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Abstract

Due to advancement in sequencing technology, genomes of thousands of cancer tissues or

cell-lines have been sequenced. Identification of cancer-specific epitopes or neoepitopes

from cancer genomes is one of the major challenges in the field of immunotherapy or vac-

cine development. This paper describes a platform Cancertope, developed for designing

genome-based immunotherapy or vaccine against a cancer cell. Broadly, the integrated

resources on this platform are apportioned into three precise sections. First section explains

a cancer-specific database of neoepitopes generated from genome of 905 cancer cell lines.

This database harbors wide range of epitopes (e.g., B-cell, CD8+ T-cell, HLA class I, HLA

class II) against 60 cancer-specific vaccine antigens. Second section describes a partially

personalized module developed for predicting potential neoepitopes against a user-specific

cancer genome. Finally, we describe a fully personalized module developed for identifica-

tion of neoepitopes from genomes of cancerous and healthy cells of a cancer-patient. In

order to assist the scientific community, wide range of tools are incorporated in this platform

that includes screening of epitopes against human reference proteome (http://www.imtech.

res.in/raghava/cancertope/).

Introduction

Worldwide, cancer is one of the most prominent cause of immature deaths every year [1]. In

addition to millions of deaths each year, all countries are spending billions of dollars on treat-

ment of cancer patients. In past, effective vaccines have been developed successfully against

number of frightening diseases (e.g. small pox, polio); saving millions of lives. Subsequently, it

is extremely important to develop effective vaccines against cancer to protect the human popu-

lation from this awful disease. In this direction, researchers have got limited success in design-

ing vaccine against cancers particularly against cancer-inducing viruses [2,3]. There are a

number of hurdles in developing cancer vaccines that includes cross-reactivity, tolerance and

insufficient immune response [4]. Similarly, the identification of mutations shared across wide

range of cancer patients is also a challenge [5,6]. However, with advent of high throughput

sequencing and assay techniques, different authors have made an attempt to investigate
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important shared mutations in various types of cancers [7,8]. Furthermore, in order to design

a successful vaccine, it is important to identify cancer-specific antigens or antigenic regions

that can induce immune system specifically against cancerous cells. These antigens and anti-

genic regions are called neoantigens and neoepitopes respectively. In past, number of experi-

mental techniques has been developed to identify vaccine candidates (e.g., neoantigens,

neoepitopes) for designing cancer vaccines [9,10].

Although there are reports of identification of vaccine candidates at genome scale, but the

task is demanding because experimental techniques are costlier and time consuming with

large amount of samples. In order to overcome the limitations of experimental techniques,

numerous computational tools have been developed for designing vaccines or immunotherapy

against cancer. Broadly, these computational tools can be divided in two categories: i) methods

for predicting epitopes, and ii) prediction of potential vaccine candidates for cancer. In past,

numerous direct or indirect epitope predictions have been developed for predicting antigenic

regions that can activate B-cell, T-helper and cytotoxic T-cells [11,12]. In case of prediction of

cancer vaccine targets, first cancer-specific regions are identified and then their immunogenic

properties are predicted. Warren et al. (2010) identified mutated regions in antigens/proteins

generated due to somatic mutations (missense, frame shift, insertion, and deletion) in human

tumors [11]. They predicted HLA class I binders in these mutated regions and identified 159

potential vaccine candidates. Similarly, Khalili et al. (2012) predicted HLA-A and B binders in

mutated region of 312 genes; generated due to missense mutations [13]. Brown et al. identified

immunogenic mutations in the form of HLA class I binders from sequencing data of 515

patients [14]. In this study, authors endeavored to correlate the presence of immunogenic mis-

sense mutations with the survival of patients. Recently, Rajasagi et al. proposed 22 HLA class I

binders generated from missense mutations through a developed pipeline for 91 chronic lym-

phocytic leukemias [15]. In most of the above studies, authors predicted only HLA class I bind-

ers or cytotoxic T-cell (CTL) epitopes.

There are several computational tools for the prediction of HLA binding peptides and T-

cell epitopes and B cell epitopes, which can be used for the prediction of immunogenic

mutated regions in an antigen. However, there is a necessity for a streamlined computational

tool that allows users to identify immunogenic mutations and the predicted cancer epitopes.

