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ABSTRACT Recognition of dichotomous emotional states such as happy and sad play important roles in 

many aspects of human life. Existing literature has recorded diverse attempts in extracting physiological and 

non-physiological traits to record these emotional states. Selection of the right instrumental approach for 

measuring these traits plays a critical role in emotion recognition. Moreover, various stimuli have been used 

to induce emotions. Therefore, there is a current need to perform a comprehensive overview of instrumental 

approaches and their outcomes for the new generation of researchers. In this direction, this study surveys the 

instrumental approaches in discriminating happy and sad emotional states that are elicited using audio-visual 

stimuli. A comprehensive literature review is performed using PubMed, Scopus, and ACM digital library 

repositories. The reviewed articles are classified with respect to the i) stimulation modality, ii) acquisition 

protocol, iii) instrumentation approaches, iv) feature extraction, and v) classification methods. In total, 39 

research articles were published on the selected topic of instrumental approaches in differentiating 

dichotomous emotional states using audio-visual stimuli between January 2011 and April 2021. The majority 

of the papers used physiological traits, namely electrocardiogram, electrodermal activity, heart rate 

variability, photoplethysmogram, and electroencephalogram based instrumental approaches for recognizing 

the emotional states. The results show that only a few articles have focused on audio-visual stimuli for the 

elicitation of happy and sad emotional states. This review is expected to seed research in the areas of 

standardization of protocols, enhancing the diagnostic relevance of these instruments, and extraction of more 

reliable biomarkers. 

INDEX TERMS Audio-visual stimuli, classification, emotion recognition, happy, instrumentation, sad.

I. INTRODUCTION 

Emotions are the fundamental intellectual capacity of 

humans characterized by perception, attention, and 

behavioral outcomes [1]. The six distinct universal emotions, 

namely disgust, sadness, happiness, fear, anger, surprise, 

have been classified by psychological research [2]. The 

emotions can be perceived as either positive or negative [3]. 

Positive emotions such as happiness, surprise, and anger are 

pleasant feelings, and negative emotions such as disgust, 

fear, and sadness are unpleasant to experience [3], [4]. 

Hence, the positive and negative emotions are considered 

diametric opposites [5]. Among these emotions, happiness 

and sadness are frequently experienced by humans, which is 

also called a core affect [2], [6]. In general, happiness appears 

to be the opposite of sadness and differs in nearly every 

aspect, such as behavior, body movements, facial expression, 

and brain activity [7], [8].  

Happiness is associated with prosocial behavior, physical 

well-being, problem-solving, attention, confidence, life 

satisfaction, better health outcomes, and longevity [4], [9]–
[12]. On the other hand, sadness is related to disappointment, 

mental pain, melancholy, and weakness [13]. Sadness is also 

related to many adverse effects, including depression, sleep 

disorders, anxiety, suicidal attempts, and scant attention. 
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Long-term sadness has negative implications for 

cardiovascular activity [14]–[16]. Identification of these 

disorders at the earlier stage can help to improve treatment. 

Recently, a report on world happiness has also demanded 

significant attention to happiness [17]. Therefore, it is 

necessary to understand the neurological, psychiatrical, and 

biobehavioural mechanisms of happy and sad emotions.  

This work is motivated by the growing interest in 

recognition of clinical conditions linked to happy and sad 

emotional states, such as prediction of major depressive 

disorder (MDD) in long-term sadness. Prolonged sadness is 

the precursor of MDD. The effect of MDD may lead to 

reduced quality of life. MDD is predicted to become the 

leading cause of disability by 2030 for around 20 percent of 

the population over the course of life [18]. In the current 

study, we consider the comparison of instrumental and 

physiological trait-based approaches available to recognize 

happy and sad emotional states, which may help to predict 

the clinical conditions. 

The emotions are described using two common and 

popular ways, namely a discrete emotion approach and a 

dimensional approach. In a discrete emotion approach, 

emotions are categorized into six basic emotions, as 

described above. In a dimensional approach, the emotions are 

described using valence and arousal dimensions [19], [20]. 

The dimension of valence is the positive or negative emotion 

perceived by the users. In contrast, the dimension of arousal 

is the intensity of the particular emotion experienced by the 

users [21]. Happiness and sadness are described by clearly 

opposite valence and arousal levels [7], [22]. 

An emotional state can be characterized by both non-

physiological and physiological trait-based approaches. 

Methods such as body movements, speech patterns, and 

facial expressions are used as a non-physiological trait-based 

approach [21], [23]. Conversely, the physiological signals 

such as Heart Rate Variability (HRV), Electrocardiogram 

(ECG), Photoplethysmogram (PPG), Electroencephalogram 

(EEG), facial Electromyography (fEMG), Electrodermal 

Activity (EDA), and, Respiration (RSP) are considered [24]–
[29].  

In a non-physiological trait, namely GAIT cycle, the 

movement of the body tends to incline forward and direct 

their hands towards their source of irritation in sadness. There 

is also a reduction in walking speed, vertical head motions, 

and arm swing in people that are perceived to be in a sad 

emotional state. The shoulder and elbow movement 

magnitudes are comparatively reduced in the sad emotional 

state [30]–[33].  

In physiological traits, variations are observed in the 

amplitude and frequency of the signals. For example, ECG 

shows significant variations in the ST segment corresponding 

to happy and sad emotional states. The convex ST segment 

is highly predictive of a happy emotion state, while a concave 

ST elevation strongly suggests a sad emotional state [34]. For 

sad emotional states, sympathetic activation is reported to be 

high as compared to happiness [35], [36]. Moreover, in a sad 

state, HR increases to provide an increase in blood supply 

[37]. The variation in the HRV is inversely correlated with 

HR. Thus, HRV decreases in sadness, and it increases in 

happiness [38].  In a happy emotional state, the mouth 

muscle, zygomaticus, eye muscle, and orbicularis are 

activated and lead to a rise in the mouth corners. These 

muscle activities are reflected by fEMG [39], [40]. Also, the 

pulse beat cycle of the PPG signal is reported to be more 

significant for the happiness emotion state [41], [42]. 

In a happy emotional state, the brain regions such as the 

right frontal cortex, the precuneus, and the left insula are 

activated; whereas, in a sad state, there is an increase in 

activity of the brain regions, namely the left insula, the right 

occipital lobe, the left thalamus, the hippocampus, and the 

amygdala. The hippocampus is strongly linked with memory, 

and it makes sense that awareness of specific memories is 

associated with sad feelings [13], [43], [44]. These changes 

in the Central Nervous System activity are reflected in EEG. 

EDA is a measure of the continuous variation in electrical 

property of human skin, which reflects the sympathetic 

division activity of the autonomic nervous system [45]–[47]. 

It is reported that the sweat expelled through the sweat glands 

is more in happiness than sadness. Thus, the conductance of 

EDA is higher in happiness as compared to sadness [48], 

[49]. 

Researchers have proposed various emotional triggers for 

the understanding of mental or cognitive processes. 

Especially, standardized collections of words, pictures, faces, 

and film clips/audio-visual stimuli have enabled research in 

affective computing by allowing the researchers to select 

suitable stimuli and compare the results through lab 

environments [50], [51]. The audio-visual stimuli are the 

important triggers to evoke intense emotional reactions in the 

laboratory because of their high resemblance to real 

emotional experiences [51]–[54]. 

Several physiological signals and non-physiological traits 

have been employed for differentiating dichotomous 

emotional states [39], [42], [55]–[91]. Although various 

literature has been reported, a systematic review that deals 

specifically with the happy and sad emotional states using 

audio-visual stimuli and a description on the instrumental 

approaches to classify them remains limited. The review also 

pinpoints the advantages, limitations, and gaps that exist in 

the instrumentation-based dichotomous emotion recognition 

field. In addition, it could contribute to the development of a 

standardized data collection protocol and assessment 

procedures for this field to evaluate different data acquisition 

methods. 

II. REVIEW METHODOLOGY 

This review methodology is divided into seven sub-sections, 

namely search strategy, subject information, stimulation 

modality, data acquisition protocol, instrumentation approach, 

feature extraction, and classification.  
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A. SEARCH STRATEGY 

The articles are obtained from the scientific repositories, 

namely Scopus, PubMed, and Association for Computing 

Machinery (ACM) digital library, from 01/01/2011 to 

30/04/2021. To identify relevant articles, the selection process 

followed the PRISMA guidelines [92]. The search terms and 

phrases used are:  ("emotion" OR "mood" OR "affect") AND 

("happy" OR "happiness" OR "joy" OR "positive emotion" OR 

"valence") AND ("sad" OR "sadness" OR "negative emotion") 

AND ("audio-visual" OR "video" OR "film") AND 

("electroencephalogram" OR "EEG signal" OR 

"electrocardiogram" OR "ECG signal" OR "electromyogram" 

OR "EMG signal"  OR "electrodermal activity"  OR  "EDA 

signal"  OR  "galvanic skin response" OR "GSR signal" OR 

"photoplethysmogram" OR "PPG signal" OR  "skin 

temperature"  OR  "GAIT" )  AND NOT ("anger" OR 

"disgust" OR "surprise").  

