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Temporal and spatio-temporal stability analyses are carried out to characterize the occurrence of

convective and absolute instabilities in combined Couette-Poiseuille flow of a Newtonian fluid past

a deformable, neo-Hookean solid layer in the creeping-flow limit. Plane Couette flow of a Newto-

nian fluid past a neo-Hookean solid becomes temporally unstable in the inertia-less limit when the

parameter Γ = V η/(GR) exceeds a critical value. Here, V is the velocity of the top plate, η is the

fluid viscosity, G is the shear modulus of the solid layer, and R is the fluid layer thickness. The

Kupfer-Bers method is employed to demarcate regions of absolute and convective instabilities in

the Γ-H parameter space, where H is the ratio of solid to fluid thickness in the system. For certain

ranges of the thickness ratio H, we find that the flow could be absolutely unstable, and the critical

Γ required for absolute instability is very close to that for temporal instability, thus making the flow

absolutely unstable at the onset of temporal instability. In some cases, there is a gap in the parameter Γ

between the temporal and absolute instability boundaries. The present study thus shows that absolute

instabilities are possible, even at very low Reynolds numbers in flow past deformable solid surfaces.

The presence of absolute instabilities could potentially be exploited in the enhancement of mixing

at low Reynolds numbers in flow through channels with deformable solid walls. Published by AIP

Publishing. https://doi.org/10.1063/1.5001132

I. INTRODUCTION

Fluid flow past deformable solid surfaces has diverse

applications ranging from biotransport1 to microfluidic mix-

ing.2 In these applications, it is important to understand

whether the flow is laminar and when the laminar flow becomes

unstable to a more complicated flow. Consequently, stability

analysis has been widely used to predict the onset of transition

to turbulence in such flows. Kumaran et al.3 studied linear sta-

bility analysis of the plane Couette flow past soft surfaces in

the creeping-flow limit using the linear viscoelastic model for

the deformable solid and predicted the presence of a temporal

instability at low, but finite wavenumber (henceforth referred

to as the finite-wave instability) which is absent if the walls are

rigid.4 But the linear viscoelastic model is not applicable when

finite base state strains are prevalent in the deformable solid

because of which the non-linear terms in the strain tensor of

the solid become significant. Gkanis and Kumar5 studied same

geometry in the creeping-flow limit, but they used the neo-

Hookean model for the solid which introduces a new instability

at high wavenumbers (hereafter referred to as “short-wave”

instability). This result differs from the linear viscoelastic

model in predicting critical parameter values for solid thick-

ness values H < 1, but the results remain unchanged for

H > 1, where H is the ratio of thickness of solid to fluid layers.5

The presence of the short-wave instability observed by Gkanis

and Kumar5 was attributed to the first normal stress differ-

ence in the solid in the base state, which is absent in a linear

a)Author to whom correspondence should be addressed: vshankar@iitk.ac.in

viscoelastic solid.3 This characteristic presence of short-wave

instability for a neo-Hookean model has also been confirmed

for plane Poiseuille6,7 and tube flows8 with deformable walls.

However, the Lagrangian formulations (for the solid) used in

the stability analysis by Gaurav and Shankar6 and Gkanis and

Kumar7 had inconsistencies in the interface conditions which

required a Taylor series expansion of finite base state quan-

tities. Similarly, the Lagrangian formulation of Chokshi and

Kumaran9 was inconsistent because the base quantities were

left as a function of the undeformed coordinates instead of

pre-stressed state coordinates as dictated by the momentum

balance equation for the perturbed state. The above inconsis-

tencies were resolved recently by Patne et al.10 who proposed

consistent Eulerian and Lagrangian formulations for the solid

which is used in the present study.

There have also been experimental studies which probed

the presence of instabilities in flow past deformable solid lay-

ers. Kumaran and Muralikrishnan11 carried out experiments

in which a liquid layer is present between two rotating discs of

a commercial rheometer, with the bottom disc being coated

with a soft polymer gel. They determined the viscosity in

the geometry with the soft gel. When the flow is viscomet-

ric (i.e., stable laminar flow), they observed that the viscosity

in this system is the same as the viscosity of the liquid used.

However, beyond a critical strain rate, the observed viscos-

ity strongly deviates from the expected viscosity value of the

fluid, and this is taken as a signature of the onset of instabil-

ity. They compared their experimental results for the critical

strain rate for instability with theoretical predictions (obtained

using the linear viscoelastic model) and found quantitative

agreement with no adjustable parameters for the Couette flow
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of a Newtonian fluid past a deformable solid. Experimental

studies by Neelamegam et al.12 for plane Couette flow past

the two-layer gel also showed an agreement between the-

oretical predictions (using the neo-Hookean model for the

solid) and experimental observations. Verma and Kumaran13

experimentally studied plane Poiseuille flow with deformable

walls and observed that the theoretical predictions (using the

neo-Hookean model) and experimental observations for the

transition Reynolds number quantitatively agree provided if

one considered the stability of the flow in the deformed con-

figuration, as there is a non-negligible alteration of the shape of

the deformable tube/channel due to the applied pressure gra-

dient. Neelamegam and Shankar14 carried out experiments to

characterize the onset of instability for Hagen-Poiseuille flow

through a tube with deformable walls and found that the scal-

ing predicted by theory (using the neo-Hookean model) and

experiments do not agree. Thus, while significant advances

have been made on the theoretical front, there still remain

some discrepancies between experimental observations and

theoretical predictions.

Earlier studies on plane Couette flow past soft surface

geometry studied only the temporal evolution of the distur-

bances and its relevance to experimental studies. However, a

temporal stability analysis does not answer the question of

how disturbances develop in space and time, i.e., whether the

growth of the disturbances is in space or time or in both space

and time simultaneously. For studying the evolution of distur-

bances with respect to time, viz., temporal stability analysis,

the frequency of the disturbances, ω, is taken as a complex

number and the wavenumber, k, is a real number.15 For spatial

stability analysis, which studies the evolution of disturbances

with respect to space, we take ω as a real number and k as

a complex number.4 For studying the development of distur-

bances with respect to space and time, it is necessary to perform

a spatio-temporal stability analysis, where it is necessary to

consider both ω and k as complex numbers.16,17

The characterization of fluid flows as being absolutely or

convectively unstable and the methodology to investigate these

phenomena by progressive moving of the contours in the com-

plex frequency and wavenumber plane (discussed in Sec. III)

were first proposed by Briggs18 in context of plasma physics.