One of the major limitations of existing computational tools for predicting cancer vaccine can-

didates is that they do not predict B-cell or T-helper epitopes. In addition, there is no specific

computation resource for predicted cancer epitopes in user-specified genome. Aim of this

study is complementing existing methods and to address unresolved issues. We analyzed

mutational profile of 905-cancer cell lines and identified neoepitopes that can activate different

arms of immune system. This information has been compiled in the form of a database so that

the user can access cancer-specific epitopes for any cancer cell line. In addition, fully and par-

tially personalized pipelines have been integrated in this database to facilitate scientific com-

munity. In brief, the study illustrates exclusive evaluation of immune epitopes on the

mutational landscape of a large number of cancer cell lines (https://figshare.com/articles/

CANCERTOPE_MUTATION_DATASET_txt/4176558) and eventually postulates a work-

bench, named Cancertope for designing neoepitope-based personalized vaccines/immuno-

therapies (http://crdd.osdd.net/raghava/cancertope/).

Results

Analysis of Vaccine Targets

The current study is based on 60 vaccine candidates, 26 reported from the analysis of NGS

data from CCLE database [16] and remaining 34 candidates from CanProVar [17] based on
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their association with cancer. The 26 genes (vaccine candidates) were selected from CCLE as

they frequently mutate in different types of cell lines (see Methods section). The distribution

and types of mutations were then analyzed in vaccine candidates, which further depicted the

prominence of missense mutation type (Fig 1). Similarly, the frame shift mutations in a few

key genes like PRKDC, RECQL4, PDE4DIP, and CTBP2were found in harmony with a large

number of cell lines. Also, the in-frame insertions and deletions were very profound in genes

like AKAP12,NR1H2,GPR112, andMAP3K1. All these genes in the study are being referred to

as cancer sensitive genes since they possess higher probability to be associated with cancer on

encountering mutations. In other words, a gene is called cancer-sensitive, if the mutations in

that gene have high propensity of being cancer-associated.

Furthermore, Table 1 presents 34 vaccine targets possessing mutations that exhibit higher

probability of transforming a normal cell into a cancerous cell as selected from CanProVar.

Among these vaccine candidates, mutations in targets like PTEN [18], TP53 [18], BRAF [19],

EGFR [20] and c-KIT [21,22] have already been reported in earlier studies to be highly carci-

nogenic and proposed to be targeted for intending immunotherapies. These analyses support

our criteria of selection of generalized vaccine candidates. To further broaden the perspective

of functional analysis, the cancer sensitive genes were compared with all other genes on the

basis of their gene ontologies. The analyses uncovered interesting observations suggesting

involvement of cancer sensitive proteins is somehow greater in the apoptotic processes, biolog-

ical regulation, catalytic and binding activities as compared to the other proteins (Fig 2 and

S1 Fig).

Fig 1. Frequency and type of mutations reported for each vaccine candidate. Each numerical value
representing the number of mutations across different cell lines in a vaccine candidate, for instance, vaccine
target PRKDC has beenmutated 842 times (frame shift insertions) in the different cell lines.

doi:10.1371/journal.pone.0166372.g001
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Expression Analysis of Cancer Vaccine Candidates

As stated earlier, cancer vaccine candidates were selected on the basis of their mutation fre-

quency in cancer cell lines and their level of association with cancer. Next, the expression pro-

file of these genes was examined in all available cancer cell lines. As displayed in Table 2, most

of the vaccine candidates were highly expressed in a large number of cell lines. Since, the

attained expression data ranged from 2 to 15, the expression values were randomly divided

into four bins for well-defined understanding and the genes with expression values> = 9 were

anticipated as highly expressed genes. With this assumption, it was perceived that the candi-

date genes i.e.HSP90B1,MLH1,MSH6, PRKDC,MSH2, and AKAP9 are highly expressed in

more than 700 cell lines.

Table 1. Number of deleteriousmutations (fD), polymorphism/neutral variants (fP) and cancer association (fD/fP) in each vaccine target.