A total of 655 articles (Scopus, n = 554; PubMed, n = 12; 
ACM, n = 89) are identified after the initial search process, and 
19 articles have been omitted as duplicates. The screening 

phase involved the examination of records identified in the 

initial search. The query syntax is reviewed independently by 

two reviewers. Out of 636 articles, 373 articles are excluded 

based on the emotions related to animals, robots, pediatric, 

geriatric, and the participants with neurological disorders. 

Further, 224 studies have also been excluded after reviewing 

full-text articles based on the type of stimuli and research 

articles. Finally, 39 articles are included for the review. The 

inclusion criteria of articles are as follows: (i) studies using 

audio-visual stimuli for emotion elicitation (ii) studies 

differentiating only happy and sad emotional states, (iii) 

studies differentiating positive and negative emotional states, 

and (iv) studies with the combination of other emotional states, 

where happy and sad emotional states are classified discretely. 

The articles that does not include happy and sad emotional 

states in their methodology are excluded. The PRISMA 

flowchart used for the selection of articles in this review is 

shown in Fig. 1. 

Fig. 2(a) shows the year-wise distribution of selected 39 

studies. It is found that most of the studies are published 

between 2016 and 2019, with 25 studies accounting for 64% 

of the total. Between 2011 and 2015, a total of 8 articles (21%) 

are published. Only 15% of the total articles are published  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1.  PRISMA flowchart of the article selection process. 
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FIGURE 2. Distribution of selected 39 articles (a) year wise from 2011-
2021 and (b) based on the signal modality used by the researchers 

between 2020 and 2021. Fig. 2(b) shows the type of 

physiological signal used in the selected studies. It is seen that 

49% of the 39 selected articles have been used EEG signals, 

followed by ECG signals (10%). The percentage of studies that 

used the EDA, PPG, and multimodal signals are 8%, while the 

GAIT and HRV signals are 5% each. HR and fEMG signals 

usage account for 2% each. The percentage of studies that used 

PPG signals is 3%. 

B. SUBJECT INFORMATION 

Among the reviewed articles, the number of participants varies 

depending on the type and field of the experiment. Several 

studies have shown that age, sex, and personality influence 

emotional states [93]. The age of participants in the majority 

of the selected studies is between 20 - 25 years old. It is found  
 

TABLE I 

DESCRIPTION OF THE CHARACTERISTICS OF EMOTIONAL STIMULUS 

Characteristics Description 

EV It refers to how close an emotional response in 

daily life is to actual emotional experiences 

TR It intimates the time taken to process emotional 

stimuli — higher the TR, the quicker the 

stimulation process, and vice versa.  

CNT It shows how easy or hard it is to control stimuli in 

experimental settings. 

CMP It represents how complex an emotional 

stimulation type may be. High complexity refers to 

many aspects of stimuli and vice versa. 

EI It expresses the strength of the emotional reaction 

that the stimulus will evoke. 

 

FIGURE 3.  Emotional matrix for various stimuli using (a) words (b) 
images (c) faces, and (d) film clips [49]. 

that the participants are excluded based on the history of 

current or prior medicines [55], [91], information about 

psychiatric illnesses [39], [42], [55], [60], [61], [63], [67], [69], 

[91], [91], use of drugs or alcohol [42], [60], [61], [63], [67], 

[87], [91], perform any vigorous exercise before the 

experiment [67], difficulties in vision or hearing [55], [58], 

[67], [69], [87], [89], diabetes [70], and history of 

cardiovascular disease [41], [60], [70] which may delay the 

emotional responses. Eysenck personality questionnaire test 

have been used to select the healthy subjects [66]. 

In few studies, the authors have disclosed participants 

information, such as whether they are voluntary and/or 

provided a reward for participation [57], [58], [67], [68], [80], 

[91]. 

C. STIMULATION MODALITIES 

The choice of emotional stimuli depends on the research 

question and can be easily determined using the stimuli   

emotion matrix [51]. Emotion matrix is a graphical   

representation of five critical emotional stimulus 

characteristics (see Fig. 3), namely, Ecological Validity (EV), 

Temporal Resolution (TR), Controllability (CNT),
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TABLE II 

THE EXPERIMENT PROTOCOLS USED IN THE SELECTED ARTICLES IN RECORDING VARIOUS MODALITIES USING AUDIO-VISUAL STIMULI 

SR_id 
Related 

work 

Data collection 

method 

No. of 

participants 

Age 

(Mean ± std) 

No. of 

stimuli 

Length of 

stimuli 

(min) 

Length of 

experiment 

(min) 

Recorded modality 

 

Sampli

ng rate 

(Hz) 

Affect 

experience 

measure 

No. of 

annota

tors 

SR01 [39] 

Experiment 

41 24.70 ± 4.70 10 2 ~20 fEMG 2000 

Discrete 

4 

SR02 [42] 53 24.00 ± 1.00 2 7 19 PPG 1000 -- 

SR03 [55] 8 24.00 ± 2.10 2 10 ~20 EEG 250 -- 

SR04 [56] 8 23.00 ± 2.00 4 0.5 7 EEG 250 -- 

SR05 [57] 5 25.60 ± 2.40 2 4 15 PPG,SKT 200 -- 

SR06 [58] 5 23.18 ± 4.87 16 ~ 1 20 GAIT 25 5 

SR07 [59] 18 23.18 ± 4.87 16 ~ 1 20 GAIT 25 5 

SR08 [60] 48 23.50 ± 1.20 2 ~ 7 29 ECG 1000 -- 

SR09 [61] 50 23.5 30 0.8 - 3 25 HR 25 -- 

SR10 [62] 28 -- 3 ~ 5 45 EEG 128 -- 

SR11 [63] 20 22.00 ± 2.00 2 10 36 PPG, Facial expressions 800 -- 

SR12 [64] 60 23.00 ± 2.00 3 -- -- ECG 1000 -- 

SR13 [65] 16 22.50 ± 1.80 9 2 36 EEG 1000 -- 

SR14 [66] 300 -- 2 4.5 ~13 ECG, Facial expressions -- -- 

SR15 [67] 10 22.00 ± 2.10 2 30 and 40 96 EDA 26 Continuous -- 

SR16 [68] 24 20.86 ± 2.77 48 5 - 6 45 EDA 1000 Discrete -- 

SR17 [69] 10 22.25 ± 1.09 30 0.5 ~48 EEG 128 Continuous 10 

SR18 [70] 12 28.00 ± 6.20 2 6 and 12 30 EEG 256 

Discrete 

-- 

SR19 [71] 16 22.50 ± 1.80 -- -- -- EEG -- -- 

SR20 [72] 20 22.50 ± 1.80 12 2.5 ~31 EEG 256 60 

SR21 [73] Database (DEAP) 32 26.90 40 1 ~47 EEG, EDA, BP, RSP, SKT, EMG, EOG 512 Continuous 14 

SR22 [74] Experiment 37 35.00 4 2 - 4 ~23 EEG 500 Discrete -- 

SR23 [75] Database (MAHNOB) 30 26.06 ± 4.39 20 0.58 - 1.95 50 ECG, EEG, RDP, SKT 1024 
Continuous 

50 

SR24 [76] Database (DEAP) 32 26.90 40 1 ~47 EEG, EDA, BP, RSP, SKT, EMG, EOG 512 14 

SR25 [77] 

Experiment 

2 22.00 2 10 ~20 EEG -- 

Discrete 

-- 

SR26 [78] 33 27.00 2 1.25 ~3 PPG, Facial expression 60 494 

SR27 [79] 5 23.00 8 5 24 RSP, Facial expression -- -- 

SR28 [80] 112 51.64 ± 6.60 3 1.2 ~15 fEMG, HRV, EDA 1000 31 

SR29 [81] 
Database (LUMED-2) 11 -- -- 1-2.5 16 EEG, EDA, HR, Temperature 500 -- 

Database (DEAP) 32 26.90 40 1 ~47 EEG, EDA, BP, RSP, SKT, EMG, EOG 512 

Continuous 

14 

SR30 [82] Database (DECAF) 30 27.30 ± 4.30 36 1 60 MEG, ECG, EOG, EMG 1000 42 

SR31 [83] Database (DEAP) 32 26.90 40 1 ~47 EEG, EDA, BP, RSP, SKT, EMG, EOG 512 14 