The presence of an absolute instability signifies the growth of

disturbances in both upstream and downstream directions from

the point where the disturbance is introduced. This is not the

case with convective instability, where disturbances are swept

downstream from the source of the disturbance, and given suf-

ficient time these disturbances decay at any fixed position in

space.16 The spatio-temporal evolution of disturbances is best

illustrated by considering the response of a given base veloc-

ity profile to an impulse excitation in the asymptotic limit of

long times.16 From this asymptotic response, it can be inferred

whether the flow is absolutely or convectively unstable. For

illustration purposes, consider a linear dispersion relation

ω = f (k), where f (k) is a continuous and differentiable func-

tion of k. In order for absolute instability to exist, the group

velocity of the disturbances must be zero16,17 which implies
∂ω
∂k
= 0, but this is not a sufficient condition for absolute insta-

bility. The roots of ∂ω
∂k
= 0 are the saddle points of the (linear)

dispersion relation. If there is a first-order saddle point in the

k-plane (denoted by k0), then a local Taylor expansion about

this point would yield (ω − ω0) ∼ (k − k0)2, where ω0 is the

value ofω at the saddle point k0. Because of the angle-doubling

(i.e., phase doubling) property of this local mapping betweenω

and k planes, the saddle point (k0) in the k-plane corresponds

to a cusp point (ω0) in the ω plane. The method described

earlier, however, gives a number of saddle points, and to deter-

mine the saddle point which obeys the causality principle

(which stipulates that the cause does not precede effect), the

Briggs-Bers18 method is needed. Kupfer et al.19 employed this

local mapping to conceptualize a simpler method, wherein to

predict an absolute instability we need to detect the forma-

tion of the cusp point in the ω plane and if this cusp point

corresponds to Im(ω) > 0 and is genuine (as explained in

Sec. III), then it can be concluded that the flow is absolutely

unstable.

Absolute instability is absent in plane Couette flow past

the rigid surface as there is no temporal instability4 in that

flow. Deissler20 showed the absence of absolute instability for

plane Poiseuille flow in a rigid channel although the flow is

temporally unstable. Consequently, the presence of an abso-

lute instability (if any) in the present configuration of com-

bined Couette-Poiseuille flow past a deformable surface should

then be a consequence of the dynamics of the deformable

solid. If absolute instabilities are indeed present in flow past

deformable solid walls, then this feature can be exploited in

promoting mixing in such flows by varying the parameters

(e.g., shear modulus of the solid, dissipation in the solid) such

that absolute instability is triggered which can hasten mix-

ing as absolute instabilities are in general catastrophic when

compared to convective instabilities. In microfluidic devices

fabricated using elastomers, the length of the channel may not

be sufficiently long for convective instabilities to grow within

the domain of the device. However, if absolute instabilities are

present in such devices, then the flow is destabilized in the

entire domain of the channel. Thus, there are important practi-

cal consequences due to the presence of absolute instabilities

in channels with deformable solid walls.

There have been some earlier studies in flow past

deformable solid boundaries that characterized convective and

absolute instabilities, but most of these studies were for exter-

nal boundary layer flows past a deformable wall. Carpenter

and Garrad21 classified the instabilities as being fluid-based

and solid-based, but Sen and Arora22 found the presence of

instability which is formed by the coalescence of the solid-

based and fluid-based unstable modes, which they termed

as transitional mode. However, the authors did not conclude

whether this transitional mode is absolutely unstable or not.

Carpenter and Garrad21 investigated the presence of absolute

instability in the Kramer-type compliant surfaces, while Yeo

et al.23–25 used a continuum linear viscoelastic model for the

solid to analyze boundary layer flow over such deformable

walls. They used the Kupfer-Bers method19 and found the

boundary layer flow past a viscoelastic solid to be abso-

lutely unstable, which is not the case in the boundary-layer

flow over rigid surfaces. Hamadiche and Gad-el-Hak26 car-

ried out spatio-temporal stability analysis of Hagen–Poiseuille

flow of a Newtonian fluid in an incompressible, collapsi-

ble, viscoelastic tube for axisymmetric and non-axisymmetric
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disturbances. For axisymmetric disturbances, they found the

presence of two convectively unstable modes of which, one

was propagating upstream while the other one propagating

downstream. For non-axisymmetric disturbances, there was an

upstream propagating absolutely unstable mode. The existence

of absolute instability for blood-vessel-like geometries was

studied by Hamadiche et al.27 where they considered a three-

layered wall made up of soft material with different rheological

properties. Hamadiche et al.27 showed that it is possible to

convert absolute instability to convective instability and vice-

versa by varying the rheological parameters of the three solid

layers.

In the present study, we have considered the neo-Hookean

solid model for studying spatio-temporal stability analysis of

flow past a deformable solid. The flow considered here is the

combined plane Couette-Poiseuille flow past a neo-Hookean

solid. Due to the use of a neo-Hookean model, there is a normal

stress difference in the solid in the base state, which becomes

the reason for the presence of short-wave (high-wavenumber)

instability. As we demonstrate in this work, this characteris-

tic short-wave instability in the neo-Hookean solid plays an

important role in the existence of absolute instabilities. The

rest of the paper is structured as follows: Sec. II discusses

the formulation of the problem by using the Lagrangian for-

mulation for the solid. A brief discussion on the analysis of

absolute and convective instabilities is provided in Sec. III.

Results from temporal and spatio-temporal stability analysis

of the flow under consideration are discussed in Sec. IV. The

salient conclusions of the present study are summarized in

Sec. V.

II. PROBLEM FORMULATION

We consider an incompressible Newtonian fluid with vis-

cosity η and density ρ is flowing through a channel of width R

past a neo-Hookean solid of dimensional thickness HR (where

H is the non-dimensional solid thickness) bonded to rigid solid,

with shear modulus G and density ρ. A combined Couette-

Poiseuille flow is considered in this channel where the Couette

flow component is created by moving the upper plate at steady

(dimensional) velocity V and the Poiseuille flow component

is due to an applied pressure gradient. We non-dimensionalize

lengths, velocity, pressure and stresses with respect to R, GR/η

and G, respectively. Let v = (3x, 3z) denote the velocity field,

where 3x and 3z, are, respectively, velocities in the x and z direc-

tions. The schematic of the geometry (in non-dimensionalized

coordinates) for the problem is shown in Fig. 1, where x is

the flow direction and z is the direction perpendicular to the

flow.

Then the continuity equation is given by

∇ · v = 0. (1)

The Navier-Stokes momentum equation takes the form

Re

Γ

(

∂v

∂t
+ (v · ∇) v

)

= −∇p + ∇2
v. (2)

Here, p is the pressure in the fluid, Re = ρRVa3g/η is the

Reynolds number, and Γ = ηVa3g/GR, is the dimensionless

velocity with Va3g as the average velocity of the base flow.