Target fD fP fD/fP Family/subfamily of target/protein

PTEN 389 1 389 NA

TP53 1353 7 193.3 P53_family

CTNNB1 132 1 132 Beta-catenin_family

BRAF 99 1 99 Protein_kinase_superfamily,_TKL_Ser/Thr_protein_kinase_family,_RAF_subfamily

NF2 74 1 74 NA

EGFR 188 3 62.7 Protein_kinase_superfamily,_Tyr_protein_kinase_family,_EGF_receptor_subfamily

SMAD4 107 2 53.5 Dwarfin/SMAD_family

VHL 272 6 45.3 NA

KIT 131 3 43.7 Protein_kinase_superfamily,_Tyr_protein_kinase_family,_CSF-1/PDGF_receptor_subfamily

PIK3CA 174 4 43.5 PI3/PI4-kinase_family

NRAS 36 1 36 Small_GTPase_superfamily,_Ras_family

MSH2 103 5 20.6 DNA_mismatch_repair_MutS_family

GATA1 20 1 20 NA

MLH1 118 6 19.7 DNA_mismatch_repair_MutL/HexB_family

FBXW7 67 4 16.8 NA

MEN1 49 3 16.3 NA

FGFR3 31 2 15.5 Protein_kinase_superfamily,_Tyr_protein_kinase_family,_Fibroblast_growth_factor_receptor_subfamily

TSHR 46 3 15.3 G-protein_coupled_receptor_1_family,_FSH/LSH/TSH_subfamily

JAK2 40 3 13.3 Protein_kinase_superfamily,_Tyr_protein_kinase_family,_JAK_subfamily

RB1 102 8 12.8 Retinoblastoma_protein_(RB)_family

PDGFRA 35 3 11.7 Protein_kinase_superfamily,_Tyr_protein_kinase_family,_CSF-1/PDGF_receptor_subfamily

NF1 65 6 10.8 NA

FGFR2 43 4 10.8 Protein_kinase_superfamily,_Tyr_protein_kinase_family,_Fibroblast_growth_factor_receptor_subfamily

FLT3 35 4 8.8 Protein_kinase_superfamily,_Tyr_protein_kinase_family,_CSF-1/PDGF_receptor_subfamily

CDH1 68 8 8.5 NA

TNFAIP3 31 4 7.8 Peptidase_C64_family

CBL 30 4 7.5 NA

RET 58 8 7.3 Protein_kinase_superfamily,_Tyr_protein_kinase_family

MSH6 40 8 5 DNA_mismatch_repair_MutS_family

ERBB2 29 6 4.8 Protein_kinase_superfamily,_Tyr_protein_kinase_family,_EGF_receptor_subfamily

MET 23 5 4.6 Protein_kinase_superfamily,_Tyr_protein_kinase_family

ABL1 23 7 3.3 Protein_kinase_superfamily,_Tyr_protein_kinase_family,_ABL_subfamily

ALK 27 9 3 Protein_kinase_superfamily,_Tyr_protein_kinase_family,_Insulin_receptor_subfamily

ATM 134 52 2.6 PI3/PI4-kinase_family,_ATM_subfamily

doi:10.1371/journal.pone.0166372.t001
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Identification of Neopeptides

After scrutinizing 60 potential vaccine candidates, the next challenge was to identify cancer-

specific regions/peptides in these vaccine candidates. Therefore, overlapping 9-mer peptides

for each of the vaccine candidates (Table 3) were created and different filters were applied in

order to identify cancer-specific peptides generated due to cancer-associated mutations. These

filters refined the dataset by eliminating all those peptides whose identical sequence maps

to the genome of healthy individuals. The criteria adopted for removing identical peptides

focused on i) reference protein, 2) reference proteome, 3) 1000 Genomes-based variants of the

same antigen and 4) 1000 Genomes-based proteomes. It was observed that the candidates such

as TP53, MLL3, PDE4DIP, PRKDC and certain others have the highest number of unique neo-

peptides, not present in reference proteome or 1000 Genomes-based proteomes.

Evaluating Neopeptides as Neoepitopes

The generated neopeptides in the study were further analyzed for their roles as neoepitopes,

i.e. antigenic region of nine amino acids specifically found in cancer antigens that can substan-

tially activate different arms of the human immune system. In order to identify neoepitopes,

different prediction tools were used for estimation of distinct epitopes [23,24,25,26,27].