SR32 [84] Experiment 4 -- 3 2.5 ~10 ECG, EDA 250 Discrete -- 

SR33 [85] Database (DEAP) 32 26.90 40 1 ~47 EEG, EDA, BP, RSP, SKT, EMG, EOG 512 Continuous 14 

SR34 [86] Database (SEED) 15 23.30 ± 2.40 24 ~2 ~68 EEG, Eye movements 1000 
Discrete 

45 

SR35 [87] 

Experiment 55 36.50 ± 10.9 8 1 - 2 ~12 EEG 512 -- 

Database (DEAP) 32 26.9 40 ~2 ~47 EEG, EDA, BP, RSP, SKT, EMG, EOG 512 Continuous 14 

Database (SEED) 15 23.30 ± 2.40 24 1 ~68 EEG, Eye movements 1000 
Discrete 

45 

SR36 [88] Database (SEED) 15 23.30 ± 2.40 24 ~2 ~68 EEG, Eye movements 1000 45 

SR37 [89] 
Database (DEAP) 32 26.9 40 ~2 ~47 EEG, EDA, BP, RSP, SKT, EMG, EOG 512 Continuous 14 

Database (SEED) 15 23.30 ± 2.40 24 1 ~68 EEG, Eye movements 1000 Discrete 45 

SR38 [90] 
Experiment 

46 -- -- -- -- ECG -- 
Continuous 

-- 

SR39 [91] 40 21.63 ± 1.51 6 0.5 - 5 ~45 EEG, EOG 500 -- 
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Complexity (CMP), and Emotional Intensity (EI) which 

allows researchers to select suitable stimuli in affective 

computing (see Table I).  The emotional stimulus must-have 

characteristics such as low CMP, low CNT, high EI, high TR,  

and high EV to elicit strong emotional reactions [51]. 

Compared to the text, audio and images, the audio-visual 

stimuli have desirable properties, namely high EV and being 

dynamic for emotional elicitation. Based on the effectiveness 

of audio-visual stimulus to induce emotions, the articles using 

only audio-visual stimuli for eliciting the dichotomous 

emotional states are considered and represented in Table II. 

The references of the selected 39 studies are assigned with a 

Systematic Review_id (SR_id) as shown in Table II for 

convenience of accessibility in the rest of the manuscript. 

In the selected studies, emotions are elicited using video 

clips. The audio-visual clips are usually taken from publicly 

available databases, such as a standardized database of  

Chinese emotional film clips (SR39), China’s standard 
emotional video stimuli materials library (SR09), and the 

affective body movement library of ballet movements (SR16). 

In some studies, video clips are collected from various 

commercial movies (SR10, SR15, SR18, SR25, SR26), and 

internet sources (SR19). In 11 of the studies, the physiological 

signals are directly considered from online public databases 

such as DEAP (SR21, SR24, SR29, SR31, SR33, SR35, 

SR37), lumed-2 (SR29), DECAF (SR30), SEED (SR34, 

SR35, SR36, SR37), and MAHNOB-HCI (SR23).  

Few of the works have not mentioned about source of 

stimuli used for emotion elicitation.  Interestingly, the number 

and length of the stimuli are not the same and vary for different 

published articles. Table II shows that the minimum number of 

video clips used is two, and the maximum number of video 

clips used is a hundred. Also, the least duration of stimulus 

used is 0.5 min (SR04, SR17, SR39), and the maximum 

duration is 40 min (SR15). In 20 of the studies, film clips have 

been selected with the help of annotators. 

D. DATA ACQUISITION PROTOCOL USING AUDIO-
VISUAL STIMULI 

The protocol followed in the selected articles is summarized in 

the flowchart shown in Fig. 4. From Table II it is observed that 

hat the least duration of the experiment is approximately three 

min (SR15) and the maximum duration is 96 min (SR26). 

Before starting the experiment, the procedure has been 

explained clearly to the subjects, and the consent form is filled. 

The experiment is carried out in a 30 dB soundproof room 

(SR09, SR10, SR35) with well-lit (SR03) and constant 

temperature (24 ± 2°C) (SR08) or in a laboratory environment 

(SR14),  where exact measurements are obtained.  

To avoid mind wandering, the subject has to be brought into 

the neutral states using different methods such as taking rest 

(SR02, SR09, SR11, SR12, SR18), closing eyes for 60 seconds 

(SR22),  performing GO/NO-GO task (SR39), and watching a 

neutral video (SR09 – SR11).  

 

FIGURE 4.  Flowchart of data acquisition protocol using audio-visual 
stimuli. 

Before watching stimuli, the mood of the participant is 

identified by various methods such as rating the subject mood 

on the Positive and Negative Affect Schedule (PANAS) scale 

(SR06, SR07), from the self-report questionnaire (SR18) and 

by conducting a stress-resistance questionnaire test (SR15).  

During the experiment, the videos are displayed randomly.  

However, there is no influence of random videos on emotion 

responses (SR02, SR06 – SR09, SR11 – SR13). Participants 

are also instructed to wear a headset while watching stimuli to 

avoid unwanted ambient sound and prevent physiological 

signals affected by the conversation between subjects (SR15). 

Pre-

experiment 

Post - 

stimulus 

The consent form is to be filled from the subjects. 

Also, inform the participants on how the experiment 

should be carried out 

To bring back the subject in to the neutral state: 

a) Minimum 5 to 10 minutes break has to be 

given 

b) A neutral video can be shown 

Subjects are expected to determine the emotional 

strength evoked by the film clips. For this the 
approaches used are:  

a) Five point scale of 0-to-5 (0-no emotion, 5-

very high) 

b) Questionnaires 

c) Likert scale of 0-to-10 (0: barely, 10- 

more likely) 

d) SAM of 9-point scale  

e) VAS (0-100-point scale) 

 

Environmental 

condition 

 

Pre- 

Stimulus 

 
Stimuli 

preparation 
& 

Signal 

acquisition 

The experiments are conducted in a 30 dB soundproof, 
well-lit and temperature is maintained to (24 ± 2°C) 

for room 

To bring the subject in to neutral state, one of the 

following procedures is followed: 
a) Subjects are required to take 5 to 10 minutes 

rest to achieve a resting state.  

b) The current mood state of the participant can be 
evaluated using PANAS 

c) The GO/NO-GO task can be performed 

d) A neutral emotional video can be shown 

e) Stress-resistance questionnaire test 

a) The audio-video stimuli can be visualized 

between 0.5 to 20 minutes. Also, the order of 

the video stimuli is randomly chosen. 

b)  During stimuli, the following physiological 

signals are recorded either individually or 

simultaneously depending upon the modality 

c) EEG, EDA, PPG, HR, HRV, ECG, fEMG, 

RSP 

 

Subjective 

assessment 
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The single (unimodal) or multiple (multimodal) 

physiological signals are acquired at various sampling rates 

ranging from 25 to 2000Hz. Four of the selected studies have 

used a multimodal approach. Park et al. classified happy and 

sad emotions by fusing two peripheral signals such as PPG and 

skin temperature (SR05). A hybrid fusion strategy has been 

employed using facial expressions, EDA, and EEG signals to 

classify happy, sad, and neutral emotions (SR29). Two 

multimodal fusion methods between ECG and EDA signals 

are used for happy or sad emotional state recognition with 

reference to a neutral state (SR32). Steenhaut et al. assessed 

fEMG, EDA, and ECG signals to measure the emotional 

reactivity of subjects during happy and sad emotions (SR28).  

1) VALIDATION OF PHYSIOLOGICAL SIGNALS 

The emotions felt by the subjects are validated with self-

reports using various methods such as Self-Assessment 

Manikin (SAM), Visual Analogical Scale (VAS), Likert scale,  

questionnaire, and press file (SR01, SR04, SR06, SR07, SR10, 

SR13, SR14, SR16, SR17, SR18, SR20, SR26 – SR28, SR32, 

SR35, SR39). In one of the selected studies, happy and sad 

emotions are labeled from the valence ratings that are obtained 

using SAM. The video is labeled as sad when the valence 

rating is ≤ three and happy when the valence rating is ≥ seven 
(SR17). Krishna et al. have also considered SAM as ground 

truth for assessing the happy, sad, relax and fear emotional 

states of the subject (SR20). 

