
24th International Conference on Business Information Systems (BIS 2021)

Applications

https://doi.org/10.52825/bis.v1i.61

© Authors. This work is licensed under a Creative Commons Attribution 4.0 International License

Published: 23 June 2021

A Novel Example-Dependent Cost-Sensitive Stacking

Classifier to Identify Tax Return Defaulters

Sanat Bhargava1, M. Ravi Kumar2, Priya Mehta2, Jithin Mathews2, Sandeep Kumar2, and Ch.

Sobhan Babu2

1Indian Institute of Technology Roorkee, Roorkee, India

2Indian Institute of Technology Hyderabad, Hyderabad, India

Abstract. Tax evasion refers to an entity indulging in illegal activities to avoid paying their actual

tax liability. A tax return statement is a periodic report comprising information about income,

expenditure, etc. One of the most basic tax evasion methods is failing to file tax returns or

delay filing tax return statements. The taxpayers who do not file their returns, or fail to do

so within the stipulated period are called tax return defaulters. As a result, the Government

has to bear the financial losses due to a taxpayer defaulting, which varies for each taxpayer.

Therefore, while designing any statistical model to predict potential return defaulters, we have

to consider the real financial loss associated with the misclassification of each individual. This

paper proposes a framework for an example-dependent cost-sensitive stacking classifier that

uses cost-insensitive classifiers as base generalizers to make predictions on the input space.

These predictions are used to train an example-dependent cost-sensitive meta generalizer.

Based on the meta-generalizer choice, we propose four variant models used to predict poten-

tial return defaulters for the upcoming tax-filing period. These models have been developed for

the Commercial Taxes Department, Government of Telangana, India. Applying our proposed

variant models to GST data, we observe a significant increase in savings compared to con-

ventional classifiers. Additionally, we develop an empirical study showing that our approach

is more adept at identifying potential tax return defaulters than existing example-dependent

cost-sensitive classification algorithms.

Keywords: goods and services tax, tax evasion, example-dependent cost-sensitive stacking

classifier, example-dependent cost-sensitive ANNs,Benford’s analysis, social network analysis,

cosine similarity.

1 Introduction

Taxes can be classified into direct taxes, which are payable directly to the government (Eg.

Income tax). These taxes cannot be transferred to any other third party, and indirect taxes,

which can be shifted to a third party by the entity that is levied the tax (Eg. VAT, excise duty).

The Goods and Services Tax (GST) system is an indirect taxation system introduced in India in

July 2017. This paper proposes a methodology to predict potential tax return defaulters for the

GST system [1].

1.1 Working of the GST system

For demonstration purposes, we take a fictitious ornament manufacturer as an example, and

10% as the GST rate levied at every step (See Figure 1). Note that throughout the paper, we

343

Bhargava et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

Figure 1. Flow of Tax in GST.

represent currencies in “Indian National Rupees (INR),” denoted henceforth as “Rs.”. Assume

the manufacturer purchases raw material worth Rs. 2000 and is hence levied a GST of Rs. 200

(10% of 2000). Suppose, the manufacturing process adds a value of Rs. 500 to the ornament.

Hence, the value of the ornament is now Rs. 2500. Now, the total tax levied on the sales of

this ornament to the retailer is Rs. 250 (10% of 2500). By setting off the tax he had already

paid at the time of purchasing the raw material, the GST payable to the manufacturer is Rs.

50 (tax collected-tax already paid), i.e., Rs. 50 (250-200). The retailer adds his margin of Rs.

500 increasing the total value to Rs. 3000 and sells it to the consumer for Rs. 3000, and the

consumer is levied Rs. 300 as tax for the purchase. Similarly, the retailer is liable to pay a GST

of Rs. 50 (tax collected - tax already paid), i.e., Rs. 50 (300-250) at the time of purchasing

the ornament from the manufacturer. Finally, the GST received by the Government is Rs. 300,

which is completely borne by the end consumer.

1.2 Motivation for this work

In the GST system, taxpayers are required to file their tax returns once a month. Defaulting

on filing tax returns has the following consequences: First, defaulters have enough time at

their disposal to manipulate their records; second, the penalty imposed by the Government

is negligible compared to the going interest rates of the market, and therefore not an effec-

tive deterrent. Lastly, having movable assets is always beneficial to businesses involving large

monetary transactions. This work’s motivation is to construct a classification model to identify

potential return defaulters and implement preventive measures such as sending emails, SMS,

or physically visiting their business premises. We are working with the Government of Telan-

gana, India, and are using their data for analysis and building models to increase tax returns

compliance.