Among all the tissue of origins, cell lines were explored for tissue-specific neoepitopes. Most

frequent (top 10) neoepitopes along with their immunological potential are shown in the S1

Table. Interestingly, “IRKQQQQQE” neoepitope, which was generated de novo because of

mutation in NR1H2 protein, was frequently observed in hematopoietic, lung, kidney, biliary

tract, CNS bone, ovary, pancreas, prostate and large intestine tissues related cell lines. More-

over, it also harbors B cell epitope and is a binder for MHC I, MHC II. Similarly, mutation in

same gene and cell lines generated “QQQQQESQS” which is a B cell epitope. Furthermore, in

case of solid tumors like large intestine, the total number of neoepitopes was the highest in

MLL3 and PDE4DIP targets whereas for hematopoietic tumors, TP53 and PDE4DIP were

found to have the highest number of neoepitopes (S2 Table). The analysis of 60 vaccine candi-

dates provided 38 promiscuous epitopes that have the ability to induce all arms of the immune

system (S3 Table). Additionally, there were interesting outcomes from each individual algo-

rithm of our pipeline that has been complied in the resource. For example, PRKDC has 5 or

more positive neoepitopes predicted using CTLPred and nHLAPred, which were present in

more than 800 unique cell lines (S4 and S5 Tables). Also, there were more than 15 neopeptides

Fig 2. The functional characterization of cancer-sensitive and other proteins based on their gene
ontologies.

doi:10.1371/journal.pone.0166372.g002
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Table 2. Expression analysis depicting number of cell lines with expressionmore than a given cutoff
(e.g., 3, 7, 9) for each antigen.

Target >= 3 >= 7 >= 9 >= 12

AAK1 901 0 0 0

ABL1 901 900 595 0

AKAP12 901 509 294 8

AKAP9 901 900 723 2

ALK 901 23 12 1

ALPK2 901 179 92 1

ATM 901 816 165 0

BRAF 901 282 1 0

CARD10 901 591 109 0

CBL 901 754 4 0

CDH1 901 358 217 0

CHD1 901 901 644 0

CREB3L2 901 849 424 1

CTBP2 901 802 638 0

CTNNB1 901 807 60 0

EGFR 901 318 21 0

ERBB2 901 368 39 14

FBXW7 NA NA NA NA

FGFR2 901 164 34 1

FGFR3 901 88 6 0

FLT3 901 35 27 3

FMN2 901 101 22 0

GATA1 901 19 17 0

GPR112 901 0 0 0

HSP90B1 901 901 897 282

JAK2 901 68 7 1

KIT 901 170 82 12

MAML2 901 49 0 0

MAP3K1 901 393 28 0

MAP3K4 901 900 678 0

MEN1 NA NA NA NA

MET NA NA NA NA

MLH1 901 875 861 2

MLL3 0 0 0 0

MSH2 901 887 731 0

MSH3 901 555 1 0

MSH6 901 892 820 7

MYLK 901 473 286 26

MYST4 NA NA NA NA

NCOA3 901 825 156 0

NF1 901 264 2 0

NF2 901 19 0 0

NR1H2 901 161 0 0

NRAS 901 891 675 4

PDE4DIP 901 198 12 0

PDGFRA 901 115 73 9

(Continued )
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found to be HLA class I binders (using ProPred1) from RECQL4 and PRKDC, which were

present in more than 600 cell lines (S6 Table). Similarly, in case of HLA class II binders

(ProPred), PDE4DIP has 7 or more neoepitopes (HLA class II), which were found in 184 cell

lines (S7 Table). It was also found that there were 5 or more neoepitopes predicted to be posi-

tive using BCE from NR1H2, which were present in 868 cell linesrespectively (S8 Table).

Web-Based In Silico Platform

Based on the extensive evaluation of cancer neoepitopes, an in silico platform, Cancertope, has

been developed for guiding subunit-based vaccine development, immunotherapies and other

therapeutic interventions. The resource offers potential vaccine candidates and antigenic

regions or epitopes, suitable for designing subunit vaccines against cancer. This web-based

platform has been developed on LAMP system (Linux, Apache, MySQL, and PHP/Perl). The

webserver has integrated following modules in the platform for providing valuable insights

into personalized cancer immunotherapies.

Database of Neoepitopes

The database consists of the analyses carried out on 905 human cancer cell lines, where a large

number of immunogenic (neoepitopes) and non-immunogenic neopeptides is reported. The

mutation and immune epitope information of cancer vaccine targets has been compiled in the

form of ‘Cancer-specific database’ (Fig 3). For governing the effective utilization of the data-

base, a number of standard database tools have been integrated for easy searching, browsing

and retrieval of data.

