
A multimodel ensemble forecast framework:

Application to spring seasonal flows in the Gunnison River Basin

Satish Kumar Regonda,1,2 Balaji Rajagopalan,1,2 Martyn Clark,3 and Edith Zagona4

Received 10 October 2005; revised 5 April 2006; accepted 29 May 2006; published 12 September 2006.

[1] We propose a multimodel ensemble forecast framework for streamflow forecasts at
multiple locations that incorporates large-scale climate information. It has four broad
steps: (1) Principal component analysis is performed on the spatial streamflows to identify
the dominant modes of variability. (2) Potential predictors of the dominant streamflow
modes are identified from several large-scale climate features and snow water equivalent
information. (3) Objective criterion is used to select a suite of candidate nonlinear
regression models each with different predictors. (4) Ensemble forecasts of the dominant
streamflow modes are generated from the candidate models and are combined objectively
to produce a multimodel ensemble, which are then back transformed to produce spatially
coherent streamflow forecasts at all the locations. The utility of the framework is
demonstrated in the skillful forecast of spring seasonal streamflows at six locations in the
Gunnison River Basin at several lead times. The generated ensemble streamflow forecast
provides valuable and useful information for optimal management and planning of water
resources in the basin.
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1. Introduction

[2] Fresh water resources in the western United States are
under great stress in the wake of increased development,
population, climate variability and climate change [e.g.,
Hamlet et al., 2002; Piechota et al., 2001]. The recent
5-year-long dry spell is raising many questions about
system reliability, basin planning, water compacts, etc. In
light of these concerns, careful planning and organized
development is necessary to manage competing water
demands of the system (e.g., municipal and industrial
supplies, releases required for ecological and environmental
purposes), so as to make the water resources sustainable.
[3] Larger rivers in the western United States are heavily

controlled by water storage structures, which then are
managed and operated to provide a reliable water source
for a variety of needs. Furthermore, this region has exten-
sive water laws, decrees, and compacts that impact the
water resources management. The region is largely semiarid
and prone to frequent dry spells; hence the storage struc-
tures are key to reliable water supply. Thus it can be seen
that two broad aspects emerge as important for efficient
water management: (1) skillful forecast of streamflows at

long lead times and (2) a decision support system that can
evaluate various strategies incorporating the forecasts to
guide the decision makers.
[4] On the Gunnison River, the study area in this paper,

the major water development feature is the Aspinall unit of
the Colorado River Storage Project. It consists of Blue
Mesa, Morrow Point, and Crystal dams, reservoirs, power
plants, and the Gunnison tunnel, which diverts water from
the Gunnison River to the Uncompahgre Valley. These three
reservoirs have combined water storage of approximately
1357 million m3 and generation capacity of 287 MW. The
Aspinall unit supplies water to prioritized water rights
holders within Colorado, meets agriculture releases, down-
stream interstate compact deliveries, municipal and indus-
trial demands, produces hydropower, and operates for other
benefits such as minimum fish flows, recreation, flood
control, federal water rights, Black Canyon National Park
rights, and stream and lake protection.
[5] Most of the inflows (70% of the annual flow) to the

Gunnison River comes as spring runoff of snowmelt from
April to July and hence is a major component in the water
management of the basin that needs to be forecasted. One of
the major challenges for water managers is finding the
optimal release schedule of spring flows from the Aspinall
unit that satisfies the needs of endangered habitat while
maximizing hydropower generation and meeting federal
water rights. To operate the system efficiently under com-
peting demands requires skillful forecast of spring season
streamflows. Also several key decisions are made in Janu-
ary and February, and so long-lead spring streamflow
forecasts are crucial. Currently, water managers make op-
erational decisions based on a ‘‘24-month study’’ operation
plan. In this, at the start of each month, streamflow fore-
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casts/projections of the successive 24-month period are used
to drive a decision support system model of the Aspinall
unit. The system decision variables obtained from this 24-
month outlook are used to make decisions, including a
reservoir release schedule.
[6] The 24-month projection is issued by Bureau of

Reclamation (BOR), and it typically uses the Colorado
Basin River Forecast Center’s (CBRFC) April to July
forecast from January through July, and the CBRFC
3 month forecast the remainder of the year, followed by
climatology (or monthly average) flows. CBRFC issues
10%, 50%, and 90% exceedance forecasts using primarily
extended streamflow prediction (ESP) and statistical re-
gression that utilizes snow, streamflow, precipitation and
climate indices. Thus a single trace of the 24-month flows
is developed in association with one of CBRFC’s single
forecasts and BOR’s subjective criteria, and is used in the
decision support model. The key drawbacks of BOR’s
forecast set up are (1) a single 24-month trace does not
capture any uncertainty and (2) the ESP method produces
ensembles by driving a hydrologic model with past
weather scenarios and current initial conditions, e.g., if
there are 20 years of data available at a location the ESP
method can only produce 20 ensembles. Although the
input time series of the ESP method is adjusted with
monthly and seasonal forecasts of climate variables (e.g.,
temperature, precipitation, teleconnection indices), the
range of uncertainty captured is quite limited. Furthermore,
there is growing evidence of large-scale climate features’
influence in the regional hydrology of the western United
States that could be incorporated in the forecast methodology
for improved skill [e.g., Grantz et al., 2005, and references
therein]. Particularly, large-scale climate information offers
predictability for issuing forecasts of spring streamflow
during December through February, when the snowfall in-
formation is limited at best [e.g., Grantz et al., 2005].
[7] With this motivation, the main goal of the present

study is to develop a framework for issuing long-lead
ensemble forecasts of spring streamflow at several locations
in the Gunnison River Basin (GRB) incorporating large-
scale climate information. The paper is organized as fol-
lows: A background on the role of large-scale climate
features in the variability of western United States hydro-
climatology is first presented to motivate the need to
incorporate climate information in the forecasting frame-
work. The basin details and the data sets used are then
described, followed by a detailed description of the pro-
posed multimodel ensemble framework. Application to the
GRB streamflows is then presented, concluding with a
summary and discussion of the results.

