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ABSTRACT

A proper orthogonal decomposition (POD) based polynomial chaos expansion (PCE) is utilized in this paper

for the uncertainty quantification (UQ) of an impact dynamic oscillator. The time-dependent non-smooth behavior

and the uncertainties are decoupled using the POD approach. The uncertain response domain is reduced using the

POD approach and the dominant POD modes are utilized for the UQ of the response quantity. Furthermore, the

PCE model is utilized for the propagation of the input uncertainties. Two different cases of impact oscillator are

considered namely single impact and multiple impact. The contact between two bodies is modeled by Hertz’s law.

For both the cases, UQ is performed on the projectile displacement, projectile velocity and contact force. A highly

non-smooth behavior is noticed for the contact force. For that reason, most number of POD modes are required to

assess UQ of contact force. All the results are compared with the Monte Carlo simulation (MCS) and time domain

PCE results. Very good accuracies are observed for the PCE and the POD-PCE predicted results using much less

number of model evaluations as compared to MCS. As the PCE coefficients are dependent on time, the PCE model

is computed at each time-step. On the contrary, for the POD-PCE model, the PCE coefficients are computed for the

number of POD modes only: it is much less than the PCE model.

1 Introduction

Low velocity impact dynamic behavior has been studied for beam structures [1, 2] and composite structures [3, 4].

Numerical simulation of these structures using finite element model often leads to a high computational cost and a large time

consumption. For that reason, the impact dynamical systems are often modeled as a spring-mass impact oscillator [5, 1, 3]

and the contact behavior is modeled using the Hertz’s law [6, 3]. The variation in the contact force and in the deflection can

be noticed for a structure as the projectile speed varies. Due to the workmanship and the fabrication procedure, the variation
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can also be noticed in the material properties. In a nutshell, the input design parameters should be considered uncertain

while designing an impact dynamic oscillator. Hence, uncertainty quantification (UQ) of the response quantities due to such

uncertain input parameters is the main objective of this study.

A large number of methods have been developed in the literature for the UQ of stochastic dynamical systems [7,8,9,10].

The main difficulty with the impact dynamic oscillator is the non-smooth dynamic behavior of the response quantities

[1]. Along with this, the uncertain behavior of the responses is very difficult to capture using the available methods. For

the stochastic dynamical systems, polynomial chaos expansion (PCE) has gained popularity for assessing the stochastic

dynamical responses [11,12,13,14]. One of the main drawbacks of PCE used in time domain is that the PCE coefficients must

be constructed at each time-step for a dynamical systems. For that reason, PCE has been modified in several papers [7, 8, 9]

to properly capture the time-dependent stochastic behavior. In [9], the polynomial basis is updated using the stochastic

response from the previous time-step because the initial basis function is not optimal with the time. A similar procedure

has been adopted in [15]. To capture the nonlinear dynamical behavior, a different approach has been adopted in [16] by

rescaling the whole time domain to a small time domain and uncertainties were propagated using a principal component

analysis (PCA) based PCE. The nonlinear autoregressive with exogenous input (NARX) model along with PCE has been

used in [10] for the UQ of nonlinear dynamical systems. The NARX model has also been used along with the Kriging model

in [17].

Although time-dependent nonlinear behavior and randomness were decoupled in the sparse NARX-PCE model [10],

the NARX model requires the knowledge of the physical system. Model order reduction (MOR) techniques also decouple

the time-dependent behavior and the randomness. MOR technique includes proper generalized decomposition (PGD) [18],

proper orthogonal decomposition (POD, also known as PCA) [19, 20] and dynamic mode decomposition [21]. PCA based

PCE has been used in [22] for reducing the dimensionality of the time-dependent stochastic diffusion problem. POD has

been used in dimensionality reduction of ordinary differential equation [23] and partial differential equation [24, 20]. POD

has been used in [25] for the dimensionality reduction of high-dimensional outputs. POD has the capability to decompose

the time-dependent stochastic behavior using much less number of reduced bases. For that reason, POD is used in this paper

in accordance with the PCE model [26] for the UQ of impact dynamic oscillators. This method has already been investigated

for the smooth random dynamical systems in [27]. In this paper, the non-smooth dynamical behavior is investigated using

the POD-PCE surrogate model.