Partially Personalized Module

This module allows user to identify potential neoepitopes for designing vaccine against a can-

cer cell line and tissue of a sample from their genomic data. The term partially personalized is

used to describe a situation, where the query sequence (from cancer tissue of a sample) is

compared with the human reference proteome in the absence of normal/healthy (from non-

Table 2. (Continued)

Target >= 3 >= 7 >= 9 >= 12

PIK3C2G 901 14 2 0

PIK3CA 901 856 89 0

PRKDC 901 901 815 3

PTEN 901 834 315 0

RB1 901 674 26 0

RECQL4 901 804 39 0

RET 901 52 15 0

SMAD4 901 575 5 0

TNFAIP3 901 596 252 9

TNRC6B 901 803 8 0

TP53 901 597 75 0

TSHR 901 22 3 0

TTBK1 901 0 0 0

VHL 901 499 5 0

For example, HSP90B1 has 282 cell lines having expression greater or equal to 12.

doi:10.1371/journal.pone.0166372.t002
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Table 3. Total number of generated neopeptides (9-mer peptides) in each vaccine candidate and number of neopeptides after applying different
filters.

Vaccine Candidate Total 9-mer Reference Protein Reference Proteome 1000-Genome Proteomes

TP53 2589 2204 2204 2204

MLL3 6570 1671 1671 1670

PDE4DIP 3468 1130 1121 1013

PRKDC 5269 1149 1149 1149

TNRC6B 2730 905 905 886

AKAP9 4873 974 974 938

ATM 4016 968 968 968

GPR112 4061 989 989 989

FMN2 2322 850 805 797

NF1 3650 819 819 810

MYST4 2705 668 668 639

PTEN 1148 753 753 753

CTBP2 1550 573 573 573

ALK 2185 573 573 557

MYLK 2512 615 615 596

ALPK2 2765 603 603 603

AKAP12 2265 491 491 430

MAML2 1536 443 443 440

MAP3K4 2078 482 482 480

PIK3CA 1573 513 513 513

SMAD4 1005 461 461 460

RECQL4 1658 458 458 431

PDGFRA 1563 482 473 461

MSH6 1839 487 487 459

CHD1 2209 507 507 490

PIK3C2G 1881 444 426 418

CDH1 1279 405 405 405

EGFR 1628 426 426 426

FGFR3 1190 390 390 380

MSH3 1489 363 363 334

FBXW7 1111 412 412 409

MET 1813 413 413 401

TNFAIP3 1139 357 357 348

CTNNB1 1122 349 349 349

RB1 1241 321 321 321

RET 1459 353 353 353

NCOA3 1701 305 305 305

KIT 1280 312 312 303

MLH1 1063 315 315 306

MAP3K1 1835 331 330 322

BRAF 1106 348 348 345

FLT3 1290 305 305 295

FGFR2 1102 288 288 288

ABL1 1400 259 259 259

JAK2 1379 255 255 255

MSH2 1198 272 272 254

(Continued )
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cancerous tissue) proteome of that particular individual. This module compares user-specified

cancer proteome with reference proteome and identifies potential neoepitopes (Fig 4). The

module allows the user to submit a single protein sequence, whole proteome or VCF file

from whole genome sequencing. The server will provide output in the form of potential

neoepitopes.

Table 3. (Continued)

Vaccine Candidate Total 9-mer Reference Protein Reference Proteome 1000-Genome Proteomes

CARD10 1264 241 241 232

TSHR 1017 261 261 261

ERBB2 1482 235 235 232

CBL 1123 225 225 223

NRAS 380 199 199 189

MEN1 804 197 197 197

TTBK1 1483 189 189 180

NF2 798 211 211 201

GATA1 569 164 164 164

HSP90B1 980 185 185 185

CREB3L2 670 158 158 158

NR1H2 592 139 139 138

AAK1 1080 132 132 122

VHL 297 92 92 92

The filters remove neoepitopes present in reference protein, human reference proteome and 1000 Genomes-based proteomes.

doi:10.1371/journal.pone.0166372.t003

Fig 3. A general workflow exhibiting the overall concept of database section of Cancertope
workbench.

doi:10.1371/journal.pone.0166372.g003
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Fully Personalized Module

This module is designed for the identification of potential neoepitope-based vaccine candi-

dates from proteomics data of cancerous and healthy tissues of a patient. User needs to provide

protein or proteome of cancerous cells (or tissues) as well as of normal cells (healthy tissue)

from the same individual (Fig 5). It will identify neopeptides and neoepitopes present in

the proteome of cancer tissue but absent in proteome of healthy tissues. Like the partially per-

sonalized module, this module also allows the user to submit a pair of protein sequences, a pair

of whole proteomes or VCF files from whole genome sequencing.

