 

datasets, we have empirically shown that point super-

vision significantly improves the query performance 

by picking highly informative images. Our qualitative 

results also reinforce the phenomenon that querying with 

our proposed method results in picking blurry and low 

light images in which the objects are intuitively harder 

to localize accurately. This behavior is highly desirable 

in the case of object detection in crop images because 

crop datasets often have images with blur, occlusion 

and bad lighting conditions. The proposed active learn-

ing framework can be extended to incorporate bounding 

box size information for uncertainty estimation. Also, a 

natural extension to the proposed method is to make RPF 

parameters learnable. We leave this for future work.
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