This paper is organized in the following way. The PCE model and the POD approach are discussed in section 2 and

section 3 respectively. The combined approach is discussed in section 4. UQ of impact dynamic oscillator is performed in

section 5 and the conclusions of this study are discussed in section 6.

2 Polynomial chaos expansion

A brief overview of the generalized PCE model is discussed here in the context of the dynamical systems. Consider

a dynamical system having d independent random variables Ξ̂ ∈ R
d (Ξ̂ j represents the j-th variable). Hence, the time (t)

dependent response Y
(

Ξ̂, t
)

can be represented by the PCE model [26]:

Y
(

Ξ̂, t
)

=
∞

∑
i=1

yi (t)Ψ(i)
(

Ξ̂
)

(1)

where Ψ(i) (•) are the multivariate orthogonal polynomial basis functions and yi (t) are the time-dependent coefficients. In

the following, ‘t’ may indicate either the continuous time or the discretized time vector with nt elements. The multivariate

orthogonal polynomial basis functions are constructed by the product of the univariate polynomial basis functions as follows:

Ψ(i)
(

Ξ̂
)

=
d

∏
j=1

ψ(i, j)
(

Ξ̂ j

)

(2)

where ψ(i, j)
(

Ξ̂ j

)

is the i-th univariate orthogonal polynomial basis function for the j-th input random variable Ξ̂ j. The

univariate orthogonal polynomial bases are directly related to the type of the distributions of the input random variables

Ξ̂ j [26] e.g. Legendre polynomial is used for an uniformly distributed random variable and Hermite polynomial is used for

a normally distributed random variable. The multivariate orthogonal polynomial bases satisfy the following condition of

orthogonality:

〈

Ψ(i)Ψ( j)
〉

=
∫
RΞ̂

Ψ(i)
(

Ξ̂
)

Ψ( j)
(

Ξ̂
)

fΞ̂

(

Ξ̂
)

dΞ̂ = h2δi j (3)
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where δ is the Kronecker delta and h is a constant which is 1 for the orthonormal polynomial basis function. fΞ̂

(

Ξ̂
)

is the

joint probability distribution function (PDF) of the input random variables.

For the practical implementation of the PCE model, the expression in Equation 1 is truncated with some finite number

of terms in the polynomial bases. Hence, the truncated PCE is represented by:

Y
(

Ξ̂, t
)

≈
n

∑
i=1

yi (t)Ψ(i)
(

Ξ̂
)

(4)

where n is the finite number of polynomial bases in the PCE model which can be found as follows:

n =

(

d +P

P

)

=
(d +P)!

d!P!
(5)

where ‘P’ is the maximum degree of the multivariate orthogonal polynomial bases.

PCE is utilized in this paper in a non-intrusive way. For the non-intrusive approach, initially the responses are computed

as though they were deterministic at some predefined sample points (experimental design points). Therefore, the samples of

the input random variables Ξ̂ is given by Ξ ∈ R
N×d matrix (N is the number of sample points) and the truncated PCE model

can be identified from:

Y (Ξ, t)≈
n

∑
i=1

Ψ(i) (Ξ)yi (t) (6)

In Equation 6, Y = {Y1,Y2, . . . ,YN}T ∈ R
N×nt is a matrix having the responses at the initial N samples and nt is the total

number of discretized points in the time domain. Ξ is a matrix having N samples of the d-dimensional input random

variables (Ξi ∈ R
1×d is the i-th sample of the d random variables). Ψ(Ξ) ∈ R

N×n is the multivariate orthogonal polynomial

basis matrix: element (i, j) is Ψi, j (Ξ) = Ψ j (Ξi). y(t) = {y1 (t) ,y2 (t) , . . . ,yn (t)}T ∈R
n×nt is the time-dependent coefficient

matrix of the PCE.

One of the most important tasks for the PCE model is the computation of the PCE coefficients. The usual way for

computing the PCE coefficients is the ordinary least square (OLS) approach [28]. The PCE coefficients can be computed

using the OLS approach as:

∀tk,k ∈ {1, . . . ,nt}; y(tk) =
(

Ψ(Ξ)T Ψ(Ξ)
)−1

Ψ(Ξ)T
Y (Ξ, tk) (7)

Hence, for an impact dynamic oscillator, the coefficients must be computed at nt number of time-steps which is computa-

tionally expensive. For that reason, POD is used in this paper to decouple the time domain and the randomness.