FIG. 1. Schematic of the flow geometry. The upper plate moves with non-

dimensional steady velocity of 2ΓCouette, where ΓCouette is the nondimensional

average velocity of the Couette component of the flow. The figure shows the

velocity profile for
dp̄

dx
< 0. The nondimensional coordinates x and z are scaled

with the thickness of the fluid layer.

The non-dimensionalised base state velocity profile is

v̄x = Γ [(6 − 4 ǫ)z − 6 (1 − ǫ) z2], (3)

where the overbar indicates base state variable. Henceforth,

base state quantities will be indicated by an overbar except for

x̄, which denote pre-stressed state coordinates for the solid.

The pressure gradient in the flow direction is

dp̄

dx
= −12 Γ (1 − ǫ), (4)

where ǫ = ΓCouette/Γ, with ΓCouette as the dimensionless average

velocity of Couette flow. The velocity profile is obtained such

that the volumetric flow rate remains same while we change

parameter ǫ , so that critical parameter values required for insta-

bility can be compared. The limiting cases of the various values

of ǫ can be summarized as follows:

ǫ = 1, Couette flow, (5)

0 < ǫ < 1, Couette-Poiseuille flow

(

dp̄

dx
< 0

)

, (6)

ǫ = 0, Poiseuille flow, (7)

ǫ > 1, Couette-Poiseuille flow

(

dp̄

dx
> 0

)

. (8)

For the solid, consider a representative particle with the

position vector X = (X1, X2, X3) in the undeformed solid.

Assuming the solid to be incompressible and letting fluid flow

past it, the representative particle will now assume the position

vector, x = (x1, x2, x3). The current and undeformed position

vectors are related by

x(X) = X + u(X), (9)

where u(X) is the Lagrangian displacement in the solid. Hence

the deformation gradient is, F =
∂x

∂X
. The incompressibility

condition is given by

det (F) = 1. (10)

The dimensionless Cauchy stress for a purely elastic neo-

Hookean solid is10,28,29

σ = −pgI + F · F
T , (11)

with pg being the pressure field in the solid. The non-

dimensionalised momentum balance equation28,30 is



124104-4 R. Patne and V. Shankar Phys. Fluids 29, 124104 (2017)

Re

Γ

∂2
u

∂t2
= ∇x̄ · P, (12)

P = F
−1
· σ, (13)

where P is the first Piola-Kirchhoff stress tensor. At the rigid

solid-neo-Hookean solid interface (z̄ = −H), there will be

no perpendicular or tangential motion as it is assumed that

the neo-Hookean solid is perfectly bonded to the rigid solid.

Hence, the boundary condition at this interface becomes u = 0.

At the fluid-solid interface, continuity conditions are imposed

for the velocity and stresses. In the base state, the motion is,

x̄(X) = X + ū(X), which leads to the base state deformation

gradient F̄ =
∂x̄

∂X
. Substituting F̄ in Eqs. (10)–(13), and fol-

lowing the procedure outlined by Patne et al.10 the steady base

state the deformation in the solid in terms of the pre-stressed

state coordinates is

ūx = 6 Γ (1 − ǫ) (H2
− z̄2) + Γ (6 − 4 ǫ) (z̄ + H). (14)

Similarly, the base state pressure in the solid is

p̄g = −12 Γ (1 − ǫ) x̄. (15)

For the perturbed state, the motion is described by

x(x̄) = x̄ + u
′(x̄, t). Here, u

′(x̄, t) is the Lagrangian displace-

ment of the particle from base state, and the prime indicates that

it is a perturbation quantity (henceforth, perturbation quanti-

ties will be indicated by a prime). The deformation gradient

becomes F =
∂x

∂X
. The incompressibility condition for the

perturbed state after using the base state incompressibility con-

dition becomes det(F′) = 1. Further, we take the creeping-flow

limit in this study and assume two-dimensional disturbances

with normal modes of the form

(v ′x, v ′z , p′)(x, t) = ( ṽx, ṽz, p̃)(z) ei k (x−ct), (16)

(u′x, u′z, p′g)(x̄, t) = ( ũx, ũz, p̃g)(z̄) ei k (x̄−ct), (17)

where k is the wavenumber in the z direction, while c = cr + ici

is the complex velocity of the perturbations with cr as the phase

speed and ci as the growth or decay rate of the perturbations.

Hence flow will be unstable if for any eigenvalue ci > 0. It

must be noted that a tilde over a quantity indicates the eigen-

function or the Fourier transform of the corresponding pertur-

bation quantity. The governing equations for the fluid can be

written as

ik ṽx + Dṽz = 0, (18)

−ikp̃ + (D2
− k2) ṽx = 0, (19)

−Dp̃ + (D2
− k2) ṽz = 0, (20)

where D = d
dz

. Similarly for the solid, the incompressibility

condition is

ikũx + Dũz = 0, (21)

and momentum balance equations are

−ikp̃g +
(

D2 + 2ikDūxD − k2(1 + (Dūx)2) + ik D2ūx

)

ũx

−Dx̄p̄gDũz = 0, (22)

−Dp̃g +
(

D2 + 2ikDūxD − k2(1 + (Dūx)2) + ik D2ūx

)

ũz

+ Dx̄p̄gDũx = 0, (23)

where D = d
dz̄

and Dx̄ =
d
dx̄

. The above equations are quite

general and can be used for any planar flow geometry provided

that we specify ūx(z̄) and p̄g(x̄). The above equations for the

fluid and solid are then solved by using the following boundary

conditions. At z = 1, i.e., at the upper plate, the absence of slip

and permeability implies

ṽx = 0, ṽz = 0. (24)

At z = 0, i.e., at the fluid-soft solid interface, velocity and stress

continuity gives

ṽz = −ikcũz, (25)

ṽx + Dv̄xũz = −ikcũx, (26)

Dũx + ikũz + 12Γ(1 − ǫ)ũz = Dṽx + ik ṽz, (27)

−p̃g + 2 (ikDūx + D)ũz − 12Γ(1 − ǫ)ũx = −p̃ + 2Dṽz − Tk2ũz,

(28)

where T is the dimensionless interfacial tension. At z = ☞H, as

the deformable solid is perfectly bonded to the rigid solid, the

displacement of the deformable solid will be zero, i.e.,

ũx = 0, ũz = 0. (29)

The continuity and momentum balance equations for the

fluid and solid are to be solved by using the above bound-

ary conditions. As the differential equations have coefficients

which are the functions of z, an analytical solution is not

possible. Hence we numerically integrate fluid perturbation

governing equations from the upper plate (z = 1) upto the inter-

face by utilizing boundary conditions (24). Similarly for the

solid, perturbation governing equations are numerically inte-

grated from (z = ☞H) by using boundary conditions (29). The

eigenfunctions obtained above are then used in the interface

conditions (25)–(28) to form a matrix which is then solved

for the eigenvalue (c) for the given values of the parameters.