To attack a classification problem such as the one presented here, one would be inclined

to use conventional cost-insensitive classification algorithms such as Logistic Regression, K-

Nearest Neighbors, etc., to design the classifier. However, this presents us with a significant

problem. A conventional classifier assigns equal misclassification costs for every example.

In practice, however, the misclassification cost associated with classifying a genuine taxpayer

as a return defaulter might vary significantly from classifying a return defaulter as an honest

taxpayer. Similarly, the misclassification cost associated with misclassifying a return defaulter

as a genuine taxpayer would vary for individual taxpayers based on their respective turnovers.

Hence, there is a trade-off between choosing a model with better cost savings and choosing a

model with better performance. To deal with this trade-off better, we propose four variants of

an example dependent cost-sensitive stacking classifier. In a later section, we show that our

Proposed Approach (PA) is adept at identifying potential tax return defaulters for the upcoming

month with high accuracy. The approach that we have adopted in this paper can be generalized

344

Bhargava et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

to any indirect taxation system used globally.

Our paper is structured as follows. In Section 2, we brief on existing works that are related to

ours. Section 3 describes the data set and the feature extraction techniques used for designing

the model. In Section 4, we describe the framework for the proposed variants of the example-

dependent cost-sensitive stacking classifier. Section 5 discusses the performance of the PA

on the data set and compares it with some example-dependent cost-sensitive and conven-

tional cost-insensitive classifiers commonly in use. Finally, in Section 6, we provide concluding

remarks for our work.

2 Related Work

In [2], Jasmien Lismont et al. used social network analysis concepts to develop a model to

predict tax avoidance by including a wider variety of network features. In [3], Bianchi et al.

use network measures of centrality to show that the taxpayers who collaborate with better-

connected auditors are likely to have lower effective tax rates. In [4], Veronique Van Vlasselaer

et al. worked on identifying entities that indulge in social security fraud by assigning a time-

dependent exposure score to each business entity based on its involvement with known fraud

business entities in the social network. In [5], Yusuf Sahin and Ekrem Duman have built clas-

sification models for detecting credit card fraud using Logistic Regression and Artificial Neural

Networks, one of the first studies to compare the performance of Logistic Regression and ANNs

for this use case. In [6], Charles X. Ling and Victor S. Sheng showed that cost-sensitive learn-

ing is a common approach to solve data imbalance problems. In [7], A. C. Bahnsen et al.

proposed an example dependent cost matrix for credit scoring. They proposed a cost function

that introduces the example dependent costs into logistic regression. In [8], A.C Bahnsen et

al. propose a framework for cost-sensitive classifiers, including Cost-Sensitive Decision Trees,

Cost-Sensitive Random Forests, and ensembles of cost-sensitive models based on techniques

such as majority voting and stacking Cost-Sensitive Logistic Regression generalizers. In [9],

David H. Wolpert introduces Stacking or Stacked Generalization, an ensemble learning tech-

nique that aims to deduce generalizers’ biases for the training set provided. In [10], Matjaz

Kukar and Igor Kononenko designed a cost-sensitive analog for ANNs, with their study being

the first to do so.

3 Data Description and Feature Extraction

3.1 Benford’s law

Benford’s law is a mathematical method for identifying fraud [11], [12],[13] in naturally-occurring

numbers, considering that these numbers are neither highly constrained nor purely random.

This law posits that the percentage of numbers with the first digit as k ∈ {1, 2, ..., 9} follows the

formula log10(1 + 1/k).

3.2 Description of the data set

We now proceed to briefly describe the data used to design our models. We were provided two

types of data sets to prepare our models, namely: GSTR-1 data and month-wise GST returns

data.

3.2.1 GSTR-1 Data

GSTR-1 is a financial statement that every taxpayer is required to submit monthly. This state-

ment consists of details of all outward supplies, i.e., all sales done during the month corre-

sponding to this statement. A fictitious sample of this statement is given in Table 1. Every row

in Table 1 corresponds to one transaction. The data set contains several millions of such rows.

The actual statement contains more information, such as the tax rate, the number of goods sold

345

Bhargava et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

etc.