2. Large-Scale Climate and Hydroclimatology in
the Western United States

[8] There is a rich literature documenting the connection
between the variability of western U.S. hydroclimatology
and large-scale climate forcings especially, El Nino South-
ern Oscillation (ENSO), Pacific North American (PNA)
pattern, and Pacific Decadal Oscillation (PDO). Below we
provide a short summary and refer the readers to our
comprehensive description by Grantz et al. [2005] and
Rajagopalan et al. [2005].

[9] Interannual variability in the western U.S. hydro-
climatology is driven largely by ENSO. During El Niño
events (warm sea surface temperature anomalies in the
central and eastern equatorial Pacific ocean) the subtropical
jet over the southwestern United States (part of the PNA
pattern) especially during winter strengthens [e.g., Bjerknes,
1969; Horel and Wallace, 1981] and consequently, below-
normal precipitation results in the Pacific Northwest
and above-normal precipitation in the desert Southwest
[e.g., Redmond and Koch, 1991; Cayan and Webb, 1992;
Dettinger et al., 1998; Cayan et al., 1998]. Generally
opposing signals are evident during La Niña events (cooler
sea surface temperature in the central and eastern equatorial
Pacific), but some nonlinearities are present [Hoerling et al.,
1997; Clark et al., 2001]. Similar ENSO teleconnection
patterns have been observed in the interannual variability of
winter snow water equivalent [Clark et al., 2001; Cayan,
1996], surface temperatures [Redmond and Koch, 1991;
Higgins et al., 2002; Gershunov and Barnett, 1998], and
streamflows [Kahya and Dracup, 1993, 1994; Dracup and
Kahya, 1994; Piechota et al., 1997; Maurer et al., 2004].
On decadal timescales the hydrologic variability is thought
to be driven primarily by the PDO [Mantua et al., 1997;
McCabe and Dettinger, 1999, 2002; Hidalgo and Dracup,
2003; Brown and Comrie, 2004], even though there is
debate on the independence of PDO from ENSO [Newman
et al., 2003]. Recent studies also indicate a significant shift
in the seasonal cycle of the western U.S. hydroclimatology
[Cayan et al., 2001; Regonda et al., 2005a; Stewart et al.,
2005] modulated by the ENSO and the general warming
trend, especially, the early occurrence of spring warming
and consequent early spring time peak flows due to early
snowmelt. The large-scale forcings, particularly ENSO and
consequently, PNA pattern, are highly persistent and thus
have enabled long-lead hydroclimate predictions of United
States surface temperatures [Higgins et al., 2004], Columbia
River streamflows [Hamlet and Lettenmaier, 1999; Clark et
al., 2001] and Truckee and Carson River flows [Grantz et
al., 2005].
[10] Despite the strong links between large-scale climate

forcings and western U.S. hydroclimatology, there is sub-
stantial variability in the strength of the teleconnections
from one river basin to another [McCabe and Dettinger,
2002]. Moreover, relatively minor shifts in large-scale
atmospheric patterns can result in large differences in
surface climate [e.g., Yarnal and Diaz, 1986]. Therefore
the typical indices that capture ENSO or PNA may not be
useful in explaining the variability of the hydroclimatology
and nonstandard indices have to be developed [e.g., Grantz
et al., 2005]. Such is the case in the GRB, which is situated
in the interior west and lies outside the regions most
strongly affected by ENSO variability [e.g., Cayan and
Peterson, 1989; Klein et al., 1965; Weare and Hoeschele,
1983, Cayan et al., 1998; Dettinger et al., 1998]. Several
researchers [Changnon et al., 1993; McCabe, 1994;
McCabe and Legates, 1995; McCabe, 1996; Robertson
and Ghil, 1999] have identified links between large-scale
atmospheric circulation features (e.g., 700 mbar heights)
and the winter precipitation in the western United States,
and consequently streamflow. These circulation features are
quite different from the typical PNA pattern. Therefore
appropriate large-scale climate features that modulate the
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streamflow in the GRB have to be identified for use in an
ensemble streamflow forecasting framework.

3. Study Basin

[11] The GRB is located in the southwestern part of
Colorado (Figure 1). Six key streamflow locations in the
basin are also shown in Figure 1. With a drainage area of
approximately 7930 mi2 (20,618 km2) and basin elevations
ranging from 1387 to 4359 m, the GRB extends from the
continental divide to Grand Junction where it joins the
Colorado River [McCabe, 1994]. Climate in this basin varies
greatly due to its broad range of elevation with most of the
annual precipitation falling as snow. The Gunnison River is a
major tributary of the Colorado River and contributes ap-
proximately 42% of the streamflow for the Colorado River
[Ugland et al., 1990]. The average annual hydrograph of the
GRB is shown in Figure 2. It can be seen that almost all
(greater than 70%) of the annual flow occurs during the
spring (April–July). Consequently, spring flow plays a vital
role in the decision and management of water resources and
water managers wish to have accurate long-lead forecasts.