Christensen et al. used VAS scale ranging from 0 to 100 ('0' 

– 'sad', '50' – 'neutral', and '100' – 'happy') for measuring 

behavioral or subjective experience. The range of the scale is 

selected using a mouse cursor present on the screen (SR16). 

Steenhaut et al. also used the VAS scale to indicate subjective 

emotional reactivity (SR28). The lower end of the VAS scale 

indicates neutral and the higher end as happy or sad (SR28). In 

another study of fEMG based emotion recognition, the happy 

and sad emotion felt by the subject are rated using the VAS 

scale (SR01). 

After watching audio-visual stimuli, the subjective tendency 

of emotions is collected from the questionnaire to validate 

happy and sad labels. The questionnaire includes the level of 

emotion felt by the subject, tendency of emotion for a given 

audio-visual stimulus (SR18). Das et al. have used a 

questionnaire to indicate the intensity of happy and sad 

emotion felt by the subject on a range from 0 to 10. The videos 

with an intensity level > seven are only considered for further 

analysis (SR32). Rakshit et al. have used an online 

questionnaire to determine the familiarity of the happy and sad 

video on a scale of 0 to 4 ('0' – 'no emotion', '4' – 'maximum 

emotion') (SR26). The data belongs to no emotion felt by the 

subject is discarded for further analysis (SR26). 

Questionnaires, namely type and intensity of emotion elicited 

by happy, sad, and calm, are considered to validate affect 

(SR13). 

Gao et al. have used a feedback form for validating the 

emotions triggered by joy and sadness videos (SR27). A self-

assessment form has been used to label the positive emotion 

induced by happy video and negative emotion induced by sad 

(SR04). Singhal et al. have used a web-based online form to 

validate happy, sad, and neutral emotions by collecting 

participant ratings on a scale of 1-5 ('1' – 'very poor' and '5' – 

'very good') (SR10). Likert scale ranging from 0-10 has been 

used for obtaining intensity of happy and sad emotions felt by 

the subject (SR06, SR07). Liu et al. uses press file to represent 

two strings, namely '0' (target emotion is perceived) and '1' 

(target emotion is not perceived) to obtain participants 

subjective experiences for happy, sad, fear, and anger 

emotional states (SR14).  

SAM (SR39) and self-assessment form (SR35) have also 

been used to obtain the ground truth labels for differentiating 

positive and negative emotional states. Six of the selected 

studies used high definition cameras to record participant's 

facial expressions during the experiment (SR11, SR14, SR26,  

SR27, SR29, SR35). Only six studies have reported the details 

of an ethical committee approval and the validation of the 

protocol before experimenting (SR01, SR02, SR08, SR09, 

SR39). Also, one of the selected studies mentioned that the 

experimental protocol have been implemented in strict 

accordance with the declaration of Helsinki (SR15). 

E. INSTRUMENTATION APPROACHES TO 
DIFFERENTIATE DICHOTOMOUS EMOTIONAL STATES 

During stimuli visualization, various instruments are used to 

acquire physiological signals. In order to understand the 

performance based on instrument characteristics, it is 

important to consider some of the common factors associated 

with the hardware specifications. The design of instruments is 

affected by factors such as user, technology, medical, 

environmental, and economic-related factors (see Fig. 5) [94], 

[95]. 

1)  USER RELATED FACTORS 

When dealing with user-related factors, the instrument should 

take less time duration to set up device and subject preparation 

[95]. The instrument must be easy to wear by the subject 

without limiting normal activity and causing additional 

distress [96]. The instrument with good usability can bring a 

positive experience to the subject [97]. The portable 

instruments open a new path to the non-intrusive field of 

assessment of emotions [98]. For example, Emotive devices 

are portable and are comfortable to use in comparison to 

Neuroscan devices. Also, the setup time of Neuroscan devices 

is high compared to the Emotive devices [99]. 

2)  MEDICAL RELATED FACTORS 

The electrical safety of the medical equipment is the most 

important, and only devices tested for safety should be used in 

hospitals [95]. The parameters, namely comfort level and 

system usability, are crucial in the instrument for biofeedback 

acquisition. The non-invasive instruments are comfortable and 

easier to use for both the therapist and patient [96]. In long-

term tracking applications, systems without direct skin contact 

provide many advantages, such as reliability and electrical 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3110773, IEEE Access

 

VOLUME XX, 2021 8 

isolation with the sensor surface [100].  The instruments 

should dissipate nominal heat. The excess heat and radiation 

generated by the instrument may cause irreversible changes in 

the tissue [95]. 

3)  TECHNOLOGY RELATED FACTORS 

The multi-electrodes devices are expensive and may be 

uncomfortable in real-life situations. In most devices, the input 

impedance, linearity, sensitivity, and Common Mode 

Rejection Ratio (CMRR) are made high, and latency of the 

device is driven low for an accurate measurement. The 

accuracy of emotion recognition also varies between 

instrument and derivatives, the placement of electrodes. High 

CMRR refuses all unwanted signals in the preamplifier stage, 

so only the desired signals find a way into the amplifier [94]. 

Reliable instruments can have standards that allow physicians 

or clinicians to decide if their patients are normal or abnormal. 

The instruments with differential input can operate at lower 

voltages while maintaining high SNR [94], [95]. 

4)  ENVIRONMENTAL RELATED FACTORS 

Increasing Signal to Noise Ratio (SNR) can reduce the effect 

of environmental noise in biomedical instrumentation systems. 

The stable instrument ensures that results are repeatable and 

reproducible [95]. The medical devices have to function 

appropriately in the suggested values for temperature and air 

humidity. Also, they must be less prone to movement artifacts 

and designed for minimum energy consumption [95].  

5)  ECONOMIC RELATED FACTORS 

The cost of the instrument and its maintenance, such as labor 

and spare parts, must be inexpensive. The availability of 

trained manpower, availability of consumables, and 

compatibility with existing equipment is always challenging. 

F. COMPARISON OF INSTRUMENTS USED FOR 
MEASURING DICHOTOMOUS EMOTIONAL STATES 

The comparison of key parameters and characteristics related 

to the instruments used in the selected studies is summarized 

in Table III. The instruments such as Super Spec EEG (SR03), 

Neuroscan (SR13, SR34, SR36, SR37, SR39), Neurowin 

(SR04), EEG traveler (SR20), Biosemi ActiveTwo (SR21, 

SR23, SR24, SR 31, SR33), Enobio (SR22, SR29), Neurosky 

mindwave (SR35), and, Emotive EPOC (SR10, SR17, SR18) 

have been used for monitoring brain activities. Among the 

available instruments, the NeuroSky (SR35) and Emotiv 

system (SR10, SR17, SR18) is found to be a good option in 

terms of the number of channels, setup time, intrusiveness, 

size, cost, and compatibility. However, it is limited by low 

input impedance.  

The instruments, namely Bioneuro multi-channel feedback 

(SR15), Biopac (SR28), EMPATICA E4 (SR29), and Power 

lab (SR 16) have been used for acquiring EDA signals. Among 

these instruments, the wearable device EMPATICA E4 

Wristband (SR29) can be preferred because of its setup time, 

cost, real-time usage, portability, and the number of channels 

used. Further, it is found that Biopac (SR28) and Power Lab 

(SR16) have similar specifications in all aspects (from Table 

III). 

FIGURE 5.  Various factors affecting on instrumentational approaches. 

Factors affecting instrumental approaches 

User Medical Technology Environmental Economic 

a) Duration of set up 

device and 

preparation 

b) Comfort level of 

subjects  

(Obtrusiveness) 

c) System usability 

d) Portable 

a) Electrical safety 

b) Invasive and Non-

invasive 

c) Tissue–sensor 

interface 

d) Radiation and heat 

dissipation 

a) Number of electrodes 

b) Impedance with 

sensor 

c) Accuracy 

d) Latency 

e) Amplifier CMRR 

f) Sensitivity 

g) Reliability 

h) Differential or 

Absolute Input 

i) Transient and 

Frequency Response 

j) Linearity 

a) Signal to noise ratio 

b) Stability 

c) Temperature 

d) Humidity 

e) Artifacts 

f) Power Requirement 

a) Cost 

b) Availability 

c) Consumable 

requirements  

d) Compatibility with 

existing equipment 
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However, in the laboratory environment, Biopac (SR28) or 

Power Lab (SR16), or BioNeuro multi-channel feedback 

(SR15) is also a good choice because of its high input 

impedance, sensitivity, and SNR. BioNeuro multi-channel 

feedback (SR15) has a very high input impedance compared 

to the power lab (SR16) and Biopac (SR28). However, the 

input range of Biopac (SR28) and Power lab (SR16) is higher 

when compared to BioNeuro instruments (SR15). 