The numerical integration is performed by using the ode45

package of MATLAB.

III. ANALYSIS OF ABSOLUTE AND CONVECTIVE
INSTABILITIES

The linear spatio-temporal response of an initially

localised disturbance at x = 0 and t = 0 can be analyzed by

considering the evolution of Green’s function provided the

given disturbance is an impulse function. The expression for

Green’s function is

G(x, t) =

∫
F

∫
L

ei(kx−ωt)

D[k,ω; R]
dωdk, (30)

where F is the Fourier contour in the k (complex wavenumber)-

plane and L is the Laplace contour in the ω (complex

frequency)-plane and R is the system parameter. Also D[k,

ω; R] is the (linear) dispersion relation which relates k and

ω, and as discussed in Sec. I this dispersion relation is used

to obtain the saddle points. For integrating the above inte-

gral, the L-contour must be placed above all singularities of

the dispersion relation D[k, ω; R] in the ω-plane so that the

causality is not violated and F-contour must be placed in the
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k-plane such that it will be along the kr-axis.16 To obtain the

spatio-temporal evolution of the disturbances, the evaluation of

the above integral is necessary, but this is not generally feasible.

Furthermore, in the understanding of instability, we need the

system response at large times where an analytical solution is

possible. This involves deforming the contour in the k-plane to

make it pass through the saddle point, and the integration can be

accomplished by using the method of the steepest descent.31,32

This gives an expression for Green’s function in the asymptotic

limit of long times,

G(x, t) ∼ −(2π)−1/2 ei[π/4+k0x−ω(k0)t]

∂D
∂ω

[k0,ω(k0)]
[

d2ω

dk2 (k0)t
]1/2

, (31)

where k0 is the position of the saddle point in the k plane and

ω(k0) is the position of the cusp point in the ω plane corre-

sponding to the saddle point k0. From Eq. (31), one can easily

infer the condition for which the system will be absolutely

unstable or convectively unstable. For convectively unstable

systems,

lim
t→∞

G(x, t) = 0, along the ray x/t = 0, (32)

and for absolutely unstable systems,

lim
t→∞

G(x, t) = ∞, along the ray x/t = 0. (33)

To confirm the presence of absolute instability, the group

velocity defined as ∂ω/∂k, must be zero at the saddle point

k0.

The vanishing characteristic of group velocity at the sad-

dle point is a necessary but not a sufficient condition for the

existence of absolute instability. This is because the group

velocity is zero at every saddle point or where the two k-

branches meet independent of whether the branches originate

from same half of the k-plane or not. To overcome this inade-

quacy, Briggs18 developed the idea of tracking the F-contour

deformation in the k-plane and its relation to the L-contour

deformation in the ω-plane by using the analytic continua-

tion. As the contours are deformed, a pinch point appears in

the k-plane when the two branches intersect (“pinch”) each

other in the k-plane. Concurrently, a cusp point appears in

the ω-plane which is a branch-point. Further deformation of

the contours after the pinch point is formed violates causality,

and the deformation of the contours is stopped. In the present

work, we encounter only a second-order algebraic branch point

in the ω-plane and a first-order saddle point in the k-plane as

discussed in Sec. IV B.

To ascertain whether the detected cusp point is formed

due to the analytic continuation of the k-branches originating

from the different halves of the k-plane or not, the following

procedure is adopted. Following Ref. 19, we can either draw

a straight ray from the cusp point such that it will intersect

the image of the F-contour (for ki = 0) in the ω-plane and

then count the number of times such intersections occur or

count the number of times both k-branches cross the kr-axis

before forming pinch point in the k-plane. If either one or

both of the k-branches have crossed the kr-axis even num-

ber of times or the ray drawn from the cusp point in the

ω-plane intersects the image of the F-contour (for ki = 0)

in the ω-plane even number of times, then the observed cusp

point is formed due to k-branches originating from same half

of the k-plane,19 and this scenario corresponds to an evanes-

cent mode.23 If the count of intersections by the straight line

with the image of the F-contour (for ki = 0) in the ω plane

turns out to be odd, then the observed cusp point is formed

due to the two k-branches originating from different halves of

the k-plane and the concerned cusp point is termed as gen-

uine. If this genuine cusp point is formed in the upper half

of the ω-plane, i.e., if ωi > 0, then the system is absolutely

unstable. If ωi < 0, the flow is convectively unstable, pro-

vided it is already temporally unstable; otherwise, the system is

stable.

The absolute instability is far more dangerous than the

convective instability as the occurrence of absolute instability

will pervade the entire flow domain, i.e., both in the direction

of the flow and in the direction opposite to the flow. This res-

onance of the upstream and downstream eigenmodes at the

disturbance source leads to growth as long as the cusp point

is located in the upper half of the ω-plane. However, for con-

vectively unstable systems, the disturbance is convected away

from the source as time progresses hence leaving the flow

domain as such if given sufficient time. However, convec-

tive instability can cause transition to turbulence if a sufficient

spatial distance is given for the disturbances to grow. Kupfer

et al.19 developed a method by exploiting the local map rela-

tionship (ω − ω0) ∼ (k − k0)2 which considerably reduces

the task of finding an absolute instability because the disper-

sion relations that are found for practical problems are usually

transcendental in k and algebraic in ω. Hence it becomes

difficult to find k for a given ω and is usually quite com-

putationally intensive. But, in the Kupfer-Bers method, we

consider only the formation of a cusp point in the ω-plane.

From the local map relation, it can be easily inferred that the

angle doubling property is an essential feature of the forma-

tion of branch point singularity in the ω-plane provided that

the pinch point corresponding to this cusp point is a first-order

saddle point. Here we will restrict ourselves only to first-order

saddle points as only such points are encountered in the present

work.

In the Kupfer-Bers19 method, we scan a certain region in

the k-plane using a contour with different values of ki < 0

and varying kr , and the images of this contour is plotted in

the ω-plane. For a particular ki contour, the cusp point

appears. After locating the cusp point, in order to confirm

that it is indeed genuine, the procedure outlined above based

on the construction of a ray from the cusp point is adopted.

During our analysis, we also encountered “evanescent modes”

and a schematic example of how the evanescent mode

differs from a genuine mode is given below. Consider the

formation of the branch point in the ω-plane as shown in

Fig. 2.23 The ray, shown with a thin line intersects ki = 0

image even number of times. This means that the cusp

point formed is not genuine and hence corresponds to an

evanescent mode. This can also be interpreted as the dou-

ble crossing by a k-branch of the kr-axis, so the saddle point

forming branches originate from the same half-plane of the

k-plane.23
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FIG. 2. Evanescent mode formation in the ω-plane (thick line is branch cut).