4. Data Sets

[12] A brief description of the data sets to be used to
develop a long-lead streamflow forecast system is presented
below.

Figure 1. Map of the Gunnison River Basin and six key streamflow locations (shown as circles). Map

was provided by James Pasquotto, University of Colorado, Boulder.

Figure 2. Annual average hydrograph of the Gunnison
River Basin. Monthly values (m3/s (cms)) are the average
across the six locations.
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4.1. Streamflow

[13] Streamflow locations are selected from the Hydro
Climate Data Network (HCDN) developed by the USGS
[Slack and Landwehr, 1992]. For the GRB HCDN provided
six locations (shown in Figure 1) that have continuous flow
record from 1949 onward, station details are presented in
Table 1. The selected streamflow locations are situated in
five of the six cataloging units (GRB is divided into six
cataloging units) covering the entire basin. Four of the six
stations contribute inflows to the water storage structures
comprising the Aspinall unit. Spring flow, the summation of
daily flows from April through July, is computed for each of
the locations for further analysis.

4.2. Snow

[14] Snow water equivalent (SWE) data are obtained
from snow course surveys conducted by the Natural Re-
source Conservation Service (NRCS). SWE measurements
are generally taken on or about the beginning of each month
especially at the beginning of April, which is representative
of peak SWE in many regions. Stations with at least 80%
of their measurements available from 1949 to 2002 for
1 February, 1 March, or 1 April are selected. Three, four,
and six stations met the criteria for the months February,
March and April, respectively.

4.3. Large-Scale Climate Variables

[15] Ocean-atmospheric circulation variables that capture
the large-scale climate forcings are available from NOAA’s
Climate Diagnostics Center Web site (http://www.cdc.noaa.
gov). In particular, some of the variables considered are
geopotential height, surface air temperature (SAT), sea
surface temperature (SST), and zonal and meridional winds.
These variables are provided on a 2.2� � 2.2� grid spanning
the globe from the NCEP-NCAR reanalysis project [Kalnay
et al., 1996] for the period 1949 to present.

5. Methodology

[16] The objectives of the methodology are to provide an
ensemble of spring streamflow forecasts at all the locations
and at different monthly lead times incorporating large-scale
climate information. Spring seasonal forecasts at all the
locations need to be generated simultaneously so as to
capture the spatial dependence among the locations.
[17] To this end, we propose a new modeling framework

that produces multimodel ensemble forecasts of stream-
flows. The proposed methodology consists of four broad
components: (1) principal component analysis (PCA) of the
(spring season) streamflows at the locations to identify the
dominant modes of variability, (2) climate diagnostics to
obtain the large-scale ocean-atmosphere predictors of the

dominant modes, (3) forecasting framework and multimodel
selection objective criterion to select a suite of models from
the predictor set based on the generalized cross validation
(GCV), and (4) multimodel ensemble streamflow forecast
algorithm, in which ensembles of the dominant modes are
predicted from the multimodels, and then combined, and
translated into the original flow space to obtain the stream-
flow forecasts. These components will be described in detail
in the following sections.

5.1. Principal Component Analysis

[18] Principal component analysis is widely used in
climate research. This method decomposes a space-time
random field (i.e., a multivariate data set such as the
seasonal streamflows at the six locations in the GRB) into
orthogonal space and time patterns using eigendecomposi-
tion [Von Storch and Zwiers, 1999]. The patterns are
ordered according to the percentage of variance captured,
i.e., the first space-time pattern (also called ‘‘mode’’)
captures the most variance present in the data and so on.
The temporal patterns are called principal components
(PCs). Typically, the first few modes (PCs) capture most
of the variance present in the data. This can also be thought
of as a dimension reduction technique, where a large
multivariate data set is effectively represented by a few
PCs (i.e., smaller dimension). Furthermore, since the PCs
are orthogonal they can be analyzed independently and
combined to reconstruct the original data.
[19] The mathematical formulation is as follows:

~Z
� �

N�M
¼ Y½ �N�M

~E
� �

M�M
ð1Þ

Y½ �N�M¼
~Z
� �

N�M
~E
� �T

M�M
ð2Þ

where Z is the original flows, Y is the principal components,
E is the eigenvectors, M is the number of streamflow
locations, and N is the length of the data. Hence E can be
considered a transformation matrix. The decomposition is
obtained by minimizing the error ei = E[Z � Z Ei]

2 (this
maximizes variance) such that EET = 1 (orthonormal
criteria).