ECG signals are acquired using Biopac (SR28) and Multi-

channel electrophysiological recording system (RM6240) 

(SR08, SR12, SR18). The RM6240 has advantages such as 

high input impedance, sensitivity, and SNR compared to 

Biopac (SR14, SR28). 

Samsung Gear 2 smartwatch (SR06, SR07) is used for 

collecting GAIT data. This wearable device may have several 

advantages, such as minimal electrodes, less setup time, 

unobtrusive, portable, and less cost. For PPG signal 

acquisition, the instruments, namely Algoband F8 (SR09), 

Pulse oximeter (SR26), TDA sensor (SR05), and RM6240 

(SR02, SR11) have been used. Algoband F8 (SR09) or Pulse 

oximeter (SR26) can be used among these instruments in terms 

of portability, setup time, device usage, and cost.  

Power Lab (SR01) and Biopac (SR28) have been used for 

fEMG signal recording. Since both of these devices have 

similar specifications, any of these instruments can be 

preferred. Digital-IF Doppler radar (SR27) has been used for 

measuring respiratory signals. This device has advantages such 

as less setup time, non-contact type, and more comfortable to 

the participant. 

TABLE III 

KEY PARAMETERS AND CHARACTERISTICS RELATED TO INSTRUMENTS SPECIFICALLY USED FOR MEASURING DICHOTOMOUS EMOTIONAL STATES 

Instrument SR_id 
Setup 

time 

Comfort 

level 

Port-

able 

Non-

Invasive 
Cost 

Comp

atible 

Input 

range 

Input 

impedance 

Sensit

ivity 
SNR 

Safe

-ty 

Super Spec EEG,  32-

channel 
SR03 ∼ ∼ ∼ ✓+ ∼ -- ∼ ✓ ✓ ✓ -- 

Neuroscan equipment, 64-

channel 

SR13, 

SR34, 

SR 35, 

SR36, 

SR37, 

SR39 

∼ ∼ ∼ ✓+ ∼ ✓+ ✓ ✓+ ✓ ✓ -- 

NEUROWIN, 19 channel SR04 ∼ ∼ ∼ ✓+ ∼ -- -- -- -- -- -- 

Emotive EPOC + headset, 

14 channel 

SR10, 

SR17, 

SR18 
✓+ ✓ ✓+ ✓+ ✓+ ✓+ ∼ ∼ ✓ ✓ ✓+ 

BioNeuro multichannel 

biofeedback instrument  
SR15 ✓ ✓ ✓ ✓+ ✓ -- ∼ ✓+ ✓+ ✓+ ✓+ 

EEG traveler 24CH SR20 ∼ ✓ ✓ ✓+ ✓ -- ∼ ∼ ✓+ ✓ ✓+ 

Biosemi ActiveTwo 

system 

SR21, 

SR23, 

SR24, 

SR29, 

SR31, 

SR33, 

SR35, 

SR37 

∼ ∼ ✓ ✓+ ∼ ✓ ✓ ✓ ✓+ ✓ ✓+ 

Enobio device 
SR22, 

SR29 
∼ ✓ ✓ ✓+ ✓ ✓+ ✓ ✓+ ✓ ✓+ ✓+ 

NeuroSky MindWave 

Mobile 2 headset 
SR35 ✓+ ✓+ ✓+ ✓+ ✓+ -- -- -- -- -- -- 

Biopac- MP150 
SR14, 

SR28 
✓ ✓ ✓ ✓+ ∼ ✓+ ✓+ ∼ ✓ ✓ ✓+ 

Multi-channel 

electrophysiological 

recording system - 

RM6240 

SR02, 

SR08, 

SR11, 

SR12 

✓ ✓ ✓ ✓+ ∼ -- ✓ ✓+ ✓+ ✓+ ✓+ 

Samsung Gear 2 
SR06, 

SR07 
✓+ ✓+ ✓+ ✓+ ✓+ ✓+ -- -- -- -- ✓+ 

EMPATICA E4 wristband SR29 ✓+ ✓+ ✓+ ✓+ ✓+ ✓+ -- -- -- -- ✓+ 

TSD200A and TSD 200D 

sensors with Biopac 
SR05 ✓+ ✓ ✓ ✓+ ∼ ✓+ ✓+ ∼ ✓ ✓ ✓+ 

Pulse oximeter SR26 ✓+ ✓+ ✓+ ✓+ ✓+ ✓+ -- -- -- -- ✓+ 

Algoband F8 SR09 ✓+ ✓+ ✓+ ✓+ ✓+ -- -- -- -- -- -- 

Digital-IF Doppler radar  SR27 ✓+ ✓+ ✓ ✓+ ✓ -- -- -- -- -- ✓+ 

Power Lab data acquisition 

device 

SR01, 

SR16 
✓ ✓ ✓ ✓+ ∼ ✓+ ✓+ ∼ -- -- ✓+ 

Insufficient information SR19, SR25, SR30, SR32, SR38 

✓+ = Good, ✓ = Moderate, ∼ = Poor,   -- = Data not available. 
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Four of the selected articles have not mentioned the 

instrument type or model used for recording physiological 

signals (SR19, SR25, SR30, SR32, SR38).  

G. COMPARISON OF MEASUREMENT METHODS USED 
FOR HAPPY AND SAD EMOTIONAL STATES 

During stimuli visualization, various physiological and non-

physiological traits are acquired from the corresponding 

instrumentation approaches. The comparison of measurement 

methods in differentiating dichotomous emotional states using 

audio-visual stimuli is summarized in Table IV.  The 

physiological measurement methods such as EEG, fEMG, 

EDA, ECG, PPG, RSP, and a non-physiological measurement 

method, GAIT, have been used to classify happy and sad 

emotional states selected review articles. The physiological 

signal, EEG, directly reflects the neural activity of the 

emotions, but the installation and maintenance cost of these 

devices is very high [101]. 

The EDA measurements are simple and are easy to install 

[102] but are influenced by external factors such as 

temperature and humidity [102], [103]. ECG generates a 

higher magnitude output signal compared to other methods. 

However, these measurements have limitations such as high 

inter-subject variability and low accuracy due to movement 

artifacts in mobile systems. Although PPG provides 

physiological variations, inaccuracy in tracking the PPG 

signals during daily routine activities due to motion artifacts 

caused by hand movements is one of the main limitations 

[104]. EMG has limitations such as susceptible to noise, 

measures only valence, and difficult to set up. Although this 

TABLE IV 

COMPARISON OF VARIOUS MEASUREMENT METHODS IN DIFFERENTIATING DICHOTOMOUS EMOTIONAL STATES USING AUDIO-VISUAL STIMULI 

 Instrument Advantages Disadvantages 

E
E

G
 

Super Spec EEG, 32-channel (SR03)  Fast and reliable 

 High time and frequency resolution 

 Directly reflects the neural activity of the 

emotions and monitors cognitive-

affective processing in the absence of 

behavioral responses. 

 

 Complex installation, high maintenance 

 Low spatial resolution with poor signal-to-

noise ratio, Poor estimation of neuronal 

activity below the cortex 

 Lack of Model generalizability for tackling 

individual differences. 

 

Neuroscan equipment, 64-channel (SR13, 

SR34, SR35, SR36, SR 37, SR39) 

NEUROWIN, 19 channel EEG Equipment 

(SR04) 

Emotive EPOC + headset, 14 channel (SR10, 

SR17, SR18) 

EEG traveler 24CH (SR20) 

Biosemi ActiveTwo system (SR21, SR23, 

SR24, S29, SR31, SR 33, SR35, SR37) 

Enobio device (SR22, SR29) 

NeuroSky MindWave Mobile 2 headset (SR35) 

E
D

A
 

BioNeuro multichannel biofeedback 

instrument (SR15) 
 One of the best real-time correlates of 

emotions 

 Simple, non-obtrusive, easily recordable, 

low cost, and easy to install 

 Phasic response of EDA is generally 

discriminable 

 Limited runtime in real-time measurements 

 Influence of external factors such as 

temperature and humidity 

 EDA responses are delayed by 1-3s with 

respect to sympathetic activity and intra and 

inter-subject variability 

Biopac- MP150 (SR28) 

EMPATICA E4 Wristband (SR29) 

Power Lab data acquisition device (SR16) 

E
C

G
 

Biopac- MP150 (SR14, SR28)  Portable, reliable, non-intrusive and 

computationally efficient 

 Mobile measurements (i.e., smart 

clothing, smartwatch)  

 High amplitude compared to other 

methods 

 It is established as a biometric 

characteristic. Therefore, it intrinsically has 

high inter-subject variability 

 Higher accuracy in stationary 

measurements 

 Movement artifacts in mobile systems 

Multi-channel electrophysiological recording 

system - RM6240 (SR08, SR18, SR12) 

G
A

IT
 

Samsung Gear 2 (SR06, SR07) 

 Non-invasive 

 Cooperation or attention of a person is 

not needed, and the gait may be distantly 

interpreted. 