3 Proper orthogonal decomposition

Proper orthogonal decomposition is mainly used for the identification of low order bases for a given set of snapshots [29].

The orthogonal bases are selected corresponding to the dominating singular values of the snapshots. In our case, we have a

similar problem of time-dependent stochastic response quantities. Recall the responses of a dynamical system for N initial

samples Y (Ξ, t) ∈ R
N×nt : each column of matrix Y contains the stochastic response at each time-step. Hence, a kind of

correlation matrix for the stochastic response quantity [30] can be defined as:

C = Y TY (8)

where the superscript ‘T ’ denotes the transpose of the preceding matrix. The orthogonal bases are found from the eigenvalue

decomposition of the correlation matrix C which should satisfy the following condition:

CΦi = λiΦi; i = 1, . . . ,nt (9)

where Φi are the orthogonal bases of the POD, which are also called POD modes. λi are the eigenvalues of the decomposition

and represent a kind of energy [19] related to the corresponding POD orthogonal modes. The POD modes are sorted
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according to the decreasing magnitude of the corresponding eigenvalues λi. The POD modes are normalized here as follows:

φi =
Φi

‖Φi‖
(10)

where ‖•‖ is the 2-norm of the corresponding vector. The orthogonal POD modes can also be computed using the singular

value decomposition (SVD) [19].

Having the orthonormal POD modes, the uncertain response series can be represented by:

Y
(

Ξ̂, t
)

=
nt

∑
i=1

bi

(

Ξ̂
)

φT
i (t) (11)

where bi

(

Ξ̂
)

are the random coefficient vectors corresponding to the POD orthogonal modes, which need to be evaluated.

It should be noted from Equation 11 that the responses are projected on nt number of orthogonal POD modes. However,

in our case N < nt . Hence, the total energy is recovered only in the first N eigenvalues and the responses should be projected

using only the first N POD modes. Furthermore, it has been seen in the literature [29, 31] that only nb < N POD modes are

usually required to keep 99.99% of the POD energy. Therefore, using the reduced number of orthonormal POD modes, the

random responses can be represented by:

Y
(

Ξ̂, t
)

=
nb

∑
i=1

bi

(

Ξ̂
)

φT
i (t) (12)

4 POD-PCE model

The coefficients in Equation 12 are random and are estimated using the PCE model: the random coefficients can be

expressed using the truncated PCE model (refer Equation 6) as:

bi

(

Ξ̂
)

≈
n

∑
j=1

ai jΨ
( j)

(

Ξ̂
)

(13)

Coefficients ai j are identified from the known responses of the N sample points

Y (Ξ, t) =
nb

∑
i=1

bi (Ξ)φT
i (t) (14)

where bi (Ξ) ∈ R
N×1 is the i-th POD coefficient vector. Each coefficient bi (Ξ) is known and is computed by projecting the

random response matrix Y on the corresponding orthonormal POD mode:

bi (Ξ) = Y (Ξ, t)φi (t) ; i = 1, . . . ,nb (15)

Having the random coefficients, the coefficient vector ai j can be computed using the OLS approach (refer Equation 7).

Once the truncated PCE coefficients are computed, the combined POD-PCE model is given by:

Y
(

Ξ̂, t
)

≈
nb

∑
i=1

n

∑
j=1

ai jΨ
( j)

(

Ξ̂
)

φi (t) (16)

5 UQ of impact dynamic oscillator

In this section, the UQ of a 2 degree of freedom (DOF) impact dynamic oscillator is performed. The reference solution

was computed by the MCS approach using Latin hypercube sample (LHS) points. The full PCE (referred as PCE in the
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following) and POD-PCE models were identified to predict the stochastic responses using much less samples than the MCS.

The accuracy of the predicted result is illustrated using the mean relative error:

ε̄ =
1

NMCS

NMCS

∑
k=1

εk (17)

where NMCS is the number of samples for the MCS. εk is the relative error of the k-th sample point which was computed

as [32]:

εk =
∑

nt
i=1

[

YMCS (ti,Ξk)−Ypred (ti,Ξk)
]2

∑
nt
i=1 [YMCS (ti,Ξk)− ȲMCS (Ξk)]

2
(18)

where ȲMCS (Ξk) is the mean of the MCS computed response series at the k-th sample point. Ypred is the predicted response

quantity using a surrogate model.