Advanced tools. This module provides two menus: i) Epitope Mapping for mapping

experimentally validated epitopes, and ii) Cross-Reactivity for identification of cancer-specific

Fig 4. The personalizedmodule of Cancertope workbench.

doi:10.1371/journal.pone.0166372.g004
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peptides or neopeptides. ‘Epitope Mapping’ menu of Cancertope allows the user to identify

antigenic regions in their protein sequence. In order to identify antigenic regions, we searched

experimentally validated epitopes (e.g., B-cell, T-cell, HLA binders) present in major immuno-

logical databases like IEDB [28], MHCBN [29], BCIPEP [30]. ‘Cross-Reactivity’ menu is

designed for removing neopeptides that are present specifically in cancer antigen submitted

by the user and not in the human genome, in order to remove cross-reactive peptides. This

‘Cross-Reactivity’ menu expands the utility of the platform by allowing the user to search their

antigen sequence against reference protein, human reference proteome and 1000 Genomes-

based proteome.

Discussion

Although the field of personalized cancer vaccine design using patient’s genomics data is in

very primitive stages, the approach adopted for developing Cancertope suggests clinical as well

as diagnostic potential. Since ages, cancer immunotherapy and vaccine development are being

practiced as effective measures of therapeutic interventions. In 1999, Brossart et al. proved the

potential implication of HLA-A2 restricted peptides in cancer therapies [31]. Although sub-

stantial growth in understanding of cancer induced by viruses such as papilloma virus and

hepatitis B virus is achieved, but till date there is no significant success in the development of

vaccines against these cancers. The difficulty in developing these vaccines is tolerance against

self-antigens, risk of autoimmunity and heterogeneity in genomics of different cancers [32,33].

Cancertope provides well-defined filters that possess great significance in terms of cross reac-

tivity by eliminating epitopes located in reference protein, human reference proteomeand

Fig 5. The fully personalizedmodule of Cancertope workbench.

doi:10.1371/journal.pone.0166372.g005
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1000 Genomes-based proteomes. Thus, the provided filters assist in combating the pertaining

concern of autoimmunity thus specifically activating immune system against cancer.

The use of cancer cell lines for immunological studies may be critical, since in absence of

immunological pressure, the genomic profile of cancer cell lines may be ambiguous. However,

this possibility has been ruled out by the correlation analysis preformed by CCLE study

where the genomic similarities by lineage between CCLE cell lines and primary tumors from

Tumorscape, expO, MILE and COSMIC data sets were inspected. The data from mutation fre-

quencies in 17 lineages of CCLE and COSMIC primary tumor data revealed high correlation

of these mutations with most of the lineages such as breast (r = 0.73), colorectal (r = 0.76),

esophagus (r = 0.95), kidney (r = 0.85), liver (r = 0.64) and pancreas (r = 0.96). Since the muta-

tional profile of cancer cell lines demonstrated significant correlation with patient tumor sam-

ple, therefore this sequence data was selected for the conducted immunological evaluation.

The proposed vaccine candidates from Cancertope were highly expressed in most of the cell

lines, which makes them suitable candidates because over expression is also considered as one

of the prime criterion for developing cancer vaccines [34].

While, the immune epitope prediction tools used in this study were highly cited, published

and accurate but still these prediction algorithms have their own limitations. Thus, the neoepi-

tope/antigens should be experimentally validated before suggesting it for medical purpose.

There are following major parameters which need to be tested to validate a neoepitope: (a)

HLA binding of the peptide, (b) Display of the neoepitope on the tumor surface on MHCmol-

ecule (can be verified either by mass spectrometry or by using a T cell raised against the neoe-

pitope), (c) Expression of the neoantigen in the tumor cells and (d) cross reactivity which

means T cells against the peptide should not recognize the wild-type peptide. After considering

these limitations, the applied strategy in the study will be beneficial for scientific community

and pharmaceutical companies. The cancer genomics in combination with computational pre-

dictions and experimental validations of immune epitopes can be used for designing successful

cancer vaccines for patients. A few commercialized agencies (http://neontherapeutics.com/,

http://www.chordomafoundation.org/, http://www.vaccinogeninc.com/, http://gapvac.eu/ and

http://www.epivax.com/) are already working in this direction.