 Strong ecological validity  

 

 High inter-subject variability, Still in its 

infancy, may not be adequate 

 Strongly depends on the control over 

clothing and footwear 

 Calibration of accelerometers and motion 

artifacts 

P
P

G
 

TSD200A and TSD 200D sensors (Biopac, 

USA) (SR05) 
 Simple to implement on 

wearable consumer electronics 

 Non-invasive, 

 Easy and convenient blood volume 

change, HR and O2 concentration can be 

measured at the same time 

 Inaccuracy in tracking the PPG signals 

during daily routine activities due to motion 

artifacts caused by hand movements Smart bracelet sensor -Algoband F8 (SR09) 

RM6240C multi-channel signal acquirement 

system (SR11) 

RM6240B system (SR02) 

Pulse oximeter (SR26) 

fE
M

G
 Power Lab data acquisition device (SR01) 

 Applicability of real-time scenario  Prone to noise generated by muscle activity 

 Measure only valence and complicated 

installation 

 Amplitude vary on chosen measurement 

location 
Biopac 150 (SR28) 

R
S

P
 

Digital-IF Doppler radar (2.4GHz, -7dBm 

transmit-ting power) (SR27) 

 Non-contact monitoring 

 Improved accuracy 

 Suitable for long term monitoring 

 Motion artefact 
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method has a good spatial resolution, it is limited by cost and 

time resolution. The non-physiological method, the GAIT 

pattern has strong ecological validity; they are still in their 

infancy.  

H. FEATURE EXTRACTION 

For the classification of happy and sad emotional states, the 

time, frequency, and Time-Frequency (TF) domain features 

were used. 

1)  TIME-DOMAIN FEATURES EXTRACTION 

In the EEG context, features such as, mean (M), median (Med), 

standard deviation (Std),  correlation, average energy (Eng), 

root mean square (RMS), number of peaks, average power 

(Pow), the first-order difference (1st diff), the second-order 

difference (2nd diff), kurtosis (Ku), variance (Vr), skewness 

(Sk), entropy (En), complexity (CO), mobility (MO), and auto 

regressive parameter are extracted (SR03, SR10, SR18, SR19, 

SR22, SR25). For EDA, features, such as maximum (Max), 

minimum (Min), dynamic range, Ku, Sk, M, Vr, mode, and M 

of 1st diff are computed (SR15, SR32). Detrended fluctuation 

analysis, permutation patterns entropy (PPE), and ordinal 

pattern entropy (OPE) have been estimated from the 

preprocessed ECG signal (SR12, SR14). 

In HRV, the features such as the square root (SQRT) of the 

mean squared differences, M, STD, non-linear indices, PPE, 

and OPE have been extracted (SR08, SR12). From the PPG 

signal, the features such as M, Med, Std, reflection index (RI), 

and stiffness index are evaluated (SR02, SR05, SR11, SR26). 

The features, namely M, Std, and 2nd diff are extracted from 

RSP signal (SR27). 

Along with time-domain features, Li et al. also computed 

morphological features (SR02). Minio-Paluello et al. used 

analyses of variance (ANOVA) for the classification of 

dichotomous emotional states (SR01). In one of the studies, 

non-linear analysis such as the correlation dimension (CD) of  

hemispheres was compared as a complexity measure of the 

EEG signals (SR23). 

2)  FREQUENCY DOMAIN FEATURES EXTRACTION 

Features, namely squared coherence estimate,  Vr, MO, CO, 

frequency cepstral coefficient, spectral Shannon, and k-NN 

entropy, are calculated from EEG signal (SR19, SR21, SR31, 

SR 35). Lee and Hsieh extracted brain functional connectivity 

pattern-based features, namely coherence, phase 

synchronization index (SR39). Welch's power spectral density 

has been computed from EDA signals (SR32). From the HRV 

signal, the power spectral density (PSD) is computed at Low 

Frequency (LF) and High Frequency (HF), and LF to HF 

power ratio (SR08). The indices of LF power, HF power, and 

LF to HF power ratio in the power spectral density are 

calculated from PPG signal (SR11, SR26). The E of PSD at 

different frequencies is extracted from RSP (SR27). 

 3)  TF DOMAIN FEATURES EXTRACTION 

The feature extraction of EEG signals in the TF domain is 

carried out by decomposing the useful sub-bands by one of the  

TABLE V 

THE SUMMARY OF THE FEATURES USED IN THE INSTRUMENTATION 

APPROACH 

Signal Related work 
Features 

Time Frequency TF 

EEG 

SR03, SR04, SR10, 

SR13, SR17–SR25, 

SR31, SR33 – SR 37, 

SR39 

16 9 27 

EDA 
SR15, SR16, SR28, 

SR29, SR32 
9 1 -- 

ECG 
SR12, SR14, SR30, 

SR38 
8 -- 11 

GAIT SR06, SR07 17 - - 

HR SR09 6 - - 

HRV SR08, SR12, SR28 8 3 - 

RSP SR27 6 5 - 

fEMG SR01, SR28 3 -- -- 

PPG 
SR02, SR05, SR11, 

SR26 
15 12 - 

following methods: Short-time Fourier Transform (STFT), 

Dual-Tree Complex Wavelet Transform (DTCWT), Discrete 

Wavelet Transform (DWT), and Tunable Q Wavelet 

Transform (TQWT) (SR13, SR17, SR19, S20, SR21, SR22, 

SR24, SR33, SR34).  

The features, namely Eng, instantaneous phase, and 

absolute power, are computed from certain bands of EEG 

signal by applying DTCWT to the selected channels (SR13). 

The absolute Max, absolute M, Std, Pow, Eng, En, differential 

En, Vr, MO, and CO features have been computed from the 

wavelet coefficients of each sub-band generated by using the 

DWT method (SR19, SR21, SR22, SR24, SR33).  

By using the TQWT decomposition method, the features 

such as mean absolute value, Pow, Std, Sk, and Ku have been 

computed from each sub-band of EEG signal (SR34). 

Similarly, Krishna et al. have calculated the time-domain 

features (RMS, absolute sum and SQRT sum, change in 

average amplitude, log detector, clearance factor, shape factor, 

and crest factor) from the amplitude at sampling points of each 

sub-band, and Hjorth features (Vr, MO, and CO) from the Std 

of each sub-band (SR20). Gao et al. fused power spectrum 

generated from STFT and wavelet energy entropy computed 

from DWT that are derived from the different frequency bands 

of EEG signal (SR17). 

Considering the ECG signal, basic statistical features (M, 

Std, Min, and Max) are extracted from the DWT coefficients 

at level 4 decomposition. Similarly, total power, LF, HF, and 

LF to HF power ratio features have also been computed from 

the intrinsic mode functions generated by the DWTs empirical 

mode decomposition and wavelet coefficients at level 14 

decomposition (SR30).  