5.2. Climate Diagnostics

[20] The next step is to search for indices that can be used
to predict the dominant streamflow PCs. The leading PCs
are correlated with global ocean and atmospheric circulation
variables (i.e., surface temperatures, geopotential heights,
winds) from preceding seasons. In this case, the leading PCs
of the spring streamflows will be correlated with circulation
variables from the preceding fall and winter months. From
the resulting correlation maps, regions that exhibit strong

Table 1. Gunnison River Basin Streamflow Data Information

Station Number Site Number (USGS) Site Name Elevation, m Drainage Area, 106 m2

1 09110000 Taylor River at Almont, CO 2442 1235
2 09112500 East River at Almont, CO 2440 749
3 09119000 Tomichi Creek at Gunnison, CO 2325 2748
4 09124500 Lake Fork at Gate View, CO 2386 865
5 09132500 North Fork Gunnison River near Somerset, CO 1914 1362
6 09147500 Uncompahgre River at Colona, CO 1926 1160
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correlations are used to develop potential predictors. These
are typically the area-averaged values of the variables. Thus
a suite of potential predictors can be obtained. Composite
analysis will be performed to identify the physical mecha-
nisms driving the variability of the streamflows and also the
consistency of the predictors.

5.3. Forecast Framework

[21] The leading PCs and their potential predictors are
incorporated into a statistical model, which is typically of
the form:

y ¼ f x1; x2; x3; . . . xRð Þ þ e ð3Þ

where f is a function fitted to the R predictor variables (x1,
x2, . . ., xR), y is the dependent variable (in this case the
leading PC of the spring streamflows) and e is the errors
assumed to be normally (or Gaussian) distributed with a
mean of 0 and variance s. Traditional statistical methods fit
a linear function that minimizes the squared errors, known a
linear regression. The theory behind this approach, the
procedures for parameter estimation, and hypothesis testing
are very well developed [e.g., Helsel and Hirsch, 1995; Rao
and Toutenburg, 1999] and are widely used. However, they
do have some drawbacks: (1) the assumption of a Gaussian
distribution of the errors and the variables and (2) fitting a
global relationship (e.g., a linear equation in the case of
linear regression) between the variables. If the linear model
is found inadequate, higher-order models (quadratic, cubic,
etc.) have to be considered, which can be difficult to fit in
the case of short data sets. Also if the variables are not
normally distributed, which is often the case in practice,
suitable transformations have to be obtained to transform
them to normal distribution. All of this can make the
process unwieldy. Thus a more flexible framework would
be desirable.
[22] Local estimation methods (also known as nonpara-

metric methods) provide an attractive alternative. In this, the
function f is fitted to a small number of neighbors in the
vicinity of the point at which an estimate is required. This is
repeated at all the estimation points. Thus, instead of having
a single equation that describes the entire data set, there are
several ‘‘local fits,’’ each capturing the local features. This
provides the ability to model any arbitrary features (linear or
nonlinear) that the data exhibits.
[23] There are several approaches for local functional

estimation applied to hydrologic problems [see Lall,
1995]. Of these, the locally weighted polynomial regression
(LWP) is simple and robust and has been used in a variety
of hydrologic and hydroclimate applications with good
results for streamflow forecasting on the Truckee and
Carson river basins [Grantz et al., 2005], salinity modeling
on the upper Colorado river basin [Prairie et al., 2005a],
forecasting of Thailand summer rainfall [Singhrattna et al.,
2005], and spatial interpolation of rainfall in a watershed
model [Hwang, 2005]. Given these experiences, we adopt
the LWP method in this research.
[24] A brief description of the method is provided here

and for specific details we refer the readers to Loader
[1999] and Grantz et al. [2005]. In the LWP method a
small number, K = a*N (where a = (0,1] and N = number of
observations) neighbors of the point of estimate, x* are

identified from the data set. To the K neighbors, a polyno-
mial of order p is fitted (equation (3)) by a weighted least
squares method where the K observations are weighted
inversely to their distances to x* using a weight function.
The fitted polynomial is then used to obtain the mean
estimate for the dependent variable, y* at the point
of estimate. The standard regression theory also provides
an estimate of the error variance (sle

2 ) corresponding to the
predicted value of the dependent variable, y* [Loader,
1999]. Random normal deviates with this variance and zero
mean, when added to predicted value, y*, provide an
ensemble. This assumes that the errors are normally dis-
tributed around the predicted value. Prairie et al. [2005b]
developed a residual resampling approach to generate
ensembles. In this the residuals of the LWP fit are resampled
and added to the mean estimate. This can better capture the
local error structure without assuming normality, but on
short data sets the variety of ensembles produced is limited.
Note that the LWP approach collapses to a traditional linear
regression, when a is set to 1, p is set to 1, and each
observation is weighted the same.
[25] The two key parameters in this method, the size of

the neighborhood, K, and the order of the polynomial, p are
obtained by minimizing an objective criterion, generalized
cross validation (GCV) which is a good estimate of predic-
tive risk of the model, unlike other functions which are
goodness of fit measures [Craven and Whaba, 1979]. This
is given as:

GCV K; pð Þ ¼

P

N

i¼1

e2
i

N

1� q

N

� �2
ð4Þ

where ei is the model residual, N is the number of data
points, q is the number of parameters in the local
polynomial model. Typically, several combinations of
(K, p) are used and the combination that results in a
minimum GCV value is selected.

