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We propose a power-law based effective mean free path

(MFP) model, so that the Navier-Stokes-Fourier equations

can be employed for the transition-regime flows typical of

gas micro/nano devices. The effective MFP model is derived

for a system with planar wall confinement by taking into ac-

count the boundary limiting effects on the molecular free

paths. Our model is validated against molecular dynamics

simulation data and compared with other theoretical models.

As gas transport properties can be related to the mean free

path through kinetic theory, the Navier-Stokes-Fourier con-

stitutive relations are then modified in order to better capture

the flow behaviour in the Knudsen layers close to surfaces.

Our model is applied to fully developed isothermal pressure-

driven (Poiseuille) and thermal creep gas flows in micro-

channels. The results show that our approach greatly im-

proves the near-wall accuracy of the Navier-Stokes-Fourier

equations, well beyond the slip-flow regime.

1 Introduction

In micro/nano scale gas flows, the small system dimen-

sions mean that the non-dimensional Knudsen number, Kn,

defined as the ratio of the molecular mean free path (MFP) of

the gas, λ, to a characteristic flow field dimension, indicates

the flows are often rarefied. As Kn increases, the behaviour

of a gas flow near a solid bounding surface is dominated by

the effect of gas molecule-surface interactions. This leads

to the formation of a Knudsen layer (KL): a local thermo-

dynamically non-equilibrium region extending ∼ O(λ) from

the surface. Fig. 1 is a schematic of the gas velocity pro-

file in the KL in a shear-driven flow. Although the Navier-

Stokes-Fourier (NSF) equations with classical velocity-slip

and temperature-jump boundary conditions [1] can often ad-

equately predict the flow field outside the KL, they fail to

capture the non-equilibrium flow behavior of the KL itself

[2].

In the KL, gas molecule-surface collisions are more fre-

quent than gas molecule-molecule collisions, i.e. the gas

MFP will effectively be reduced in the KL. It is well-known

from the kinetic theory of gases that viscosity and thermal

conductivity can be interpreted in terms of the collisions

of gas molecules, and of the free paths of the molecules

between collisions. Linear constitutive relations for shear

stress and heat flux are no longer necessarily valid in the

KL. Traditionally, kinetic methods, such as directly solving

the Boltzmann equation [3] or the direct simulation Monte

Carlo (DSMC) method [4], can offer more accurate descrip-

tions of non-equilibrium flows. However, these methods are

computationally expensive for low-speed flows in the slip-

and transition-flow regimes, and not always practical for en-

gineering design and simulation purposes.

Wall-distance scaling functions for the constitutive rela-

tionships for shear stress and heat flux have been proposed

recently: Kn-dependent functions [5], and power-law scal-

ing of constitutive relations [6–8] to extend the validity of

hydrodynamic models to the transitional regime gas flows.

This phenomenological observation of the bounding wall ef-

fect on the constitutive laws has been interpreted as the mod-

ification of the gas MFP due to gas molecule/wall surface

collisions [9]. Guo et al. [10] implemented the effective

MFP expression derived by Stops [11], in conjunction with a

second-order slip boundary condition, and obtained good re-

sults for isothermal and non-isothermal pressure-driven rar-

efied gas flows when compared to conventional higher-order

slip and jump models.

Stops’ [11] geometry-dependent effective MFP, λeff(S),

is defined as the average distance a gas molecule will

travel between consecutive collisions with either another gas



molecule or the solid wall. Stops used the classical proba-

bility distribution function, ψ(r) = λ−1 exp (−r/λ) [12], for

which the probability that a given gas molecule will travel

a distance in the range r to r + dr between two successive

collisions is ψ(r)dr. If the gas is not bounded, the MFP of

the gas molecule ensemble is simply
∫

0
∞

Nrψ(r)dr/N = λ,

where N is the total number of molecules. If a solid bounding

surface is included in the system, however, some molecules

will hit the surface and their free flight paths will be termi-

nated. The MFP of all the gas molecules in the system will

therefore be smaller than λ, due to this boundary limiting

effect. Recently, Arlemark et al. [13] developed a probabil-

ity function-based effective MFP (λeff(A)) expression, also

using the classical exponential form of the distribution func-

tion. However, comparison of both of these effective MFP

profiles [11, 13] with molecular dynamics (MD) simulation

data [14, 15] shows that both models are useful only up to

Knudsen numbers of about 0.2.

The MD simulation data [14] illuminates the limitations

of the conventional exponential form of probability distribu-

tion function for gases in the transition regime. Stops [11]

also pointed out that the exponential form of distribution

function only provides an accurate description of a gas un-

der thermodynamic equilibrium. While exponential proba-

bility distribution functions are fundamental models in many

transport processes, they miss some features of transport in

non-equilibrium systems [16]. This is evident in, e.g., the

transport of tracer particles released in pressure-gradient-

driven turbulence [17], transient photoconductivity exper-

iments [18] and the dynamics of electrons due to Lang-

muir waves [19]. This has triggered a series of studies in

which the Brownian paradigm was abandoned, and anoma-

lous diffusive transport description proposed using Lévy and

power-law (PL) probability distributions [14, 20]. Recently,

Lockerby and Reese [8] proposed a PL scaling, based on the

kinetic theoretical results of Sone [3], for the stress/strain-

rate relationship in isothermal KLs. This provided more

accurate results than conventional constitutive relationships

with higher-order slip models.