According to the survey, it is found that the time domain 

features are mostly used in all instrumentation approaches, 

followed by frequency domain and TF features. The summary 

of all the features in the respective instrumentation approach is 

given in Table V. 
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TABLE VI 

THE SUMMARY OF CLASSIFIERS AND RESPECTIVE PERFORMANCE METRICS OBTAINED TO CLASSIFY DICHOTOMOUS EMOTIONS 

Signal 
Classification 

type 

Sessions 

recorded 
SR_id 

Feature 

selection 

algorithm 

Classifier 
Target 

emotions 

Classifier performance 

Average 

accuracy 

(%) 

F-

score 

(%) 

TPR FPR 

EEG 

SD 

SS 

SR03 -- LDA 

R 92.70 -- -- -- 

H 84.37 -- -- -- 

S 78.12 -- -- -- 

SR10 -- RF 

H-S-Nu 

83.93 -- -- -- 

SR17 

Principal 

component 

analysis 

SVM 89.17 -- -- -- 

RVM 91.18 -- -- -- 

SR18 -- NB H-S 87.50 -- -- -- 

SR22 -- ANN 
H 63.63 -- -- -- 

S 100 -- -- -- 

MS SR04 -- LDA and SVM 

N 87.35 -- -- -- 

H 84.82 -- -- -- 

S 86.43 -- -- -- 

SI 

SS 

SR13 -- SVM H-S-C 90.61 -- -- -- 

SR19 -- SVM 
H-S 

96.81 -- -- -- 

SR20 -- ELM 87.10 -- -- -- 

SR21 
Particle swarm 

optimization 
SVM 

H 74.19 -- -- -- 

S 69.44 -- -- -- 

SR24 

Sequential 

minimal 

optimization 

SVM 

H 72.73 -- -- -- 

S 88.89 -- -- -- 

SR33 -- 
MLPNN 

P-N 

 

77.14 -- -- -- 

kNN 72.92 -- -- -- 

SR35 

(DEAP) 
-- eDGP 84.81 -- -- -- 

SR39 
Analyses of 

variance 
QDA 82.00 -- -- -- 

SR37 

(DEAP) 

Minimal 

redundancy 

maximal 

relevance 

ELM 69.67 -- -- -- 

MS 

SR37 

(SEED) 

Minimal 

redundancy 

maximal 

relevance 

ELM 

P-N 

91.07 -- -- -- 

SR34 -- 

RoF with SVM 93.10 -- -- -- 

RoF with kNN 88.80 -- -- -- 

RoF with ANN 91.50 -- -- -- 

RoF with RF 90.60 -- -- -- 

RoF with CART 88.50 -- -- -- 

RoF with C4.5 88.50 -- -- -- 

RoF with REP 

Tree 
86.90 -- -- -- 

RoF with LAD 

Tree 
86.60 -- -- -- 

SR35 

(Experiment) 
-- eDGP 86.55 90.42 -- -- 

SR35 

(SEED) 
-- eDGP 86.22 -- -- -- 

SR36 -- ARF 94.40 -- 0.963 0.948 

EDA SI SS SR15 
Particle swarm 

optimization 
kNN 

H 65.38 -- -- -- 

S 87.50 -- -- -- 

ECG 

SD MS SR30 -- kNN H-S 75.00 -- -- -- 

SI 
SS 

SR31 -- kNN H-S 75.00 -- -- -- 

SR14 -- Fisher 
H -- -- 0.8956 0.0058 

S -- -- 0.9010 0.0162 

SR38 -- RF 
P 92.10 92.60 -- -- 

N 93.90 90.70 -- -- 

MS SR30 -- kNN H-S 65.00 -- -- -- 
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I. CLASSIFICATION AND STATISTICAL ANALYSIS 

Classification and differentiation of dichotomous emotional 

states are carried out using several classifiers and statistical 

analysis methods. For this, features extracted from various 

signals using different instrumentation approaches are 

considered. Out of 39 articles, 30 articles have used 

classification algorithms, and nine articles have used statistical 

analysis methods. 

1)  CLASSIFICATION 

Out of 30 classification articles, 23 articles classify happy and 

sad emotional states, and the remaining seven articles classify 

positive and negative emotional states. The summary of the 

classifiers and the respective performance metrics, namely 

accuracy, F-score, and True Positive Rate (TPR)/False 

Positive Rate (FPR), are listed in Table VI. 

Out of 23 happy and sad classification articles, 11 articles have 

used EEG signals with machine learning algorithms, namely 

Linear Discriminant Analysis (LDA), Support Vector 

Machines (SVM), Random Forest (RF), Relevance Vector 

Machines (RVM), Naïve Bayes (NB), Extreme Learning 

Machine (ELM), and Artificial Neural Networks (ANN). The 

highest classification accuracy of 96.81% has been achieved 

using the SVM classifier and wavelet coefficient features. The 

EEG signals in the study are recorded in SS, and SI analysis 

has been carried out for classification (SR19). Another SI 

study on EEG signals acquired in MS have obtained the least 

accuracy of 63.63% in classifying happy emotional states 

using ANN (SR22). In the case of EDA signals, Srinivasan et 

al. have used SI analysis and achieved a classification accuracy 

of 65.38% and 87.50% for happy and sad emotional states, 

respectively, using the kNN algorithm (SR15). 

The classifiers, namely k-Nearest Neighbors (kNN) and 

Fisher, have been used to categorize happy and sad emotions 

from ECG signals. The maximum accuracy of 75% for SI 

analysis has been achieved using the kNN algorithm (SR31). 

Cheng et al. reported the TPR/FPR metric of 0.8956/0.005 and 

0.9010/0.0162 for happy and sad emotions, respectively, using 

the Fisher classifier and SI analysis (SR14). Another SI study 

conducted on ECG signals recorded in MS has achieved the 

least classification accuracy of 65% in classifying happy and 

sad emotional states using kNN (SR30). Quiroz et al. have 

performed both SD and SI analysis on GAIT pattern data using 

three classifiers: Baseline, RF, and Logistic Regression (LR). 

In both studies, the experiment is conducted in SS. The 

maximum accuracy of 68.20% (F-score: 0.7630) has been 

obtained for SI analysis using the LR algorithm (SR06, SR07). 

Recently, Shu et al. used four classification algorithms, namely 

kNN, RF, Decision Tree (DT), Gradient Boosting Decision 

Tree (GBDT), and AdaBoost, for classifying happy and sad 

emotional states using HR signals. SI analysis has been carried 

out for the classification and achieved the highest accuracy of 

TABLE VI (CONTINUED.) 

THE SUMMARY OF THE CLASSIFIERS AND THE RESPECTIVE PERFORMANCE METRICS OBTAINED TO CLASSIFY DICHOTOMOUS EMOTIONS STIMULI 

GAIT 

SD SS SR06 -- 

Baseline 

H-S 

~51.00 -- -- -- 

RF ~69.00 -- -- -- 

LR ~68.00 -- -- -- 

SI SS SR07 -- 

Baseline 

H-Nu-S 

03.10 03.10 -- -- 

RF 65.10 78.70 -- -- 

LR 68.20 76.30 -- -- 

HR SI SS SR09 SelectKBest 

kNN 

H-S 

56.00 

(k=20) 
-- -- -- 

RF 
82.00 

(k=10) 
-- -- -- 

DT 
76.00 

(k=5,8) 
-- -- -- 

GBDT 
84.00 

(k=8) 
-- -- -- 

AdaBoost 80.00 (k=5) -- -- -- 

RSP SI SS SR27 -- kNN J-S 85.00 -- -- -- 

ECG+EDA SI SS SR32 -- 

SVM 

H-S 

EDA:100 

 ECG: 

97.27 

-- -- -- 

NB 
EDA:100 

ECG: 98.92 
-- -- -- 

kNN 
EDA:100 

ECG: 88.53 
-- -- -- 

PPG+ SKT SD SS SR05 -- SVM H-S 

SKT:89.29 

PPG:63.66 

SKT+PPG: 

92.83 

-- -- -- 

Face+ 

EEG+ 

EDA 

SD SS 

SR29 

(LUMED-

2) 

-- kNN H-S 53.80 -- -- -- 

SI SS 
SR29 

(DEAP) 
-- kNN H-S 75.00 -- -- -- 

SD – Subject dependent, SI – Subject independent, SS – Single session, MS – Multiple sessions, H – Happy, J – Joy, S – Sad, Nu – Neutral,  

C – Calm, R – Relax, P – Positive emotion, N – Negative emotion 
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84% using the GBDT algorithm (SR09). The features 

extracted from the RSP signals have been used to classify joy 

and sadness emotional states using kNN classifier with SI 

analysis and achieved an accuracy of 85% (SR27).  

Rakshit et al. have used the combination of SKT and PPG 

signals to classify happy and sad emotional states. The SD 

analysis carried out on combined signals yielded a maximum 

accuracy of 92.83% using the SVM classifier (SR05). 

Similarly, a combination of EDA and ECG signals is used to 

classify dichotomous emotions using SVM, NB, and kNN 

classifiers with SI analysis. The highest classification accuracy 

of 100% and 98.92% are achieved using EDA and ECG 

signals, correspondingly (SR32). Another multimodal study 

(combination of facial expressions and physiological signals 

(EEG and EDA)) conducted by Cimtay et al. has used SD 

analysis on the LUMED-2 database and SI analysis on the 

DEAP database. In both databases, the signals are recorded in 

SS. The SD analysis conducted on the signals collected from 

the LUMED-2 database achieves an accuracy of 53.80%. The 

SI analysis performed on the signals collected from the DEAP 

database achieves an accuracy of 75%.  