5.1 Problem definition

The 2-DOF nonlinear impact oscillator considered here is shown in Figure 1. The structure is denoted by the mass mst

and the projectile is denoted by the mass mp. The projectile is not attached to the nonlinear spring having stiffness kc. The

governing differential equation of the 2-DOF impact oscillator is given by:

mst ẍst + cst ẋst + kstxst + fc = 0

mpẍp − fc = 0
(19)

where the structure mass mst is attached to the ground by a linear spring having stiffness kst and by a damper with viscous

damping cst . xst and xp are the displacements of the structure and the projectile, respectively. fc is the contact force between

the projectile and the nonlinear spring, and was modeled using the Hertz law [33, 34]. fc is defined as:

fc = kc(xst − xp)
3
2 ; xst ≥ xp

= 0 ; xst < xp (20)

The initial conditions for the impact oscillator are given by:

xst (0) = 0

ẋst (0) = 0

xp (0) = 0

ẋp (0) = v0 (21)

where v0 is the initial velocity of the projectile mass mp.

In this paper, mp, kc and v0 are considered uniformly distributed independent random variables with coefficient of

variation 0.1. The parameters of the distribution for all the random variables are given in Table 1. The structure mass

mst = 60g and the damping ratio ζst = 0.5% are considered for this oscillator.

UQ is performed considering the projectile displacement, the projectile velocity and the contact force as the response

quantities separately. The behavior of the responses is highly dependent on the number of contacts between the structure and

the projectile. For that reason, the number of contacts is tuned here varying kst . In this paper, two cases are considered: (i)

single impact (kst = 240MNm−1), (ii) multiple impact (kst = 2.4MNm−1). The non-smooth dynamical behavior is expected

to be higher in case of the multiple impact oscillator.

5.2 Case 1: Single impact oscillator

The impact oscillator as introduced in the previous section is tuned here such that the contact between the structure and

the projectile occurs only once in the total time period. A high value of kst = 240MNm−1 was considered. The time domain
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Fig. 1: 2-DOF nonlinear impact dynamic oscillator

Table 1: Parameters of the input random variables for the impact dynamic oscillator

Random variable Lower bound Upper bound Unit

mp 330−33
√

3 330+33
√

3 g

kc 16×103 −1600
√

3 16×103 +1600
√

3 MNm−3/2

v0 −10+
√

3 −10−
√

3 ms−1

for this system was decided as t ∈ [0ms,1ms]. The time integration was performed using the MATLAB function ode45 at a

time-step of ∆t = 1µs. As a result, nt = 1001 can be found in the full time domain.

For the reference solution, the stochastic responses were computed by MCS using NMCS = 104 model evaluations. On

the other hand, the POD-PCE and the PCE models were constructed using much less number of model evaluations. Legendre

polynomials were used for the PCE models with degree P = 2 and P = 3. As a result, n = 10 and n = 20 terms were found

in the truncated PCE model for P = 2 and P = 3, respectively.

First of all, the influence of N on the accuracy was studied for both the surrogate models. The evaluation of the mean

relative errors for all the response quantities is shown in Figure 2. It is seen clearly that with the increase of N the mean

relative error reduces for all the response quantities. It is noticeable that for a particular polynomial degree, ε̄ by the PCE and

the POD-PCE models are almost the same with N. However, slightly high accuracy is noticed by the POD-PCE model for

the contact force with P = 3 and the accuracy of PCE models for the projectile velocity is greater than the POD-PCE models.

An accurate identification of a model with n coefficients is generally possible only if N ≥ n. Accordingly, the responses with

P = 2 are in good agreement with the MCS responses with N ≥ 10 because n = 10 terms were found in the PCE polynomials,

whereas P = 3 requires at least N = 20 model evaluation to compute the PCE coefficients accurately (n = 20). With N = 20

and P = 3, the surrogate model has almost the same accuracy as that with P = 2 and N = 20. Moreover, the increment of the

accuracy beyond N = 20 samples is much less for all the response quantities. Therefore, a good accuracy has achieved using

N = 20 for all responses. For that reason, all the stochastic responses are presented in the following text using N = 20 only

for the single impact oscillator.