S.No. Month Seller Buyer Invoice Number Amount (Rs)

1 Jul 2017 A D AB323 13000

2 Aug 2017 B C ZX362 16000

3 Sep 2017 B A BC9414 14490

Table 1. GSTR-1 Data

3.2.2 Monthly GST Returns Data

Table 2 contains a few select fields of GST returns data. Each row in this table corresponds

to the monthly returns filed by a taxpayer. ITC (Input tax credit) is the amount of tax paid by

the taxpayer during purchases of services and goods. The output tax is the amount of tax

collected by the taxpayer during the sales of services and products. The taxpayer has to pay

the Government the difference between the output tax and ITC, i.e. (output tax – ITC). The

actual dataset consists of much more information like tax payment method, return filing data,

international exports, exempted sales, and sales on RCM (Reverse Charge Mechanism).

S.No. Firm Month Purchases Sales ITC Output Tax

1 D Jul 2017 170000 250000 17000 25000

2 C Oct 2017 230000 300000 11500 30000

3 F Dec 2017 350000 450000 17500 45000

Table 2. Monthly GST Returns Data

3.3 Creation of Network of taxpayers

In this model, we have attempted to quantify the amount of interaction between taxpayers. To

compute this independent variable, we created a weighted, directed graph (social network) in

which each vertex (node) corresponds to a taxpayer. The weight assigned to the vertices is

the average tax paid per month [ATPM] associated with the corresponding taxpayer from July

2017 to November 2019. Vertex weights have been normalized using min-max normalization.

We have utilized the month-wise GST Returns Data explained in Table 2 to compute each tax-

payer’s vertex weights. We have placed a weighted, directed edge from taxpayer a to taxpayer

b, where the weight of the edge is the amount of sales done by taxpayer a to taxpayer b during

the period July 2017 to November 2019. Similar to the vertex weights, the edge weights have

been normalized using min-max normalization. For the same, we have used the GSTR-1 data

explained in Table 1. This graph captures the scale of interaction between taxpayers.

3.4 Feature Extraction

3.4.1 Ratio

This is the variable extracted from the weighted, directed graph defined in subsection 3.3. This

graph captures the degree of interaction and the monetary transactions between taxpayer b and

other taxpayers. This variable captures the influence of other taxpayers on b. If b has close ties

with taxpayers who are known tax return defaulters, they will influence b not to file GST returns

and vice-versa [2]. Let B be the set of all vertices corresponding to defaulters (who have filed

at most 1/4th of their returns) and Y be the set of all vertices corresponding to taxpayers who

have filed their returns in time (who have filed more than 3/4th of their returns in time).

• b11 =
∑

υ∈B
ω(υ)∗ω(υb)
ω(υ)+ω(υb) , where ω(υ) is the weight of vertex υ and ω(υb) is the weight of

directed edge υb

• b12 =
∑

υ∈B
ω(υ)∗ω(bυ)
ω(υ)+ω(bυ) .

• b21 =
∑

υ∈Y
ω(υ)∗ω(υb)
ω(υ)+ω(υb) , where ω(υ) is the weight of vertex υ and ω(υb) is the weight of

346

Bhargava et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

directed edge υb

• b22 =
∑

υ∈Y
ω(υ)∗ω(bυ)
ω(υ)+ω(bυ) .

• Ratio = b11+b12
b21+b22 .

3.4.2 Filed

This is the dependent variable in the model with a binary outcome. This variable gives the GST

return filing status (whether the taxpayer has filed returns in-time or not) of the taxpayer b for

December 2019. Zero denotes returns were filed in-time (negative class) and, one denotes

returns were not filed in-time (positive class).

3.4.3 Not Filed Count

This is the number of GST returns not filed in-time before the due date of the corresponding

month by b from July 2017 to November 2019.

3.4.4 Division-Name

The state of Telangana is divided into 12 geographic divisions for simplification of administration

works. This independent variable gives the geographic location in which b is located.

3.4.5 ATPM

This is the average tax per month paid by b. We included square, cube, log and the square root

terms of the ATPM in the model as the relation between ATPM and Log of Odds of the Filed

variable is a polynomial.

3.4.6 MAD Value

It is the Mean absolute deviation value of the first digit Benford’s Law (Section 3.1) on sales

transactions of b.