5.4. Multimodel Selection

[26] The predictor variables used in the regression equa-
tions tend to be highly correlated. If all the correlated
predictors are used in the model, it can lead to overfitting
and poor skill in prediction; this is known as ‘‘multicolli-
nearity.’’ Thus the ‘‘best’’ subset of predictors needs to be
identified. Typically, this is done using stepwise regression
[e.g., Rao and Toutenburg, 1999; Walpole et al., 2002]
where in, an objective function such as Mallow’s Cp statistic
or adjusted R2 or AIC (Akaike information criteria) or an
F test, is calculated from the fitted model to several
predictor combinations. The best subset is then selected
based on the combination that gives the optimal value for
the chosen objective function. For noisy data (i.e., most real
data) the values of the objective functions for several
predictor combinations tend to be very close, suggesting
that several combinations (i.e., candidate models) might be
admissible. Thus selecting the ‘‘best’’ subset might not be a
good strategy, which warrants a multimodel approach.
Recent studies show that multimodel ensemble forecasts
tend to perform much better than a single model forecast
[Hagedorn et al., 2005; Krishnamurti et al., 1999, 2000;
Rajagopalan et al., 2002].
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[27] Here we propose the use of GCV for multimodel
selection. The approach is as follows: (1) GCV is computed
for all the possible combinations of the predictor set and
parameter set (K, p). (2) All combinations with GCV values
within a prescribed threshold are selected as admissible,
constituting the pool of candidate models, i.e., multimodels.
(3) Combinations with predictor variables significantly
correlated amongst each other (i.e., multicollinear) are
removed from the multimodel pool.

5.5. Multimodel Ensemble Forecast Algorithm

[28] The ensemble forecast from the multimodels identi-
fied above is summarized in the following six steps.
[29] 1. PCA is performed on the six streamflows in the

GRB, and the leading PCs are selected.
[30] 2. All potential predictors of the leading PCs are

identified from climate diagnostics.
[31] 3. These are passed through the forecasting frame-

work and the multimodel selection. This results in a pool of
multimodels, which includes the predictor set, and the
corresponding parameter set.
[32] 4. Ensemble (say, 100) forecasts of the leading PCs

are generated from each model of the multimodel pool. For
each ensemble, the other nonleading PCs are randomly
selected (i.e., bootstrapped) from those obtained from the
PCA. Thus each ensemble forecast member consists of all
PCs with the leading PCs obtained from the model forecast
and the rest bootstrapped from the historic values. If ten
models are selected in the multimodel pool the ensemble
forecast will be a matrix of size (1000 � 6).
[33] 5. The ensemble forecast matrix of the PCs is

multiplied by the eigenvectors to back transform into the
streamflow space, i.e., Z* = Y* * ~E.
[34] 6. Clearly, ensembles from all the models are not

equal. The model with the least GCV value should be given
more weight relative to the one with a higher GCV. To this
end, a vector of probabilistic weights is created based on the
GCV values (the weights are normalized to sum to unity);
using this weight metric, a model is selected; then an
ensemble member from this model is selected at random.
This is repeated numerous times (say, 100), thus resulting in
a final multimodel ensemble forecast.
[35] Steps 2 through 6 are repeated for each lead time;

thus each lead time will have a different suite of multi-
models with their own predictor and parameter sets.

5.6. Links to Model Averaging Literature

[36] The typical statistical modeling approach involves
identifying a single best model based on an objective
criterion. This neglects model inadequacy and increases
the associated risk of model inferences. To alleviate this, a
combination of several candidate models, also known a
‘‘model averaging’’ has been proposed [Reid, 1968; Bates
and Granger, 1969; Clemen, 1989]. Another approach in a
similar vein is to generate ensembles from several candidate
models and combine them to provide a model average
probabilistic forecast. This approach has been shown to
perform better than any individual model ensemble, particu-
larly in short-term and seasonal climate forecast [Hagedorn et
al., 2005; Hou et al., 2001; Krishnamurti et al., 1999, 2000;
Regonda et al., 2005b; Tamea et al., 2005]. The candidate
models are combined by weighting them, where the weights

are obtained from different approaches, e.g., regression,
Bayesian framework, etc. Weighting the multimodels in a
Bayesian framework is known as Bayesian model averaging
[Raftery et al., 1997; Hoeting et al., 1999]. There are several
variations within this framework [e.g.,Madigan and Raftery,
1994]. The key message in all of these is that combining
several models tends to perform better in terms of
predictive skill and reliable uncertainty estimates than a
single model.
[37] The multi model combination approach proposed in

this paper is consistent with the model averaging framework
and provides an attractive alternative approach for
performing model averaging. The multimodels are selected
based on the GCV criteria and they are combined using
weights based on their GCV values as described in the
previous sections.

5.7. Forecast Skill Evaluation

[38] Since we generate an ensemble forecast, i.e., the
probability density function (PDF), the skill of the forecast
needs to be evaluated in probabilistic terms. One such
common measure is the ranked probability skill scores
(RPSS) [Wilks, 1995]. Essentially, it measures the accuracy
of multicategory probability forecasts relative to a climato-
logical forecast. Typically, the flows are divided into k mu-
tually exclusive and collectively exhaustive categories for
which the proportion of ensembles falling in each category
constitutes the forecast probabilities (p1, p2, . . ., pk). The
observational vector (d1, d2, . . .., dk) is obtained for each
forecast, where dk equals one if the observation falls in the
kth category and zero otherwise.
[39] The ranked probability skill score (RPSS) is defined

as follows:

RPS ¼
X

k

i¼1

X

i

j¼1

pj �
X

i

j¼1

dj

 !2
2

4

3

5 ð5Þ

RPSS ¼ 1�
RPS forecastð Þ

RPS climatologyð Þ
ð6Þ

In this research, the streamflows are divided into three
categories, at the tercile boundaries, i.e., 33rd and 66th
percentile of the historical observations. Values below the
33rd percentile represent ‘‘dry,’’ above 66th percentile
‘‘wet’’ and ‘‘near normal’’ otherwise. Of course, the
climatological forecast for each of the tercile categories is
1/3.
[40] The RPSS ranges from negative infinity to positive

one. Negative RPSS values indicate the forecast accuracy to
be worse than climatology, positive to be higher than
climatology, zero to be equal to that of climatology, and a
perfect categorical forecast yields an RPSS value of unity.
In this application the RPSS is calculated for each year and
the median value is reported.