The time-dependent mean (µ) and standard deviation (σ) of the contact force are plotted in Figure 3a and Figure 3b,

respectively. It is seen that the contact between the structure and the projectile occurs only once during the total time period.

The mean and the standard deviation are computed quite well by both the surrogates using N = 20. However, it is to be
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Fig. 2: Evaluation of the mean relative errors of all the stochastic response quantities for the single impact oscillator

noted that the PCE coefficient vector was computed at each time-step for the PCE model (refer Equation 6). Conversely, the

time-dependent stochastic contact force was obtained with only nb = 5 POD modes by the POD-PCE model. Hence, the

PCE coefficient vector was computed only 5 times for the POD-PCE model which is much less than 1001. Indeed the total

number of computed coefficients (ntot = n× nt for PCE and ntot = n× nb for POD-PCE) is shown in Table 2 for both the

surrogates, which is 200 times more for the PCE model as compared to the POD-PCE model. The time-dependent errors for

the statistical moments were computed using the following expression:

ε(t) =

∣

∣Mom(YMCS)−Mom
(

Ypred

)∣

∣

max |Mom(YMCS)|
(22)

where Mom(•) is the any statistical moment (µ or σ) of the corresponding response quantity. The time-dependent errors

for µ fc and σ fc of the contact force are shown in Figure 4a and Figure 4b, respectively: the errors are presented only during

the contact and the error is zero beyond the contact. It is seen clearly that the magnitude of error in the prediction of σ fc

is higher than that in the prediction of µ fc . Moreover, the POD-PCE model has better predicted σ as compared to the PCE

model using P = 3. The overall accuracies of all the models were computed using Equation 17 and are listed in Table 2.

It is noticeable that the errors predicted by the POD-PCE models are slightly less than the PCE models. Moreover, a good

accuracy has been achieved by both the surrogate models using much less number of model evaluations, but the POD-PCE

model requires only 5 POD modes to achieve a good accuracy.

The time-dependent statistical moments of xp are shown in Figure 3c and Figure 3d using N = 20. Good agreement of

surrogate predicted results with the MCS results is noticed for both the cases. As the PCE coefficients are time-dependent, the

PCE coefficient vector was computed 1001 times. However, 99.99% of the energy was recovered using only 2 POD modes for
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Fig. 3: Time-dependent statistical moments of the stochastic response quantities for the single impact oscillator: MCS was

performed using NMCS = 104 model evaluations

the POD-PCE model. Hence, the PCE coefficients vector was computed only twice instead of 1001 times which ultimately

lead to compute only 0.2% coefficients for the POD-PCE models with respect to the PCE models. The time-dependent errors

for both the statistical moments were computed using Equation 22 and are plotted in Figure 4c and Figure 4d. Although

the errors are very low, lower errors were predicted using P = 3 for both the surrogates. The overall accuracy of both the
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Fig. 4: Time-dependent errors for the statistical moments of the stochastic responses of single impact oscillator

surrogates is measured using the mean relative error which is listed in Table 2. It is noticeable from the table that almost the

same accuracies have been achieved using both the surrogates: for the POD-PCE model, it requires only 2 POD modes to

achieve such a high level of accuracy.

In a similar way to the previous two responses, the stochastic projectile velocity was also computed using the surrogate

models. All the parameters remain the same for the projectile velocity. Time-dependent mean and standard deviation of ẋp
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Table 2: Accuracy of different surrogate models in assessing the stochastic response quantities for the single impact oscillator

by N = 20

Contact force Projectile displacement Projectile velocity

Method P nb ntot ε̄ nb ntot ε̄ nb ntot ε̄

PCE 2 - 10010 6.21×10−5 - 10010 5.41×10−6 - 10010 5.34×10−6

PCE 3 - 20020 14.90×10−5 - 20020 2.80×10−6 - 20020 7.52×10−6

POD-PCE 2 5 50 5.54×10−5 2 20 5.53×10−6 3 30 19.40×10−6

POD-PCE 3 5 100 5.28×10−5 2 40 2.92×10−6 3 60 18.50×10−6

Table 3: Efficiency of different approaches for the single impact oscillator

Contact force Projectile displacement Projectile velocity

Method N P CPU time (s)