3.4.7 Seasonality

Case A: Retailers selling a single commodity:

In an actual market, the annual revenue of some businesses may show a seasonal trend. For

example, for a taxpayer involved in the yogurt business, one might observe higher revenues in

the peak summer (May-June in India) and lower revenues in the winter (November-February in

India). To quantify this seasonality, we have calculated the cosine similarity between the output

tax of each taxpayer selling a particular type of commodity and the mean of the output tax of

all taxpayers selling that commodity.

similarity(A,B) =
A ·B

‖A‖ × ‖B‖

Here A denotes a vector of the output tax for every month for each taxpayer selling a particular

type of commodity, and B denotes the vector of the mean of the output tax of all taxpayers

selling that commodity for every month.

Case B: Retailers selling multiple commodities:

In a more general case, a retailer might generate revenue by selling multiple commodities, and

each commodity might have its own seasonal trend. Consider a retailer sells commodities from

a set I = A,B,C,D. For this retailer, we calculate the seasonality parameter as follows

Seasonality =
∑

ωisi, ∀i ∈ I

Here , ωi weight associated with each commodity i, defined as

ωi =
Total revenue generated by sales of commodity i (for that retailer)

Total revenue generated by that retailer ,

si = Similarity of commodity i for that retailer. Here, similarity is calculated as in case A.

347

Bhargava et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

3.5 Class Imbalance

The ratio of genuine taxpayers to defaulters was noted to be 0.22, hence, the use of sampling

techniques was not deemed necessary.

4 Framework for Example Dependent Stacking Classifier

In problems such as the identification of tax return defaulters, it is of paramount importance

to minimize the government’s losses on account of the defaulters. For this task, an example-

dependent cost-sensitive classifier would be the most prudent choice, as opposed to cost-

insensitive classifiers [7]. Intuitively, one can deduce that a cost-sensitive classifier would mini-

mize the total cost (or increase the total savings), compromising overall model performance. On

the other hand, a cost-insensitive classifier would aim for optimal model performance while lead-

ing to higher losses to the government. It follows that there is a trade-off between higher cost

savings and better model performance. To alleviate this problem, we propose a novel frame-

work for example-dependent cost-sensitive stacked classifiers that give a competitive model

performance and increased savings compared to cost-insensitive classifiers.

4.1 Stacked Generalizers and General Framework

Stacked Generalization or stacking is an ensemble learning technique that aims to improve

upon the performance of its constituent generalizers by deducing the biases of each of the indi-

vidual generalizers. However, stacked generalizers do not always perform better than individual

generalizers, and their efficacy depends on the choice of generalizers. While there is no de-

fined architecture for a stacked generalizer, it is observed that stacking is most effective when

the choice of individual generalizers is as diverse as possible.

We propose a framework for a two-level stacked generalizer constructed as follows: The first

level G1 consists of conventional cost-insensitive classifiers to deduce the biases of classifiers

on the input space, such that,

G1 = {K-Nearest Neighbors Classifier, XGBoost Classifier, Random Forest Classifier, Lo-

gistic Regression, Artificial Neural Network, AdaBoostClassifier}.

The second level G2, consists of the meta-generalizer, which generalizes on the second

space, consisting of the predictions of G1. We consider four choices of generalizers for G2,

which gives rise to the following four variants:

• Variant A (G2=Cost Sensitive Decision Tree Classifier[8]),
• Variant B (G2=Cost-Sensitive Bagging Classifier[8]),
• Variant C (G2=Cost-Sensitive Random Forest Classifier[8]),
• Variant D (G2=Cost-Sensitive ANN [10]).

The choice of the meta-generalizers was dictated by the savings score and the AUC-ROC

score (Section 5.3.1). The models with the highest savings score and highest AUC-ROC score

were chosen as meta-generalizers.

4.2 Meta Learners

4.2.1 Cost function

Let S be a set of N examples xi, where each example is represented by the augmented feature

vector with associated costs x
∗

i = [xi, CTPi
, CFPi

, CFNi
,CTNi

] and labelled using the class label

yi. A classifier f , which generates the predicted label ci for each example i is trained using the

set S. Then the cost of using f on x
∗

i is calculated by

Cost(f(x∗

i)) =yi(ciCTPi
+ (1− ci)CFNi

)

+ (1− yi)(ciCFPi
+ (1− ci)CTNi

),
(1)

348

Bhargava et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

and the total cost defined as

Cost(f(S)) =
N
∑

i=1

Cost(f(x∗

i)). (2)

CTPi
, CFNi

, CFPi
, CTNi

are defined in Table 3.