IV. RESULTS AND DISCUSSION

A. Temporal stability analysis

The temporal stability analysis of the combined Couette-

Poiseuille flow past a neo-Hookean surface was first studied

by Gkanis and Kumar,7 but owing to the use of inconsis-

tent interface conditions some of the conclusions obtained

in their work need to be revisited. In the present work when

the consistent interface conditions are used, we show that the

finite-k instability predicted by Gkanis and Kumar7 is absent

in the creeping-flow limit for plane Poiseuille flow. Figure 3

shows the effect of variation in ǫ , i.e., variation of the pressure

gradient on the temporal stability. As can be observed from

Fig. 3, as the pressure gradient is increased in the flow direc-

tion, finite-wave disturbances are stabilized while short-wave

disturbances are destabilized. This stabilisation and destabil-

isation phenomena will be further discussed in Fig. 7. For

positive pressure gradients (ǫ > 1), forces acting on the solid

due to the Couette and Poiseuille components of the flow will

be in opposite directions. As explained later, this leads to the

presence of finite-wave instability which is shown in Fig. 3 for

ǫ = 1.2. Similar to the prediction of Gaurav and Shankar,6 we

too find that the finite wave instability is absent in the creep-

ing flow limit for Poiseuille flow past a neo-Hookean solid

(Fig. 4).

FIG. 3. Results from the temporal stability analysis: ci vs k for different values

of ǫ for H = 10, Γ = 1, and T = 0. The figure shows stabilizing and destabilizing

effects of variation in ǫ .

FIG. 4. Results from the temporal stability analysis: ci vs k for different values

of Γ for H = 10, ǫ = 0, T = 0. This figure illustrates the absence of finite-wave

instability observed for plane Poiseuille flow past a neo-Hookean solid.

To analyze the stability behavior further, it is necessary

to understand the effect of change in the pressure gradient

on the critical parameters and possible qualitative changes in

the type of the instabilities observed. Hence in Fig. 5, neu-

tral curves for varying values of ǫ are plotted for H = 0.5. The

plot shows only the presence of short-wave instability for ǫ = 0

and 1, which, respectively, denote plane Poiseuille and Couette

flows. However, for ǫ = 1.4 (i.e., combined Couette-Poiseuille

flow), the neutral curve has characteristics of the finite-wave

instability such as a nearly parabola-shaped neutral stability

curve and, as shown later, the critical value of Γ for the flow to

be temporally unstable (Γct) scales as Γct ∼
1
H

. Thus, surpris-

ingly while both plane Couette and plane Poiseuille flows do

not exhibit finite wave instability for H = 0.5, the combined

Couette-Poiseuille flow exhibits a finite wave instability for

ǫ = 1.4. Physically, this may be rationalized as follows: For

ǫ > 1, the Couette and Poiseuille flows are in the opposite

FIG. 5. Neutral stability curves for the combined Couette-Poiseuille flow in

the Γ–k parameter space for H = 0.5 and T = 0. This figure shows the presence

of the finite-wave instability for ǫ = 1.4.
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directions, and because of this the velocity gradient of the

base state flow at the fluid-solid interface decreases with the

increase in ǫ for ǫ > 1. As the base-state deformation field

in the solid is dictated by the shear stresses exerted by the

fluid at the fluid-solid interface, when the velocity gradient

of the base flow becomes smaller, the deformation induced in

the solid also becomes smaller. In that limit, the neo-Hookean

solid behaves almost like a linear elastic solid as the base-state

strains induced in the solid are sufficiently small. For linear

elastic solids,3,33 the finite wave instability is always present

in the creeping-flow limit regardless of the flow (i.e., plane

Couette or plane Poiseuille). Thus, the combined Couette-

Poiseuille flow past a neo-Hookean solid exhibits a finite wave

instability for ǫ > 1, and the neo-Hookean solid effectively

behaves like a linear elastic solid. For the same reason, the

first-normal stress difference becomes negligible in the neo-

Hookean solid, and the short-wave instability is not present for

ǫ > 1. This is further illustrated in Fig. 6 where we plot the vari-

ation of the critical strain rate for temporal instability, Γct , with

solid thickness H. For H < 1, the curve for ǫ = 1.2 shows char-

acteristics of the finite-wave instability, with Γct ∝ 1/H for all

values of H.

From Fig. 6, it is also clear that Γct is constant with respect

to the variation in H for ǫ = 0 (viz., plane Poiseuille flow), and

this is due to the presence of only short-wave instability which

is independent of H. For ǫ = 0, the critical strain rate Γct ∼ 0.5

even though only short-wave instability is present. It must be

noted that earlier studies in the creeping-flow limit for flows

past a neo-Hookean solid observed a short-wave instability

only for Γ > 1. The reason for Γct < 1 for the short-wave

instability in the present work is because of using the entire

channel width as the length scale and average velocity as the

velocity scale for nondimensionalization. If instead we use the

half channel width and maximum velocity for plane Poiseuille

flow, the results are in agreement with Ref. 6. The curves for

ǫ = 0.8, 1.2 which represent combined Couette–Poiseuille flow

show the effect of the pressure gradient on the finite-wave

and short-wave instabilities. It must be noted that for ǫ = 0.8,

FIG. 6. Combined Couette-Poiseuille flow: H vs Γct for different values of ǫ

and T = 0, showing effect of positive and negative pressure gradients on the

temporal stability.

from Eq. (4), the pressure gradient will be negative for pos-

itive values of Γ and hence Couette flow and Poiseuille flow

will be in the same direction, while for the case of ǫ = 1.2,

the pressure gradient will be positive, creating Poiseuille flow

which will be in the opposite direction to that of the Couette

flow. Comparison of the results for ǫ = 0.8 and ǫ = 1 (viz.,

Couette flow), shows a decrease in Γct for the values of H for

which either only short-wave instability exists or it becomes

unstable before the finite-wave instability. To conclude, if the

pressure gradient is negative and if the magnitude of this

pressure gradient increases, this has a destabilizing effect on

the short-wave instability. Similar comparison of curves for

ǫ = 1 and ǫ = 1.2 shows that an increase in the pressure gra-

dient has a stabilizing effect for lower H and higher H values,

while destabilizing effect for intermediate H values. The above

picture becomes clearer in Fig. 7, where the variation of Γct

with ǫ for representative values of H is shown. Gkanis and

Kumar7 also studied the same parameter space, but owing to

the inconsistent base state and boundary conditions, their plots

differ from the present results. One of the most interesting dif-

ferences is the absence of any instability for ǫ = 1.5 for any

value of H. This absence of instability can be deduced from

Eq. (14). The stress acting on the solid due to the fluid motion

at the solid-fluid interface is

dūx

dz̄
= Γ (6 − 4 ǫ). (34)

Equating Eq. 34 to zero gives ǫ = 1.5, i.e., there will be no

stress acting on the solid even though there is fluid flow. This

particular value of ǫ indicates a perfect cancellation of the

shear stresses at the fluid-solid interface caused by Couette and

Poiseuille flows, so that the base-state deformation in the solid

is zero. This value of ǫ also makes the interaction between

base and perturbed states in the tangential velocity balance

zero, and this removes any energy transfer from base state to

perturbations which is necessary for triggering the instability.