6. Results

[41] The multimodel ensemble forecast framework devel-
oped in the previous section was applied to streamflows
from the six locations in the GRB mentioned earlier. The
results are described below.
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6.1. Streamflow Characteristics

[42] PCAwas performed on the normalized spring season
streamflows from the six locations. The first PC explained
most of the variance (around 87%) and the remaining five

PCs together explained about 13%of the variance (Figure 3a).
Clearly, the first PC (Figure 3b) is the dominant and leading
‘‘mode’’ containing the ‘‘signal,’’ while the rest can be treated
as ‘‘noise.’’ The eigenvectors (i.e., loadings) at all the six

Figure 3. (a) Percentage variance explained by the six principal components (PCs), (b) time series of
the first PC, and (c) eigenloadings of the first PC at the six streamflow locations.

Figure 4. (a) Scatterplot of first PC of spring flow and 1 April SWE along with the best fit linear
regression line and (b) scatterplot of residuals of the first PC of spring flow from the regression fit in
Figure 4a with the preceding fall season PDSI. The thin line is the best fit line for the scatter, and the thick
line is the best fit line of the solid circles.
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locations (Figure 3c) corresponding to the first mode are of
similar magnitude and sign suggesting that the basin is
homogenous in its variability. To corroborate this, the first
PC correlates strongly (correlation coefficient >0.85) with the
basin average spring flow.
[43] PCA is also performed on the SWE data separately

for each month (1 February, 1 March, and 1 April). Here
too, the first PC explained most of the variance in all the
months. As expected, the leading PC of SWE and the
leading PC of the spring streamflows were highly correlated,
with the first PC of 1 April SWE having the highest correla-
tion (0.82) with the flow PC (Figure 4a). It is interesting to
note that there are few years (e.g., 1979, 1984, 1986, 2002
shown as solid circles in Figure 4a) in which flows are not
proportional to the 1 April SWE. Our hypothesis is that if the
preceding summer/fall is drier than normal and the following

winter is wetter than normal, then a large part of the
following spring runoff is absorbed by the soil and lost to
the atmosphere through evaporation, thus reducing the
streamflow output. To test this, we computed the average
preceding fall season Palmer drought severity index
(PDSI) over the basin, a good surrogate for soil moisture
[Dai et al., 2004], and plotted them against the residuals
of the linear regression between the first PC of the streamflow
and SWE (Figure 4b). The correlation between the residuals
and the fall PDSI is 0.35, which is low but statistically
significant. However, for the years that do not follow the
linear SWE-flow relationship (solid circles in Figures 4a
and 4b) the residuals show a very strong correlation with
the preceding fall PDSI (0.873, solid line in Figure 4b). This
suggests the key role of the PDSI in modulating the stream-
flows especially during years with a drier than normal fall

Figure 5. Correlation between the first PC of spring flow and November–March large-scale climate
variables (a) geopotential height (700 mbar), (b) surface air temperature, (c) zonal wind (700 mbar),
(d) meridional wind (700 mbar), and (e) sea surface temperature. Maps were generated from NOAA’s
Climate Diagnostic Center Website.
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season followed by awet winter and spring, and the need for it
to be included in the suite of predictors.

6.2. Climate Diagnostics: Predictor Selection

[44] As a first step, we correlated the first PC of spring
streamflow with the standard large-scale climate forcing
indices of ENSO, PDO and PNA, and we found no
relationship. This is consistent with the past research results
for the GRB [Cayan, 1996; Clark et al., 2001; Klein, 1963;
Klein and Bloom, 1987;McCabe and Legates, 1995], which
suggest that climate signals (particularly ENSO and PNA)
in the intermountain West tend to be weak due to the fact
that the region is situated in the transition zone of the ENSO
and PNA teleconnections.
[45] The first flow PC was correlated with the preceding

seasons’ atmospheric and oceanic circulation variables, i.e.,
700 mbar geopotential heights, SAT, SST, zonal (700 mbar)
and Meridional (700 mbar) winds. Correlation maps with
the November–March season are presented in Figure 5.
Negative correlations are observed between the spring flows
and 700 mbar heights over the western United States
(Figure 5a), indicating an above average spring streamflow
in the GRB with negative geopotential height anomalies in
this region, and vice versa. The negative height anomalies
tend to direct the storm tracks into the basin resulting in
increased SWE, and consequently, increased streamflows in
the spring. The surface air temperatures are negatively
correlated with the spring flows in this region (Figure 5b),
consistent with Figure 5a. Correlations with zonal and
meridional winds at 700 mbar (Figures 5c and 5d) are
consistent with the 700 mbar geopotential heights in that
winds over the southwestern United States bring moisture
into the GRB basin, leading to above average spring
streamflows. The SST correlation (Figure 5e) shows a weak
ENSO pattern with positive correlation in the tropical
Pacific and negative in the northern Pacific. The correla-
tions in the regions described above are statistically signif-
icant. Composite maps of vector winds at 700 mbar
corroborate the results from the correlation maps (Figure 6).
In wet years (years with PC values above the 90th percentile)
the average wind pattern (Figure 6a) is from the southwest
direction, blowing in to the basin from the ocean bringing in