Actual Positive

yi = 1
Actual Nega-

tive yi = 0

Predicted Positive

ci = 1
CTPi

CFPi

Predicted Nega-

tive ci = 0
CFNi

CTNi

Table 3. Cost Matrix

4.2.2 Variant A

For variant A, we have G1 as defined above, and we use G2= Cost-Sensitive Decision Tree

Classifier (CSDT) [8]. In CSDTs, instead of using traditional splitting criteria such as Gini,

entropy, or misclassification, the cost as defined in (1) is calculated for each node, and the gain

of using each split is evaluated as the decrease in the total cost of the algorithm. The cost-

based impurity measure is defined by comparing the costs when all the examples in a leaf are

classified as negative and as positive,

Ic (S) = min

{

Cost (f0 (S)) , Cost (f1 (S))

}

.

Then, using the cost-based impurity, the gain of using the splitting rule (xj , lj), that is the rule

defined as splitting the set S on feature xj on value lj , is calculated as

Gain(xj , lj) = Ic(S)−
|Sl|

|S|
Ic(S

l)−
|Sr|

|S|
Ic(S

r),

where Sl = {x∗

i |x
∗

i ∈ S ∧ xji ≤ lj},Sr = {x∗

i |x
∗

i ∈ S ∧ xji > lj}, and | · | denotes the cardinality.

Afterward, a decision tree is grown using the cost-based gain measure until no further splits

can be made. After the tree is constructed, it is pruned by using a cost-based pruning criteria

PCc = Cost(f(S))− Cost(f∗(S)),

where f∗ is the classifier of the tree without the pruned node.

4.2.3 Variant B

For variant B, we have G1 as defined above, and we use G2= Cost-Sensitive Bagging Classifier

(CSB). Bagging or Bootstrap Aggregating is an ensemble technique that involves fitting base

estimator(s) to random samples of the data set. The individual predictions are then aggregated

using majority voting or weighted average to form a final prediction. To build our CSB, we have

used the CSDTs mentioned above as base estimators and aggregated the individual predictions

using majority voting [8].

4.2.4 Variant C

For variant C, we have G1 as defined above, and we use G2= Cost-Sensitive Random Forest

Classifier (CSRF). Cost-Sensitive Random Forest Classifiers are ensemble classifiers that work

by creating multiple CSDTs and outputting the mode of the predictions made by the CSDTs as

the final prediction of the ensemble classifier [8].

349

Bhargava et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

4.2.5 Variant D

Finally, we have implemented a Cost-Sensitive analog for an Artificial Neural Network [10].

To design our Cost-Sensitive ANN Classifier (CSANN), we have used the ReLU function as

the activation function for the hidden layers and the logistic (sigmoid) function for the output

layer. We have used equation (1) as the loss function for the neural network to incorporate the

example-dependent cost-sensitive losses.

5 Experimental Results

5.1 Software Used

All the models in this work have been designed using Python as it is a high-level, open-source

language with an extensive library ecosystem. Python can also handle large amounts of data

very well.

5.2 Cost Matrix

Table 3 gives different miss-classification costs of a given taxpayer.

• True-negative cost (CTN) is zero. We would not incur any cost for classifying an in-time

return filer (actual class zero) as an in-time return filer (predicted class zero).
• True-positive cost (CTP) is the expenditure towards sending SMS, calling the taxpayer

and other preventive measures and the cost of associated manpower. This cost is the

same for all taxpayers whose actual class is one and predicted class is one. This cost is

Rs. 150.
• False-positive cost (CFP) is the expenditure towards sending SMS, calling the taxpayer

and other preventive measures and the cost of associated manpower. This cost is the

same for all taxpayers whose actual class is zero and predicted class is one. This cost is

also Rs. 150.
• False-negative cost (CFN) depends on the ATPM of each taxpayer and the expected

number of days of delay in filing return by a taxpayer. This is given by
ATPM∗expected number of days of delay∗18

36500 ∗ 3 + 100.

Here ATPM∗expected number of days of delay∗18
36500 is the loss incurred due to late filing of return, where

interest rate is 18%. This cost is different for every taxpayer as the ATPM and expected

number of days of delay in filing return may vary for each individual taxpayer. We have multiplied

this loss by three times and added 100 to it, in order to deter a defaulter from becoming a chronic

defaulter.