Out of seven positive and negative emotion classification 

articles (SR33 – SR39), six articles have used EEG signals 

with machine learning algorithms, namely Multilayer 

Perceptron Neural Network (MLPNN), enhanced D-score 

Genetic Programming (eDGP), ELM, RF, sparse Autoencoder 

based Random Forest (ARF), Quadratic Discriminant 

Analysis (QDA), and combined Rotation Forest (RoF) with 

SVM. Among the EEG signal-based positive and negative 

emotion classification articles, the highest classification 

accuracy of 94.40% has been achieved using the ARF 

classifier and entropy-based feature. In this study, SI analysis 

has been carried out on the signals recorded in MS (SR36). 

 Two of the selected studies have used multiple databases 

for the analysis (SR35, SR37). An SI study has been conducted 

on EEG signals acquired in SS (from experiment and SEED 

database) and MS (DEAP database) using an eDGP classifier. 

The signals acquired from the experiment have achieved an 

accuracy of 86.55% (F-score - 0.9042), and the signals 

collected from the databases, namely DEAP and SEED, have 

achieved an accuracy of 84.81% and 86.22%, respectively 

(SR35). Similarly, Zheng et al. have used multiple databases, 

namely DEAP and SEED, to classify positive and negative 

emotional states using the ELM classification algorithm. The 

DEAP database has been created in SS, and the SEED database 

has been created in MS. The accuracy achieved by using EEG 

signals collected from the DEAP database is 69.67%, and the 

accuracy achieved by using EEG signals collected from the 

SEED database is 91.07%. SI analysis is carried out on the data 

collected from both databases (SR37). 

 In ECG, a SI analysis was carried out using an RF classifier 

and achieved an accuracy of 92.10%, 93.90%, and 92.20% for 

positive, negative, and neutral emotional states, respectively  

(SR38). The classifiers used in the selected studies and  

 

TABLE VII 

THE SUMMARY OF THE SIGNIFICANCE LEVELS OBTAINED TO 

DIFFERENTIATE HAPPY AND SAD EMOTIONS 

Modality SR_id 
Significance Level 

(p) 

fEMG, PPG, HRV, 

EEG 

SR01, SR02, SR11, 

SR12, SR25 
≤ 0.01 

HRV, EDA SR08, SR28 ≤ 0.001 

EDA SR16, SR23 ≤ 0.05 

p ≤ 0.05 –>Significant; p ≤ 0.01 –>Very significant; and p ≤ 0.001 –> 

Highly significant 

respective performance metrics obtained to classify 

dichotomous emotions are summarized in Table VI. 

2)  STATISTICAL ANALYSIS 

Statistical analysis have been carried out in nine of the selected 

studies (SR01, SR02, SR08, SR11, SR12, SR16, SR23, SR25, 

SR28) to differentiate happy and sad emotional states. p-values 

are calculated to determine the significant features (SR12).  

Type III ANOVA showed a significant difference in the 

mean of fEMG activated by the corrugator, orbicularis, and 

zygomaticus muscles (SR01). The time interval between foot, 

peak, and two successive feat of PPG signal are varied 

significantly high between happy and sad emotions (SR02). 

The frequency-domain indices of HRV, namely LF, HF, and 

LF to HF ratio, are highly significant to differentiate 

dichotomous emotions (SR08). The difference in the RI of the 

PPG signal for both happy and sad is very significant (SR11). 

Kolmogorov-Smirnov test showed a very significant variation 

in the PPE of HRV between happy and sad emotions (SR12). 

Steenhaut et al. performed a pairwise t-test to know the 

emotional reactivity differences between younger and older 

adults using happy and sad film clips. In happy emotion, the 

tonic component of EDA varied significantly, and in sad 

emotion, VAS ratings of participants are varied significantly. 

For both happy and sad emotions, older adults reported higher 

reactivity (SR28). 

Paired t-tests on EDA responses of the subjects in happy and 

sad emotions varied significantly (SR16). The CD of EEG 

signals in parietal and frontal regions showed a significant 

variation in differentiating joy and sadness (SR23). Similarly, 

the alpha patterns of EEG signals differed very significantly in 

happy and sad emotions (SR25). The summary of the 

significance levels obtained to differentiate happy and sad 

emotions are listed in Table VII. 

III. DISCUSSION 

Despite the fact that these emotional states can be easily 

measured using physiological traits, the needs for 

measurement can differ widely on the basis of user, 

technology, medical, and environment related factors. In this 

review, six physiological traits and the instruments used for 

measuring dichotomous emotional states are identified. 

Moreover, each instrument has been outlined on the basis of 

its user related properties (i.e., setup time, measurement 

intrusiveness, and size), medical related properties (i.e., 

invasive/non-invasive and safety), technological related 

properties (i.e., compatibility, input impedance, input voltage 
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range, sensitivity, and SNR) and cost. Most of the instruments 

used in the reviewed articles may be ideal for measuring in a 

laboratory setting, but they may not be the preferential 

alternative for motion artifacts characterization in real-time 

applications. 

When the number of electrodes is considered, the 

instrument must be designed with a fewer number of 

electrodes. Nevertheless, it requires a relatively large number 

of electrodes, for most current EEG devices [105]. The highest 

number of electrodes used for recording EEG signals in this 

review is 64 (SR03), whereas the minimum number is two 

when recording HR in (SR09). One study used continuous-

wave Doppler radar for emotion recognition, where the user 

does not require to wear any sensor/electrode on the body 

(SR27). 

In recent days, with the advancements in technology, 

wearable devices are popular for emotional state assessment in 

real time because of its unobtrusiveness and relatively long 

recording time [106]. Quiroz et al. have used a wearable 

Samsung Gear 2 device to record accelerometer and gyroscope 

sensor data from the participants and achieved an accuracy of 

70% (SR06) and 76.30% (SR07) to classify happy and sad 

emotions. Emotive EPOC + headset has been used to record 

EEG signals and obtained an accuracy of 83.93% (SR10), 

91.18% (SR17), and 87.50% (SR18) to classify dichotomous 

emotional states. Similarly, Jaswini et al. have used Enobio 

wearable device to classify happy and sad emotions from EEG 

signals with 63.63% and 100% accuracy, respectively (SR22). 

In one of the studies, Empatica E4 wristband has been used to 

acquire EDA signals participants and obtained an accuracy of 

81.20% to classify two opposite emotions, namely happy and 

sad (SR29). Recently, Shu et al. used a wearable device, 

namely Algoband F8, to collect HR signals and classified 

happy and sad emotions with an accuracy of 84.00% (SR09). 

NeuroSky MindWave Mobile 2 headset wearable device have 

been used to acquire EEG signals and classified positive and 

negative emotional states with an accuracy of 87.61% (SR35). 

Based on the reviewed articles, a single modality is 

commonly considered to recognize dichotomous emotional 

states. In comparison to a single modality, multiple modalities 

may provide better information and enhance recognition 

accuracy. The instruments such as the Multi-channel 

electrophysiological recording system - RM6240, HelathLab, 

and Biopac supports multiple physiological signal recordings. 

Thus, multiple modalities can be explored to classify 

emotional states. 

The accuracy of dichotomous emotional state recognition 

can also be enhanced using multiple combinations of features 

and classifiers. The choice of feature extraction domain 

depends on the type of signal and its characteristics. The use 

of TF domain features is insufficiently explored in the selected 

articles. The various machine learning approaches such as 

SVM, RF, LDA, and Fisher have been used for the 

classification of happy and sad emotional states. The choice of 

classification algorithm mostly depends upon both the type 

modality and the type of application. In this review, SVM with 

time domain features is most commonly used. The use of deep 

learning methods can also be incorporated with the growing 

use of newly available machine learning and artificial 

intelligence tools. 

IV. CONCLUSION 

This study presents a review of sensing approaches in emotion 

recognition when dichotomous emotions are elicited using 

audio-visual stimuli using various protocols, recording 

devices, and classification methods.  Performance evaluation 

is carried out among the devices used in the selected review 

articles, but there is a lack in the user related factors of the 

approaches considered. Despite the undisputed value of 

ambulatory diagnosis, the monitoring of happy-sad emotional 

states is not established. Most of the methods in this study 

mainly focused on the enhancement of emotion recognition 

accuracy using multiple combinations of features and 

classifiers. In order to increase the quality of life, critical 

developments in instrumentation are still actively sought to 

improve the efficiency of ambulatory care monitors. Thus, the 

research on the type of stimuli, features, and classification 

algorithms is still challenging with current enhancement in 

wearable emotion recognition devices. For a more effective 

recognition of happy and sad emotional states, the fusion of 

multiple physiological parameters are pursued for monitoring 

capability on wearable devices. 
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