moisture, and consequently, more snow and streamflow and
vice versa during dry years (Figure 6b). The SST composites
(not shown) also indicated results consistent with the corre-
lations. These observations are qualitatively in agreement
with McCabe and Legates [1995].
[46] From the correlation maps we identified the regions

of strong correlation to develop the predictors by area
averaging over these regions. We take the difference be-
tween the regions of positive and negative correlations, in
order to reduce the number of predictors and enhance the
predictor signal. From Figure 4b we saw that the land
surface information during the preceding fall plays a role
in the following spring melt flows. Hence we also included
the PDSI in the set of predictors. In addition, we included
the first PC of the SWE. In all, the climate diagnostics suite
of predictors (geopotential height anomalies, SAT, winds,
PDSI, SWE) were developed for the 1 April forecast and
they are detailed in Table 2.
[47] The correlation analysis is performed for all the lead

times separately, e.g., for 1 March forecast, the first PC of
spring flows is correlated with November–February climate
variables and the predictors obtained from the maps and so
on. We found the regions of strong correlation to be largely
the same with slight differences among the lead times.

6.3. Multimodel Ensemble Forecast

[48] As mentioned at the outset, spring streamflow fore-
casts at several lead times before the spring flow period are
required by the water managers; hence we issue forecasts of
the upcoming spring streamflows on the first of every
month starting 1 December through 1 April. The predictors
and the first PC of spring flows are passed through the
modeling framework described in the previous section. The
residuals (or errors) from the model were all found to be
normally distributed using a Kolmogorov-Smirnov test
[Wilks, 1995]. The forecasts are made in a cross-validated
mode, i.e., a year is dropped from the data set, the PCA
analysis is performed on the remaining data, and an ensem-
ble forecast is issued. This is repeated for all the years.
Of course, for the forecasts issued on 1 December and
1 January, only the climate predictors are used (as the SWE
information is not yet available). However, for the forecasts

Figure 6. Composite maps of vector wind anomalies at 700 mbar for (a) wet years and (b) dry years.
Maps were generated from NOAA’s Climate Diagnostic Center Website.
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issued in subsequent months, the first PC of SWE is also
included in the predictor mix.
[49] As described in the methodology section, several

models (i.e., predictor and parameter combinations) yield
similar GCV values. This can be noticed in Table 3 where
the first 6 models are shown for the 1 April forecast, which
illustrates the difficulty in selecting a single model uniquely
and underscores the need for multimodel ensemble ap-
proach. We defined a threshold of 20% of the least GCV
value and all the models within this range are selected. By
inspection we found that models within this threshold
tended to have GCV values clustered together (as seen in
Table 3). This rule of thumb seemed to work well for the
application presented. However, we recognize the need for a
more objective criterion. The GCV based optimal values of
K and p were found to be one, indicating that the relation-
ship between the predictors and the flow is largely linear.
However, the local functional estimation aspect of the
method enables it to capture subtle nonlinearities between
the variables that are present (figure not shown) with these
parameter values.
[50] The number of models selected tended to decrease

from December to April. This is intuitive, in that on
1 December SWE is not available and hence the forecasts
have to be made only from climate information. Conse-
quently, individual models have greater uncertainty, and
more models qualify as candidates for the multimodel pool.
However, on 1 April, SWE information is complete and it is
the best predictor of the ensuing spring streamflow. There-
fore fewer models with other predictor variables are neces-
sary to capture the streamflow dynamics and its variability.
Hence a smaller number of multimodels are selected.
[51] On the basis of the criteria for selecting models for

the multimodel ensemble, we identified 15 models for the
1 December forecasts and 6 models for the 1 April forecasts.
Ensemble forecasts for the streamflow location, Tomichi,
issued on 1 January and 1 April are shown as box plots in
Figure 7. The box represents the interquartile range, the
whiskers are the 5th and 95th percentile of the ensembles,
and the horizontal line within the box is the median. The
dashed horizontal lines represent the 33rd, 50th, and 66th
percentiles of the historic spring streamflow data at this
location, and the historic values are shown as points
connected by a solid line. Three observations can be made
from Figure 7: (1) The ensembles are shifted in the right
direction of the observed streamflow in almost all years.
(2) The ensemble forecasts issued on 1 January (with
only the large-scale climate information) seem to capture
the observations quite well. (3) As to be expected, the
ensemble forecasts issued on 1 April are very good. The
median RPSS for the 1 January forecast is 0.51 and the 1April
is 0.77. This indicates that skillful predictions of the spring
streamflows can be made for the GRB in the middle of winter
even when the snow information is absent, which is quite
significant for water resources management.
[52] In order to evaluate forecast performance for extreme