5.3 Performance of Proposed Variants

In this section, we have compared the four proposed variants (variants A, B, C, and D) on tax

return data vis-à-vis each other. The models have been compared on the following metrics:

5.3.1 Savings score

The savings score is defined as the relative improvement in cost using a classifier f(S), com-

pared to the cost of classifying all entries as class one or class zero, whichever is lesser [7].

Savings(f(S)) =
Cost(f(S))− Costl(S)

Costl(S)
.

5.3.2 Balanced Accuracy Score

The balanced accuracy score is a metric for models trained on imbalanced data sets, which

avoids inflated performance metrics due to the abundance of one class (in a binary classification

350

Bhargava et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

problem). It is defined as follows:

Balanced accuracy =
1

2

(

TP

TP + FN
+

TN

TN + FP

)

.

5.3.3 Recall

Recall or Recall score refers to the fraction of relevant records correctly classified by the models.

It is defined as follows:

Recall =
TP

TP + FN
.

In the context of this paper, the recall score is the fraction of tax return defaulters correctly

identified by the model.

5.3.4 F1-Score

The F1-Score is defined as the harmonic mean of the precision and recall of a model. Thus,

F1-Score = 2 ∗

(

precision ∗ recall

precision+ recall

)

.

The comparative performance of the four variants is summarized in the Table 4. From the

four variants, we propose Variant D (G2=Cost-sensitive ANN) to be our proposed approach

(PA) for this data set as it is the most adept at correctly predicting tax return defaulters, with

the highest savings score and the highest AUC-ROC predicted on the train and test data set

among the four variants.

Proposed

Models
Savings Score Balanced Accuracy F1-Score Recall AUC-ROC

Train Test Train Test Train Test Train Test Train Test

Variant A 0.536 0.174 83.36% 82.23% 0.76 0.75 0.95 0.94 0.92 0.92

Variant B 0.535 0.530 83.90% 83.82% 0.77 0.77 0.91 0.90 0.93 0.94

Variant C 0.583 0.572 85.58% 85.94% 0.83 0.83 0.90 0.91 0.94 0.94

Variant D 0.520 0.582 85.14% 85.21% 0.79 0.79 0.94 0.95 0.94 0.93

Table 4. Performance of variants

Proposed

Models
Savings Score Balanced Accuracy F1-Score Recall AUC-ROC

Train Test Train Test Train Test Train Test Train Test

ANN 0.272 0.242 84.11% 83.40% 0.69 0.66 0.76 0.74 0.93 0.93

CSANN 0.393 0.440 84.31% 84.29% 0.84 0.84 0.84 0.84 0.93 0.93

CSDT 0.610 0.600 81.52% 79.00% 0.84 0.84 0.78 0.71 0.93 0.94

CSB 0.557 0.633 82.00% 78.50% 0.83 0.83 0.83 0.83 0.94 0.94

CSRF 0.495 0.517 79.15% 83.34% 0.52 0.62 0.93 0.91 0.91 0.92

Proposed

Approach
0.520 0.582 85.14% 85.21% 0.79 0.79 0.94 0.95 0.94 0.93

Table 5. Performance of PA compared to existing algorithms

5.4 Performance of Proposed Approach (PA) with existing algorithms

In this section, we have compared our proposed approach’s performance with some cost-

sensitive algorithms mentioned in [8]. Additionally, we compare the performance of the PA

with a cost-sensitive ANN [10]. We have also compared the performance of our PA with a cost-

insensitive ANN. We have chosen a cost-insensitive ANN as it gave the most promising results

351

Bhargava et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

among various cost-insensitive algorithms we experimented with, including, KNNs, Random

Forests, XGBoost Classifier, AdaBoostClassifier, and Logistic Regression. The performance

has been compared using the same metrics described in section 5.3. The results have been

summarized in Table 5.

5.5 Model Validation for PA

5.5.1 Confusion and Cost Matrices

Tables 6 and 7 are the training and the testing confusion matrices for the PA. Tables 8 and 9

are the training matrix and the testing cost matrix for the PA. These give the true-positive cost,

false-negative cost, true- negative cost, and false-positive cost of both the training and testing

data sets.

Predicted 0 Predicted 1

Actual 0 9842 2946

Actual 1 196 2742

Table 6. PA Train Confusion Matrix

Predicted 0 Predicted 1

Actual 0 3320 1006

Actual 1 48 930

Table 7. PA Test Confusion Matrix

Predicted 0 Predicted 1

Actual 0 0 441900

Actual 1 276796 411300

Table 8. PA Train Cost Matrix

Predicted 0 Predicted 1

Actual 0 0 150900

Actual 1 68217 130200

Table 9. PA Test Cost Matrix

5.5.2 Training and Testing ROC Curves

Training and testing ROC curves for the PA are given in Figure 2 and 3. The AUC value of

training ROC curve is 0.94 and AUC value of testing ROC curves is also 0.93. From these

values, one can conclude that the model is neither under-fitting nor over-fitting.