The Cancertope resource delivers extensive information on cancer specific mutations and

investigates the immunogenic potential of neoepitopes by employing several prediction algo-

rithms. The database section of Cancertope stipulates all the generalized vaccine candidates

that can be validated thus gearing cancer research. Additionally, the module dispensing

insights into personalized vaccines (partially- and fully-personalized) for newly sequenced

genome operates on the genome annotation. The annotation and immune prediction pipeline

further suggests most effective vaccine candidates for the queried sequencing data. The

resource also features additional options for experimental epitope mapping and removal of

cross-reactive candidates valuable for determining suitable vaccine candidates.

Conclusion

In summary, a web-based platform for predicting vaccine candidates effective against cancer is

reported. The platform basically delivers two options to the users, i.e. database-specific and

other being user-interactive prediction server. The database-specific service maintains neoepi-

topes examined in 905 cancer cell lines, which are key components for activating the immune

system against cancer cell lines. Furthermore, the neoepitope-based database facilitates a dem-

onstration for guiding the generation of neoepitopes against a tumor from its whole-genome.

Although, the indicated cancer cell lines are correlated with patient tumor sample in genomic

profiles yet the neoepitopes exemplified in our resource must be authorized experimentally
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before inclining them for clinical applications. For advancing the aim of personalized vaccine

design against a patient or tissue-specific tumor, user-interactive interface has been designed

by incorporating different modules. Under the user-interactive provision, server allows to

identify cancer-specific epitopes against a tumor from its proteome/protein. In case, where

user provides both healthy as well as tumor samples from the same patient, then the server’s

personalized module identifies patient-specific potential neoepitopes. Further, these putative

neoepitopes can then be targeted for designing vaccines and immunotherapies against cancer

thus enabling personalized therapy in real life scenario. Although the prediction methods

implemented in the Cancertope pipeline are highly accurate and cited by scientific commu-

nity, the experimental validation and testing of parameters like HLA binding/expression of

neoepitope, cross reactivity and T cell activation, is very important before going to clinical

setup. However, the predicted vaccine candidates from Cancertope have higher potential to be

experimentally authenticated because of their higher reported efficacies; consequently offering

cost-effective, economical, timesaving and streamlined pipeline for acclaiming personalized

cancer vaccines.

Methods

Source Data

The mutation profile of cancer cell lines was retrieved from Cancer Cell Line Encyclopedia

(CCLE) [16] where MAF file was downloaded from data portal (http://www.broadinstitute.

org/ccle/data/browseData). The selected dataset comprised the mutational profile of 1651

genes in 905 cell lines, where the variant filtration was done by exclusion of variants with low

allelic fraction, common polymorphisms and putative neutral variants. Since the mutated pro-

tein sequences were not provided in CCLE database, the mutation profiles were mapped on to

the reference cDNA sequences of each gene obtained from NCBI. Thereafter, the mutated

cDNA of each gene was translated into mutant protein sequences. All the four types of muta-

tions namely missense, frame shift, in-frame insertion and in-frame deletions were included in

mutation profile.

Selection of Cancer Vaccine Antigens

This section specifies the application of CanProVar (Cancer Proteome Variation) [17] data-

base for selecting cancer vaccine candidates based on their cancer sensitivity. The database

consists of single amino acid alterations in the human proteome and contains cancer-specific

variations (cancer-sensitive mutations) and non-cancer specific variations in different pro-

teins. First, the frequency of cancer-associated mutations (fD) and frequency of non-cancer

specific variations (fP) for each protein, was computed. With a criteria of fD/fP> = 2 and fD> =

20, a total of 52 proteins were selected. These criteria were applied to select highly cancer sensi-

tive proteins. Out of 52 proteins, only 34 proteins were found concurrent to CCLE study.

These 34 proteins were then used as potential vaccine antigens or candidates and subsequently

subjected to analyses via PANTHER classification system [35] (http://www.pantherdb.org/) to

understand the properties of these antigens.

In addition, potential vaccine candidates were also identified from CCLE database based on

their frequency of mutation. The mutational analysis revealed 26 proteins that were mutated

in at least 10% (90 cell lines) of the cell lines. Finally, a total of 60 potential cancer vaccine can-

didates were obtained (34 cancer-associated antigens from CanProVar and 26 frequently

mutated antigens from CCLE).
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Generation of Neopeptides

The term neopeptide in this study is being referred to the 9-mer sequences (9 residues contin-

uous stretch of peptide) that contain at least one cancer-associated mutation. The length of

neopeptide (epitope) was fixed to nine residues as both HLA class I and class II binders have a

binding core of nine residues [36,37]. In order to identify neopeptides in a vaccine antigen, fol-

lowing steps were practiced: i) generated all possible overlapping peptides in an antigen, ii)

removed redundant peptides and iii) removed all those peptides mapping to human reference

proteome. This strategy expedited the detection of peptides exclusively present in the prote-

ome of cancer cell lines but absent in proteome of a healthy individual.