flows, flows are sorted into three categories: dry years
(flows less than 25th percentile of the data), wet years
(flows greater than 75th percentile), and near normal
(remaining) years. Box plots of the ensemble forecasts for
the wet and dry years are shown in Figures 8 and 9,
respectively. It can be seen that the ensembles do quite well
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forecasting flow extremes even on 1 January. This is very
useful to the water managers as the extreme years place
undue stress on the system operations.
[53] Categorical skill scores for several thresholds (5th

percentile through 95th percentile) for the Brier skill score
(BSS) [Wilks, 1995] were also computed and similar per-
formance of the multimodel ensembles was observed.
[54] To test the utility of large-scale climate information,

multimodel ensembles forecasts were generated at all lead
times using just the large-scale climate predictors. The
skills from this along with those from including the
SWE (of course, this is only for forecasts issued from
1 February onward) are shown in Table 4. It can be seen
that including large-scale climate information and SWE in
the multimodel ensemble framework provides higher skill
than just the climate predictors. Rank histograms [Hamill,
2001] of the multimodel ensembles (figure not shown)
revealed a flattened (or uniform) distribution indicating
that the uncertainty estimates are reliable in comparison to
the single best model counterparts. As mentioned earlier,
one of the advantages of the framework is to provide
ensemble forecast at all the sites capturing the spatial

dependence. The average spatial correlation of the ensem-
ble streamflow forecasts was found to be similar to that of
the observations.

7. Summary and Discussions

[55] We presented a multimodel ensemble framework to
forecast streamflows at several locations simultaneously.
The framework has four main steps: (1) principal compo-
nent analysis is performed on the spatial streamflows to
identify the dominant modes of variability; (2) large-scale
ocean-atmospheric predictors are identified for the domi-
nant modes; (3) objective criterion, generalized cross vali-
dation (GCV) is used to select a suite of candidate models;
and (4) ensembles of forecast of the dominant modes and
consequently the spatial flows are issued from the candidate
models. The forecast model is based on the LWP approach
that is data driven. Application of this framework to the
GRB showed skilful long-lead forecasts. Furthermore, the
multimodel ensemble forecast including large-scale climate
features and SWE rendered better performance in terms of
skill and reliability of uncertainty estimates than the single

Figure 7. Box plots of spring streamflow (million m3) at Tomichi issued on (a) 1 January and
(b) 1 April. The dashed horizontal lines represent the 33rd, 50th, and 66th percentiles of the historical
flow data, which are shown as points connected by the solid line.

Table 3. Multimodel Combinations for 1 April Forecasta

Number of
Predictors SAT-N1

(GPH-P1) –
(GPH-N1)

(GPH-P2) –
(GPH-N1)

(MW-P1) –
(MW-N1)

(MW-P1) –
(MW-N2)

(ZW-P1) –
(ZW-N1)

(ZW-P2) –
(ZW-N1)

(SST-P1) –
(SST-N1)

(SST-P2) –
(SST-N1) PDSI

PC1
SWE GCV

1 0 0 0 0 0 0 0 0 0 0 1 2.07
2 0 0 0 0 0 0 0 0 0 1 1 2.14
2 0 0 0 1 0 0 0 0 0 0 1 2.15
2 0 0 0 0 1 0 0 0 0 0 1 2.32
3 0 0 0 1 0 0 0 0 0 1 1 2.34
3 0 0 0 0 1 0 0 0 0 1 1 2.51

aPresence and absence of predictors are indicated by ‘‘1’’ and ‘‘0,’’ respectively.
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best model counterpart or a model with only the SWE
information.
[56] We also observed an interesting land-surface effect

on the streamflows: when the fall season is dry and
following winter is wet, then the spring streamflows tend
to be relatively lower compared to what would be expected
from a wet winter. Therefore the soil moisture information
of the preceding fall was included as a potential predictor,
which improved the forecasts. This is corroborated by the
presence of PDSI in several of the leading candidate models
(see Table 3).
[57] Other factors such as vegetation feedbacks on the

spring melt [e.g., Wang et al., 2006] together with soil

moisture effects (i.e., quantified by the PDSI), snowpack
ripening, spring (daily) wind patterns, air temperature,
relative humidity, melt patterns in association with topog-
raphy and shading factors [Lundquist and Flint, 2006], and
cloud cover need to be investigated to better understand the
streamflow mechanism and incorporated in the framework
to potentially improve the forecast skill. Objective methods
for selecting the multimodels, combining their ensembles
and dealing with multicollinearity of the predictors are some
of the aspects of the modeling approach that need detailed
investigation. Other nonlinear time series approaches that
reconstruct the dynamics of the underlying process from
observations for prediction [see e.g., Porporato and Ridolfi,

Figure 9. Same as Figure 7 but for forecast of dry years issued on (a) 1 January and (b) 1 April.

Figure 8. Same as Figure 7 but for forecast of wet years issued on (a) 1 January and (b) 1 April.
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1997, 2001; Regonda et al., 2005b; Sivakumar et al., 2002;
Tamea et al., 2005] also offer interesting alternatives for
consideration, although, they require a large number of data
observations.
[58] Having a skillful forecast of the upcoming spring

flows during early winter when the snow information is
only partial is of significant importance to water managers
in their planning and operation. Our preliminary results
from driving a decision support model in the basin with
these ensemble forecasts indicate similar skills in the
decision variables. This is very promising and is being fully
investigated further.
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