PCE 20 3 0.061 0.061 0.060

POD-PCE 20 3 0.003 0.002 0.002

MCS 104 - 41.510 41.510 41.510

are shown in Figure 3e and Figure 3f, respectively. It is seen that the mean velocity is gradually increasing from negative

magnitude to positive magnitude during the contact period and it remains constant after the contact. The prediction accuracies

of all the surrogates are very high and are very close to each other. For the POD-PCE model, the 99.99% energy level is

achieved using only nb = 3 POD modes: indeed only 3 PCE coefficient vectors were computed for the POD-PCE model

instead of 1001 PCE coefficient vectors for the PCE model.

The time-dependent errors were also computed for the predicted stochastic velocity ẋp and are shown in Figure 4e and

Figure 4f: the errors are plotted for the contact period only and beyond this region, the errors are constant. It is noticed that

the magnitude of error is higher for σẋp as compared to µẋp . However, the error for σẋp by the POD-PCE model with P = 3

is much less as compared to the others. The overall accuracies of all the surrogates are listed in Table 2. The mean relative

errors by all the surrogates are close to each other.

The results obtained for 5 samples are plotted in Figure 5, as well as the results calculated from the identified surrogate

models. It is seen that all the responses are predicted quite well by both the surrogate models for all the 5 samples.

The efficiency of all the approaches was measured with the number of sample points and CPU time which are listed in

Table 3. The simulation was performed on Intel Core i7 CPU running at 2.90 GHz with 32 GB installed memory. The CPU

times presented in Table 3 were averaged for 10 simulations. The surrogate models with P = 3 are presented only. It is seen

that the number of sample points for the surrogate models is quite small as compared to the MCS approach. Further, the

CPU time for the PCE model is almost 830 times smaller than the MCS approach and almost 21000 times smaller for the

POD-PCE model. For the POD-PCE models, the POD was performed by the SVD approach and it depends on the minimum

between the number of model evaluations (N) and the number of time-steps (nt ). For the present case, N is quite small

as compared to nt . Therefore, the POD approach took approximately 0.001 s to obtain the POD modes. As a result, the

efficiency of the POD-PCE model was almost 30 times higher than the PCE model.

5.3 Case 2: Multiple impact oscillator

The same oscillator as defined in section 5.1 is considered here with kst = 2.4MNm−1 such that multiple contacts occur

between the structure and the projectile. The time domain considered here is t ∈ [0ms,3ms] and the time integration was

performed at a time-step of ∆t = 1µs. Consequently, nt = 3001 number of time-steps can be found in the total time period.

Stochastic responses were computed considering the three input random variables as mentioned in Table 1. For the

multiple impact oscillator, MCS was performed using 104 model evaluations on LHS points for all the stochastic response

quantities. In a similar way to the single impact oscillator, the influence of the number of model evaluations was investigated

for the surrogate models. As this system is highly non-smooth and nonlinear in nature, initial sample for the surrogate

model was decided as N = 30. The relative error with respect to N for all the response quantities is shown in Figure 6. It

is noticeable that the accuracy is increased with the increase of N for all the response quantities. The magnitude of error

10 Bhattacharyya, VIB-19-1536



0 0.2 0.4 0.6 0.8 1

Time (ms)

-2

0

2

4

6

8

10
10

4

MCS

PCE (N=20,P=3)

POD-PCE (N=20,P=3)

(a) Contact force

0 0.2 0.4 0.6 0.8 1

Time (ms)

-2

0

2

4

6

8

10
10

-3

MCS

PCE (N=20,P=3)

POD-PCE (N=20,P=3)

(b) Projectile displacement

0 0.2 0.4 0.6 0.8 1

Time (ms)

-15

-10

-5

0

5

10

15

MCS

PCE (N=20,P=3)

POD-PCE (N=20,P=3)

(c) Projectile velocity

Fig. 5: Comparison of responses for single impact oscillator at 5 samples: mp ∈ {342.71,292.84,365.62,310.35,373.82}g,

kc ∈ {13.97,13.87,14.61,14.23,13.63}×103MNm−3/2, v0 ∈ −{11.32,9.51,9.96,9.11,10.95}ms−1

for the contact force is quite higher as compared to the other response quantities due to highly non-smooth and nonlinear in

behavior. Moreover, a quite good accuracy has achieved using N = 50 samples for all the response quantities. Hence, all the

results are presented in following discussion using N = 50 samples.