Although there are similar types of interaction terms in stress

continuity conditions, this interaction is not sufficient to cause

an instability in the creeping-flow limit. Further, for ǫ < 0.7,

H = 10 and for ǫ < 0.8, H = 3, the results overlap with those

FIG. 7. Variation of Γct with respect to ǫ for H = 0.1, 3, and 10 for combined

Couette-Poiseuille flow.
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for H = 0.1. This is because of the presence of only short-wave

instability for all values of H. The departure of the curve for

H = 10 from H = 0.1 for ǫ > 0.7 is because of the dominance

of the finite-wave instability in determining the stability of the

system. A similar case is observed for the H = 3 curve, but

the departure of the curve is delayed, indicating an increase in

influence of short-wave instability as the H value is decreased.

Also the H = 3 curve does not coincide with the H = 10 curve

for ǫ > 0.8 as Γc for the finite-wave instability is inversely

proportional to H. This also explains the location of the curve

for H = 3, which lies between the curves for H = 0.1 and

H = 10.

The effect of interfacial tension on the stability is shown in

Fig. 8. It has been observed in previous studies5,6 that interfa-

cial tension has stabilizing effect on the short-wave instability.

Our results show that the effect of the interfacial tension to

be more prominent as ǫ is decreased from 1 to 0 due to the

increasing dominance of the short-wave instability.

B. Spatio-temporal stability analysis

1. Plane Couette flow

In Sec. IV A, we discussed results from the temporal sta-

bility analysis where c was taken to be a complex number

and k to be a real number. In this subsection, we take both c

and k as complex numbers which is necessary for perform-

ing the spatio-temporal stability analysis. Further we use the

complex frequency ω = ck instead of the wavespeed c. Before

presenting results, it is first important to demonstrate that the

cusp-point in the ω-plane and the saddle-point in the k-plane

correspond to each other due to angle doubling property of the

local map as stated by Kupfer et al.19 for a first-order saddle

point. To this end, a particular set of parameters is considered

for which the flow is absolutely unstable (H = 1.5, Γ = 2,

ǫ = 1, and T = 0). As per the Kupfer-Bers method, first the

image of the dispersion relation for ki = 0 is obtained, which

corresponds to the temporal stability result. Then we decrease

ki values, and the corresponding images in the ω plane are

obtained. When ki becomes sufficiently negative (☞0.037 064

FIG. 8. Role of nonzero interfacial tension at the solid-fluid interface in

combined Couette-Poiseuille flow. H vs Γct for different values of ǫ , for

T = 0.5.

FIG. 9. Cusp point in the ω-plane for H = 1.5, T = 0, Γ = 2 for plane Cou-

ette flow (ǫ = 1). The cusp point is formed at ω = 0.4032 + 0.030 48i for

ki = ☞0.037 064 and varying kr .

in this case), we observe the appearance of a cusp point in Fig. 9

at ω = 0.4032 + 0.030 48i. The pinch (saddle) point in the

k-plane corresponding to the cusp point in theω plane appears

at at k = 0.4847 ☞ 0.037 064i as shown in Fig. 10. This was

obtained by drawing isocontours of ωr and ωi in the k-plane.

We next draw a ray from the cusp point and extend it to the

temporal curve. Since the ray from the cusp point intersects

the temporal curve only once, this implies that the cusp point

is genuine.19,23

We also encounter evanescent modes in our study and

to illustrate their existence we consider parameters H = 0.6,

Γ = 1.9, T = 0, and ǫ = 1. Figure 11 shows the formation of the

cusp point for this parameter set. However, for this cusp point,

the ray drawn from the cusp point intersects the temporal curve

in the ω-plane (the curve corresponding to ki = 0) twice (i.e.,

even number of times), and hence the cusp point corresponds to

an evanescent mode. Further analysis of the evanescent modes

will not be considered here. For more discussions on evanes-

cent modes the reader is referred to the studies of Lingwood,34

Koch,35 and Lundbladh et al.36

In order to determine the range of Γ for which the system

is absolutely unstable (for fixed T, ǫ , and different H), we plot

in Fig. 12 the absolute growth rate (the growth rate at the cusp

pointωi0) as a function of Γ. From such plots, we arrive at the

regions where the flow is convectively unstable or absolutely

unstable. We define Γca as the minimum Γ required for the flow

to be absolutely unstable. Clearly Γca ≥ Γct where Γct is the

minimum Γ required for the flow to be temporally unstable. As

can be observed from Fig. 12, the flow does not become abso-

lutely unstable for H = 5 for any value of Γ. For H = 3.9447,

initially as Γ is increased, the ωi0 value also increases, and

at Γ = 0.8 it shows absolute instability, but on further incre-

ment in Γ, the flow is only convectively unstable. The value

H = 3.9447 is special as the system becomes absolutely unsta-

ble for only one value of Γ. For H = 3.8, the flow is absolutely

unstable for a range of Γ, but for Γ > 1.13 it becomes convec-

tively unstable. For H = 1, initially the system is convectively

unstable, but on further increment in Γ, it becomes absolutely

unstable, and in this case, it remains absolutely unstable for

higher values of Γ.
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FIG. 10. Pinch (saddle) point in the k-plane corresponding to the cusp point in Fig. 9 for H = 1.5, Γ = 2, and ǫ = 1, T = 0. The pinch point at k = 0.4847 ☞

0.037 064i in the k plane is formed when ωr = 0.4032 and ωi = 0.030 48. Both panels (a) and (b) demonstrate that the saddle point in the iso-contours of ωr and

ωi occurs at the same location in the kr -ki plane.