Pipeline for Predicting Immunogenicity

In order to estimate the immunogenicity of these neopeptides, a pipeline was established for

prediction of different types of epitopes/binders. The pipeline integrated a number of algo-

rithms for predicting diverse immune epitopes required for activating different arms of the

immune system (CD4+ T cells, CD8+ T cells, B cells). The algorithms employed in the immune

epitope prediction pipeline were preferred over other prevailing algorithms on the basis of

availability in the standalone state. Moreover, the predictions from these algorithms have

already been verified in a few experimental as well as in silico studies approving high accuracy

and reliability of the softwares [38,39,40,41]. The immune epitope prediction can broadly be

categorized into three categories.

CD8+ T Cell Epitopes

In past, a number of methods have been reported for predicting HLA class I binders including

SYFPEITHI [42], NetMHC [43], ProPred1 [24], and nHLAPred [25]. In the present study, we

used standalone version of ProPred1 and nHLAPred for predicting HLA class I binders; both

the algorithms predict promiscuous HLA class I binders. While, ProPred1 is a matrix-based

method that predicts HLA binding sites in an antigenic sequence for 47 HLA class I alleles and

nHLAPred was developed for envisaging 67 HLA class I binders using machine learning tech-

niques. In addition to HLA class I binders as potential CTL epitopes, we also used a direct

method, CTLPred, for predicting CTL epitopes. The prediction via direct method is critical as

it discriminates between T cell epitopes and non-epitope MHC binders whereas HLA binding

prediction only predicts the MHC binders from antigenic sequences.

CD4+ T Cell Epitopes

Previously, a number of algorithms have been developed for predicting HLA class II binders

such as ProPred [26], TEPITOPE [44] and NetMHCIIpan [45]. In this study, ProPred software

has been used for predicting HLA class II binders. This software allows prediction of promis-

cuous HLA class II binders that can bind to a large number of alleles.

B Cell Epitopes

There are numerous methods such as BCEPred [46], CBtope [47], LBtope [27], Discotope

[48], COBEpro [49] available for predicting B-cell epitopes. We employed a standalone version

of LBtope software for the prediction of linear B-cell epitopes. In order to predict immune epi-

topes in the query submitted by user at run time, all the prediction tools were required in

standalone form. All the standalone prediction tools chosen for the study were heavily cited

and were published in journals of high repute. The prediction standalones were used at default

thresholds and parameters as optimized by the original authors.
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Proteome data. In this study, the reference proteome and reference gene sequences were

obtained from FTP portal of NCBI (http://ftp.ncbi.nlm.nih.gov/refseq/). In addition, the 1000

Genomes-based proteomes were generated by annotation of 1000 Genomes’ VCF files (http://

ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/) through ANNOVAR package [50].

The mutated sequence generation was done as mentioned in the ‘Source data’ section above.

Expression data. The expression profile of 905 cancer cell lines was obtained from CCLE

database (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-36139/). In order to pro-

vide inclusive expression status of vaccine candidates, the number of cell lines with varying

range of expressions were calculated; for instance> = 3 (GT3),> = 7 (GT7),> = 9 (GT9) and

> = 12 (GT12); expression values ranging from 2–15.

Supporting Information
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CTL epitope, MHC binders, number of alleles, and B cell epitope.
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example PRKDC has 836 unique cell lines having total 5 or more unique CTL epitopes.
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I binders. The yellow cells present the number of neo-epitopes (HLA I).

(XLSX)

S6 Table. The number of cell lines having positive HLA I binders (nHLAPred) in different

range for example PDE4DIP has 342 unique cell lines having total 7 or more unique HLA I
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(XLSX)

S7 Table. The number of cell lines having positive HLA II binders in different range for

example PRKDC has 37 unique cell lines having total 5 or more unique HLA II binders.

The yellow cells present the number of neo-epitopes (HLA II).

(XLSX)

S8 Table. The number of cell lines having positive B cell epitopes in different range for

example NR1H2 has 868 unique cell lines having total 5 or more unique B cell epitopes.

The yellow cells present the number of neo-epitopes (BCE).

(XLSX)
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