The stochastic behaviors of the contact force are plotted in Figure 7a and Figure 7b: the results are presented magnifying

on the x axis. The surrogate models were constructed using N = 50 LHS points and predicted at NMCS = 104 samples. It is

seen clearly from the mean force that five contacts occur during the whole time period and the maximum contact force occurs

during the second contact. Here we can see the much high non-smooth dynamic behavior of the oscillator as compared to the

previous one. Despite the much high non-smooth behavior, the mean force was predicted quite well by both the surrogates.

However, tiny discrepancies are noticed in the standard deviation of fc. The time-dependent errors were also computed for

both the surrogates, which are shown in Figure 8a and Figure 8b for the contact region only. The magnitude of error for σ fc is

high as compared to µ fc . Both the surrogates have predicted lower error with P= 3 as compared to P= 2. The level of overall

accuracies are listed in Table 4. It is noticeable that a large number of POD modes (nb = 31) was required to keep 99.99% of

the POD energy with the retained POD modes due to much high non-smooth nonlinear behavior: the PCE coefficient vector

was therefore computed 31 times. However, it is much less than the computation of the coefficient vector for the PCE model:

it is 3001 for the PCE model. Indeed ntot for the POD-PCE model is approximately 1% of the time-dependent PCE model.

The stochastic projectile displacement xp was computed by both the surrogates using 50 LHS points. Time-dependent

moments of xp are shown in Figure 7c and Figure 7d. Both the moments are predicted quite well using both the surrogates.

The time-dependent errors were computed for the moments of xp and are plotted in Figure 8c and Figure 8d. The magnitude

of error for σxp is higher as compared to µxp . Slightly lower errors were predicted by both the surrogates with P = 3. Along

with this, the overall accuracies of all the surrogates are listed in Table 4. It seems that both the approaches have predicted
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Fig. 6: Evaluation of mean relative error for all the stochastic response quantities of the multiple impact oscillator

Table 4: Accuracy of different surrogate models in assessing the stochastic responses for the multiple impact oscillator using

N = 50

Contact force Projectile displacement Projectile velocity

Method P nb ntot ε̄ nb ntot ε̄ nb ntot ε̄

PCE 2 - 30010 1.14×10−1 - 30010 2.52×10−3 - 30010 3.91×10−3

PCE 3 - 60020 1.05×10−1 - 60020 1.49×10−3 - 60020 2.21×10−3

POD-PCE 2 31 310 1.13×10−1 3 30 2.52×10−3 9 90 3.91×10−3

POD-PCE 3 31 620 1.05×10−1 3 60 1.49×10−3 9 180 2.16×10−3

exactly the same mean relative errors, however, the PCE coefficient vector was computed 3 times instead of 3001 for the

POD-PCE model: it is the main advantage of the POD-PCE model.

UQ was performed on the projectile velocity also. The stochastic response behavior in time domain is shown in Figure 7e

and Figure 7f: the standard deviation is shown only for the contact duration and the standard deviation is constant beyond

this region. A highly non-smooth behavior is noticed in the stochastic behavior of ẋp. The peaks in the standard deviation

occurred during the contacts. Such highly non-smooth moments were predicted quite well by both the surrogates using

much less model evaluations as compared to MCS. The time-dependent errors for both the statistical moments are plotted in

Figure 8e and Figure 8f: the errors are plotted in the contact region and the error is constant beyond this region. It is seen
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Fig. 7: Time-dependent statistical moments of the stochastic responses for the multiple impact oscillator: MCS was per-

formed using NMCS = 104 model evaluations

that the magnitude of error is significantly higher for σẋp as compared to µẋp . Low errors are noticed using P = 3 for both

the surrogate models during the contacts. The overall accuracies are given in Table 4. It is noticeable that almost the same

overall accuracies have been achieved by both the surrogates. However, for the POD-PCE model, the PCE coefficient vector

was computed only 9 times: it is 3001 for the PCE model.
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Fig. 8: Time-dependent errors for the statistical moments of the response quantities of multiple impact oscillator