Following the same procedure for different values of H,

we show the boundaries for absolute and convective insta-

bilities in Fig. 13. In this figure, the legends A, C, E, and S

denote, respectively, absolutely unstable, convective unstable,

evanescent, and temporally stable regions. Here Γca denotes

the critical value of Γ for which the system undergoes tran-

sition from convectively unstable flow to absolutely unstable

flow. Interestingly, at values of H > 1, while the temporal sta-

bility boundary scales as Γct ∼ 1/H, however, the absolutely

unstable regions do not necessarily follow this scaling, and

depending on the value of H, both absolutely and convectively

unstable regions are found in this regime. For H > 3.94, there is

no absolute instability in the system, and it is not possible for

the system to support globally absolutely unstable modes.16

For H < 3.94, this pathway is one of the possibilities, as the

system may get into a non-linear region caused due to convec-

tively unstable modes if Γ is not sufficiently high, as there is a

small gap in the boundaries for temporal and absolute instabil-

ities.34 To ascertain this rigorously, a full non-linear analysis

is required. However, this generalization is not true for some

FIG. 11. Evanescent mode formation for H = 0.6, Γ = 1.9, T = 0, and ǫ = 1

at ω = ☞1.451 + 0.1182i. The outer curve is for ki = 0, and the inner one is

for ki = 0.029 05.

values of H where short-wave instability governs the stability

behavior of the system and Γct = Γca, showing that absolute

instability is the mode of instability, and the system can support

global absolutely unstable modes.

An interesting “causality competition” between finite-

wave mode and short-wave mode is observed while finding

absolute instability for H < 0.71. For H < 0.71, it is the finite-

wave mode that forms the cusp-point first as the Fourier con-

tour is moved in the k-plane and which is convectively unstable

for low Γ but is causally legitimate. On further increment in

Γ, both finite-wave and short-wave modes form cusp-points at

the same ki, showing both cusps are causally legitimate such

that finite-wave mode is convectively unstable while short-

wave mode is absolutely unstable. Hence, when the system

becomes absolutely unstable, the value of ωi is quite high,

and the instability is catastrophic. But on further increment

in Γ, it is the short-wave mode that becomes causally legiti-

mate, and it happens to be an absolutely unstable or evanescent

mode. Also, the presence of an evanescent mode is denoted in

Fig. 13 as A+E. In this region, depending on the parameters

FIG. 12. Range of Γ values under which the flow is absolutely unstable for

H = 5, 3.9447, 3.8, 1; ǫ = 1, and T = 0.
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FIG. 13. Absolute instability region for ǫ = 1, T = 0 in H–Γ parametric space.

In the figure, TI and STI, respectively, stand for temporal and spatio-temporal

instability boundaries.

fixed, either absolutely unstable modes or evanescent modes

are encountered. In Fig. 13 for H < 1 where the short-wave

mode is the dominant mode, in temporal instability, for range

H = 0.71–0.77, only convectively unstable modes or evanes-

cent modes are found.

In Fig. 14, the effect of interfacial tension T on the pres-

ence of absolute instability is examined. From temporal sta-

bility analysis, it is well-known that T has stabilizing effect

on short-wave instability.5 Hence it is important to understand

effect of non-zero T on the existence of absolute instability.

Figure 14 shows strong stabilizing effect of T for the onset of

absolute instability for H < 0.77. Comparing Figs. 13 and 14

for H < 0.77, for T = 0.5, the absolute instability boundary gets

displaced upwards as well as shrinks in terms of H, indicating

that, unlike the T = 0 case, there is no value of H where the

flow undergoes a direct transition from stable modes to abso-

lutely unstable modes. Even here, the “causality competition”

takes place between finite-wave mode and short-wave modes,

but here it is much severe as the finite-wave mode remains

FIG. 14. Absolute instability region for ǫ = 1, T = 0.5 in H–Γ parametric

space.

causally legitimate upto a certain value of Γ, and this com-

bined with the formation of evanescent cusps by short-wave

mode is the reason that pushes the absolute instability bound-

ary to such high values of Γca. The temporal stability analysis

shows negligible effect of interfacial tension on finite-wave

instability.5 Figure 14 shows that the non-zero interfacial ten-

sion does not have significant effect on the spatio-temporal

stability of the finite-wave mode, but has substantial effect on

short-wave instability.

2. Plane Poiseuille flow

The velocity profile for plane Poiseuille flow can be

obtained by putting ǫ = 0 in Eq. (3) so as to remove the plane

Couette component. In this case as well, only a first-order sad-

dle point was observed and hence the procedure of finding

absolute instability is the same as in the case of Couette flow.

The variation of the critical strain rate, Γct and Γca, with respect

to H for Poiseuille flow is shown in Fig. 15.

Comparing Fig. 13 for Couette flow and Fig. 15, the major

difference is the absence of absolute instability for high H, and

the cause for this is the absence of finite-wave instability for

Poiseuille flow for high H unlike in the case of Couette flow.

Also for H < 1, the span of the region of absolute instability

for Poiseuille flow is smaller than Couette flow for the same

value of T. The reason for this result lies in the formation of

evanescent cusp points for Poiseuille with relative ease, and

the evanescent modes preclude the formation of genuine cusp

points. This can be attributed to the complete dominance of

the short-wave instability. It is interesting to note the sharp

boundary of the absolute instability region at H ∼ 0.15, and

this happens due to the sudden disappearance of genuine cusp

formation and appearance of only evanescent cusp formation.

Thus, absolute instabilities are not relevant for plane Poiseuille

flow.

3. Combined Couette-Poiseuille flow

In the case of the combined Couette-Poiseuille flow

depending on the value of ǫ , there are two different classes of

FIG. 15. Temporal and spatio-temporal stability regions for Poiseuille flow

with T = 0 in H–Γ parameter space.



124104-11 R. Patne and V. Shankar Phys. Fluids 29, 124104 (2017)

velocity profiles. Both classes of velocity profiles are consid-

ered in the following discussion. Following the same procedure

as in the case of Couette flow, we observed the presence of

only first-order saddle point for the values of ǫ considered

and hence the above methodology for spatio-temporal sta-

bility analysis for Couette flow using the Kupfer-Bers and

Briggs-Bers methods is applicable. Similar to temporal stabil-

ity analysis, we study the combined Couette-Poiseuille flow in

ǫ–Γ parameter space for the spatio-temporal stability analy-

sis. The absolute instability region is shown in Figs. 16 and 17

alongside temporal stability region so as to compare the two

analyses.

Two representative values of H are taken for demonstrat-

ing the effect of variation of critical strain rates Γct and Γca

with respect to ǫ for temporal and spatio-temporal stability

analysis. We consider H = 0.1 as it is the lowest reasonable

value of H for which finite-wave temporal instability is com-

pletely absent for any value of Γ and for any value of parameter

ǫ . We consider H = 3 because for H = 10 there is no absolute

instability even for plane Couette flow.