Figure 2. PA ROC on Train. Figure 3. PA ROC on Test.

5.5.3 Savings score

To measure an example-dependent cost-sensitive algorithm’s performance, we use the savings

score (Section 4.3). As observed in Table 5, the savings score for the PA is 0.520 and 0.582 for

the training and test sets, respectively. Since the values of the savings score for the training and

testing set are reasonably high and almost similar, we can conclude that our PA is performing

well.

352

Bhargava et al. | Bus. Inf. Sys. 1 (2021) "BIS 2021"

6 Conclusion

In this paper, We propose a framework for example-dependent cost-sensitive stacked gener-

alization comprising four variant models. We show that our Proposed Approach (PA) outper-

forms commonly used example-dependent cost-sensitive classifiers. We use our PA to predict

whether a given taxpayer is a potential tax return defaulter or not for the upcoming month. While

this framework was designed on the GST returns data for Telangana, it can be generalized to

predict potential tax return defaulters using any of the four proposed variants depending on their

performance, for any indirect taxation system around the world.

References

[1] S. Dani, “A research paper on an impact of goods and service tax (gst) on indian econ-

omy,” Business and Economics Journal, vol. 07, Jan. 2016. DOI: 10.4172/2151-6219.

1000264.

[2] J. Lismont, E. Cardinaels, L. Bruynseels, S. D. Groote, W. Lemahieu, and J. Vanthienen,

“Predicting tax avoidance by means of social network analytics,” Decision Support Sys-

tems, vol. 108, pp. 13–24, 2018.

[3] P. A. Bianchi and M. Minutti-Meza, “Professional networks and client tax avoidance: Evi-

dence from the italian statutory audit regime,” SSRN Electronic Journal, Jan. 2016. DOI:

10.2139/ssrn.2601570.

[4] V. V. Vlasselaer, L. Akoglu, T. Eliassi-Rad, M. Snoeck, and B. Baesens, “Guilt-by-constellation:

Fraud detection by suspicious clique memberships,” in 2015 48th Hawaii International

Conference on System Sciences, 2015, pp. 918–927.

[5] Y. Sahin and E. Duman, “Detecting credit card fraud by ann and logistic regression,” in

2011 International Symposium on Innovations in Intelligent Systems and Applications,

2011, pp. 315–319.

[6] C. Ling and V. Sheng, “Cost-sensitive learning and the class imbalance problem,” Ency-

clopedia of Machine Learning, Jan. 2010.

[7] A. C. Bahnsen, D. Aouada, and B. Ottersten, “Example-dependent cost-sensitive logistic

regression for credit scoring,” in 2014 13th International Conference on Machine Learning

and Applications, 2014, pp. 263–269.

[8] A. C. Bahnsen, D. Aouada, and B. Ottersten, Ensemble of example-dependent cost-

sensitive decision trees, 2015. arXiv: 1505.04637 [cs.LG].

[9] D. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, pp. 241–259, Dec. 1992.

DOI: 10.1016/S0893-6080(05)80023-1.

[10] M. Kukar and I. Kononenko, “Cost-sensitive learning with neural networks,” in Proceed-

ings of the 13th European Conference on Artificial Intelligence (ECAI-98, John Wiley &

Sons, 1998, pp. 445–449.

[11] M. L. J. Nigrini Mark J., “The Use of Benford’s Law as an Aid in Analytical Procedures,”

Auditing: A journal of practice & theory, vol. 41, p. 52, 1997.

[12] A. Asllani and M. Naco, “Using Benford¡¯s Law for Fraud Detection in Accounting Prac-

tices,” Journal of Social Science Studies, vol. 2, no. 1, pp. 129–143, Jan. 2015. [Online].

Available: https://ideas.repec.org/a/mth/jsss88/v2y2015i1p129-143.html.

[13] C. Durtschi, W. Hillison, and C. Pacini, “The effective use of benford’s law to assist in

detecting fraud in accounting data,” J. Forensic Account, vol. 5, Jan. 2004.

353