In a similar way to the single impact oscillator, the predicted stochastic responses by the surrogates were plotted and

compared with the MCS results at the same 5 samples. The comparison is shown in Figure 9. It seems that the contact

force is predicted quite well during the first two contacts, while it is very difficult to predict the contact forces towards the

end of the contacts. ε̄ for these 5 samples was found to be the same as the ε̄ for the 104 samples. It is noticeable that

some negative forces are predicted towards end contacts which are not physically correct. To mitigate this issue, we tried
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to identify the POD-PCE model and the PCE model by increasing the samples and the polynomial degree to N = 1000 and

P = 15, respectively. Although it was possible to reduce the magnitude of the negative forces to some extent using such

large number of samples, some negative forces were always predicted using the surrogate models. The negative forces are

not a consequence of the POD but of the PCE as the PCE predicted results follow the POD-PCE predicted results. Indeed

predicting a non-smooth function (i.e. contact force) by a smooth function (i.e. PCE model) is always a challenging task.

On the other hand, the projectile displacement and the projectile velocity are predicted quite well at the 5 samples using both

the approaches due to less non-smooth behavior than the contact force.
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Fig. 9: Comparison of responses for the multiple impact oscillator at 5 samples: mp ∈
{342.71,292.84,365.62,310.35,373.82}g, kc ∈ {13.97,13.87,14.61,14.23,13.63} × 103MNm−3/2, v0 ∈
−{11.32,9.51,9.96,9.11,10.95}ms−1

The accuracies of all the surrogate models have already been shown in Table 4. The efficiency metrics for the responses

of the multiple impact oscillator is presented in Table 5. The CPU times were measured by averaging on 10 simulations. It

is noticeable that the required CPU times for both surrogate models are quite low as compared to the MCS. The number of

sample points is quite small as compared to the number of time-steps. As a result, the required CPU time to obtain the POD

modes was approximately 0.008 s. The CPU times for the POD-PCE models are almost 16 times and 10000 times lower

than that for the PCE models and for the MCS approach, respectively. Therefore, the POD-PCE model is quite efficient as

compared to the other approaches.
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Table 5: Efficiency of different approaches for the multiple impact oscillator

Contact force Projectile displacement Projectile velocity

Method N P CPU time (s)

PCE 50 3 0.181 0.180 0.181

POD-PCE 50 3 0.014 0.010 0.014

MCS 104 - 104.950 104.950 104.950

6 Conclusion

A stochastic impact oscillator has been investigated in this paper by POD-PCE model. The contact between the structure

and the projectile was modeled using the Hertz’s law. The responses of projectile were considered for UQ. The time-

dependent UQ can be performed using the conventional PCE surrogate model. However, the PCE coefficient vector has to

be computed at each time-step. For that reason, the time-dependent non-smooth behavior and the randomness in the model

were decoupled using the proposed POD-PCE surrogate model. The time-dependent non-smooth behavior was modeled

using the POD modes and the randomness in the model was propagated using the PCE model.

A nonlinear impact oscillator has been investigated for UQ with two different conditions: single contact between the

structure and the projectile, multiple contacts between the structure and the projectile. UQ was performed for projectile

displacement, projectile velocity and contact force. The stochastic responses were computed very well by the PCE and the

POD-PCE models. Effectively, the accuracy of the predicted mean was much high as compared to the predicted standard

deviation by both the surrogate models. However, non-physical contact forces were predicted for the multiple impact os-

cillator by both the surrogate models at some sample points due to the numerical issue with the PCE model which is the

main limitation of the proposed approach. For the PCE model, the PCE coefficient vector was identified at each time-step,

whereas the stochastic responses were computed using much less POD modes by the POD-PCE model which leads to com-

puting significantly less number of PCE coefficient vector. Hence, the number of PCE model identification was much less

for the POD-PCE model without losing the accuracy. As a result, the computational cost for the POD-PCE model was much

lower than the other approaches. For a high-dimensional problem, obtaining the POD modes may be inefficient by the POD

approach. In that case, the Krylov subspace [35] would be a good alternative to approximate the reduced modes efficiently.

Further, the number of PCE coefficients could be reduced by using the sparse PCE model [36] in conjunction with the POD

approach.
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