For H = 0.1, the absolute instability and temporal insta-

bility curves are parallel to each other as we increase ǫ from

0 to 0.6, and the difference between Γct and Γca is notable.

However, for 0.6 ≤ ǫ ≤ 0.8, the genuine cusp formation starts

to occur for lower values of Γ compared to the results for

ǫ < 0.6, thereby reducing the gap between the temporal and

spatio-temporal instability boundaries. For the range of ǫ such

that 0.8 < ǫ < 1.1, both the instability boundaries almost

overlap indicating that absolute instability could be realised

in experimental studies. This overlapping of the two bound-

aries occurs once again for ǫ > 1.4 and continues till ǫ = 1.5

for which temporal instability is absent. For region ǫ > 1.5,

there is no absolute instability but only convective instability

or evanescent cusp formation is predicted.

For H = 3, the absolute instability is absent for ǫ < 0.8,

but only evanescent cusp points are observed because of the

absence of the finite-wave instability. Although for the range

0.8 < ǫ < 1 there is the presence of finite-wave instability,

the system still does not exhibit absolute instability indicating

FIG. 16. Absolute and convective instability regions for combined Couette-

Poiseuille flow with T = 0 in ǫ–Γ parameter space for H = 0.1.

FIG. 17. Absolute and convective instability regions for combined Couette-

Poiseuille flow with T = 0 in ǫ–Γ parameter space for H = 3.

that the presence of finite-wave instability is not a sufficient

condition for the presence of absolute instability which was

observed in the Couette flow case as well for H > 3.94 as

shown in Fig. 13. For ǫ > 1, i.e., the combined Couette-

Poiseuille flow system with adverse pressure gradients, the

system starts exhibiting absolute instability, and it contin-

ues till ǫ = 1.5 where the system becomes temporally stable.

Similar to the case of H = 0.1, for ǫ > 1.4, temporal and spatio-

temporal instability boundaries overlap. Also for ǫ > 1.5 as

has been observed for the case of H = 0.1, there is no absolute

instability.

V. CONCLUSIONS

In the present work, we have analyzed the linear tempo-

ral and spatio-temporal stability of plane Couette, Poiseuille,

and combined Couette-Poiseuille flows of a Newtonian fluid

past an incompressible and impermeable neo-Hookean solid

in the creeping-flow limit. The temporal instability of the same

geometries was studied by Gkanis and Kumar,7 but due to the

use of inconsistent linearized interface conditions, they pre-

dicted a finite-wave instability for Poiseuille flow, which is

absent in our study. To analyze the effect of change in the

pressure gradient in the fluid on the instability, we constructed

velocity profiles such that they can continuously vary from

Couette flow (ǫ = 1) to intermediate cases, i.e., combined

Couette-Poiseuille flow (0 < ǫ < 1 or ǫ > 1 or ǫ < 0) and

then to Poiseuille flow (ǫ = 0). In case of the Poiseuille flow,

only the short-wave instability is present for any value of H

and Γ.

For combined Couette-Poiseuille flow, as ǫ is increased

from zero, initially Γct increases linearly with ǫ . When ǫ

approaches unity, there is a range of ǫ values near unity, where

the combined Couette-Poiseuille flow exhibits a finite-wave

instability similar to plane Couette flow (and unlike plane

Poiseuille flow). For ǫ > 1, the pressure gradient is adverse and

acts in a direction opposite to the Couette flow. At a critical

value of ǫ = 1.5, the velocity profile has a zero slope at the wall
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due to the opposing nature of the pressure-driven and Couette

contributions. This removes a crucial coupling between base-

state and perturbations that drives the finite-wave instability

in plane Couette flow, and hence there is no temporal instabil-

ity at ǫ = 1.5. However, in the vicinity of ǫ = 1.5, there is a

small region where the deformation gradients in the solid are

sufficiently small, such that the neo-Hookean solid essentially

behaves like a linear elastic solid, and hence exhibit finite wave

instability. It must be noted that the previous study of Gkanis

and Kumar7 analyzed the current problem only for ǫ < 1.5.

The effect of interfacial tension on the temporal stability was

studied in all three geometries, which showed that the stabi-

lizing effect of interfacial tension is more pronounced as ǫ is

decreased from 1 to 0. This is because of the dominance of the

short-wave instability as ǫ becomes small.

The existence of absolute instability is investigated by

using the Kupfer-Bers method19 after validating the local map

(ω − ω0) ∼ (k − k0)2 by obtaining the cusp point in the ω-

plane using the images of constant unstable ki. These cusp

points were further verified by obtaining the corresponding

pinch point in the k-plane by drawing isocontours of ωr and

ωi in the k-plane which showed the presence of a first-order

saddle point. In some cases, we find the existence of evanes-

cent modes. For Couette flow, it is observed that for T = 0

and T = 0.5, for H > 3.94 and 0.71 < H < 0.77, the sys-

tem does not exhibit absolute instability for any value of Γ.

For 0.1 < H < 0.71 and T = 0, we find the flow to be abso-

lutely unstable as soon as it becomes temporally unstable thus

making absolute instability experimentally relevant. In fact,

for H < 0.4, Γca ∼ Γct . This indicates that there is a possi-

bility of triggering the absolute instability by selecting this

particular H range so as to hasten the transition as the abso-

lute instability is much more catastrophic than the convective

instability34 or may give rise to the global absolute instabil-

ity.37 This result could be utilized while designing practical

applications of such flows to manipulate the onset of absolute

instability. The effect of interfacial tension on the existence of

absolute instability is analyzed, and we find a marginal sta-

bilizing effect for high H but is quite strongly stabilizing for

low H owing to the presence of the short-wave instability at

low H.

The spatio-temporal study of Poiseuille flow showed the

presence of absolute instability for H < 0.15. The absence

of absolute instability for H > 0.15 stems from either non-

existence of the genuine cusp point or due to the formation

of causally legitimate convectively unstable cusp points by

finite-wave instability before the short-wave instability. For

the combined Couette-Poiseuille flow, the presence of absolute

instability was observed for ǫ < 1.5, and for ǫ > 1.5 there is no

genuine cusp point. For H = 0.1 and ǫ > 0.7, Γct ∼ Γca making

the absolute instability practically relevant. For H = 3, the

presence of absolute instability is detected only in the region

where finite-wave instability is present. Thus, the present study

shows for the first time that absolute instabilities are possible

in flow through channels with deformable walls (modeled as

neo-Hookean solids) at the low Reynolds numbers, and such

instabilities can be potentially exploited in improving mixing

(even at low Reynolds numbers) in flow through channels with

deformable walls.
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