In this paper, we hypothesize an effective MFP based on

a PL probability distribution of the molecular free paths in a

gas close to a planar wall. We show that this model captures

some of the nonlinear trends associated with the physics of

transition regime gas flows. Our PL-based effective MFP is

validated against MD simulation data [14] up to Kn = 2, and

also compared with the theoretical models of Stops [11] and

Arlemark et al. [13]. Non-linear constitutive relationships

are then developed through this new geometry-dependent

effective MFP model. The resulting continuum equations,

in conjunction with a second-order slip boundary condition,

are then tested on both isothermal pressure-driven gas flows

and thermal creep flows in micro/nano-channels. Results are

compared with the solution of the Boltzmann equation, and

DSMC and experimental data. The relative merits of this

new constitutive scaling proposition are then discussed.

2 An Effective Molecular Mean Free Path

2.1 Theoretical development

Let us consider a group of similar gas molecules moving

through a gas at a speed v and experiencing a collision rate of

θ̇v, where the molecular mean free path λ = v/θ̇v. The prob-

ability distribution of free paths can be expressed as [12]:

ψ(r) =
1

λ
exp

(

−|r|
λ

)

, (1)

where |r| is the length vt of free path that has been travelled

at time t by each molecule. We can easily integrate Eq. 1

under thermodynamic equilibrium conditions. By thermody-

namic equilibrium we mean that the probability of a certain

microscopic state (such as θ̇v) averaged over the details of the

interactions, does not change in time or space [21]. So ψ(r),
the probability distribution of free paths, is only exponential

under thermodynamic equilibrium conditions and when the

gas is unbounded.

In a rarefied gas system, in which gas molecules may

not suffer sufficiently frequent collisions with other gas

molecules to attain equilibrium conditions, deviations from

thermodynamic equilibrium may have substantial effects. It

is certainly difficult to evaluate what the probability distribu-

tion function ψ(r) is, as local fluctuations in θ̇v will be signif-

icant in non-equilibrium situations [14]. However, by means

of appropriate physical arguments, we can hypothesize a dis-

tribution function that may be more appropriate for non-

equilibrium conditions than the exponential one above [21].

Montroll & Scher [20] pointed out that a finite moment

of the probability distribution function implies an exponen-

tial character of the randomness. So results obtained using

exponential forms of the distribution functions are essentially

the same as those for homogeneous media at equilibrium. A

distribution function with diverging higher-order moments

(such as the standard deviation) is essential to anomalous

transport. In transient photoconductivity experiments, con-

centration distributions may have a long tail such that the

standard deviation is diverging. This long-tail problem is

common to various flows in non-uniform media, in many

fields such as chemical engineering and environmental sci-

ences [22].

Montroll & Scher [20] theoretically showed that anoma-

lous electron transport is characteristic of a distribution func-

tion with diverging higher-order moments, in particular a

power-law (PL) form of the distribution function. Second

moments (i.e. standard deviation) diverge for the distribution

functions describing the probability density distribution of

electrons in photoconductivity experiments. However, the

first moment also diverges in this case, whereas it should be

finite in the gas flow case in order to achieve a finite MFP

value.

We therefore hypothesize a PL form with diverging

higher-order moments, for the probability distribution func-

tion for non-equilibrium gas MFP, instead of the classical

exponential form of distribution function. Here we propose

for investigation the following form of molecular free path



distribution function:

ψ(r) = C(a+ r)−n, (2)

where a and C are constants with positive values that are de-

termined through the zero and first moments. The range of

values for the exponent n can be obtained by making one of

the higher-order moments divergent. Zero and first moments

are given as follows:

1 =

∫

0

∞

C(a+ r)−ndr, (3)

λ =
∫

0

∞

Cr(a+ r)−ndr. (4)

Equation 3 requires the probability to range only from zero

to one. Equation 4 defines the unconfined, conventional MFP

value, λ. It then follows that

C = (n−1)an−1, (5)

a = λ(n−2). (6)

The MFP for thermal cases is defined as λT = 1.922λHS [3],

where the subscript HS denotes hard-sphere molecules. The

modified constants for thermal cases are therefore:

CT = (n−1)(aT )n−1, (7)

aT = λT (n−2). (8)

If n < 2, then a < 0, and the distribution function is negative.

The standard deviation (second moment) of the distribution

function given by Eq. 2 diverges only for n ≤ 3; so we must

have 2 < n≤ 3. If one wishes to make the ith moment diverg-

ing, then nmax = i+1. For a finite n, the distribution function

will have finite moments and describes a system deviating

from equilibrium. Thus, n acts as a decisive parameter to de-

fine the extent of deviation from equilibrium. In the present

paper, we test n = 3 unless otherwise explicitly stated.

The effective MFP expression developed by Stops [11],

λeff(S), was derived using solid-angle-analysis. Here we use

instead the approach of Arlemark et al. [13], based on an

integrated form of the probability distribution function, i.e.

p(r) =

∫

r

∞

ψ(r)dr =

[

1−
(

1+
r

a

)1−n
]

, (9)

which describes the probability a gas molecule travels a dis-

tance r without experiencing a collision.

Our model is derived for the two-planar-wall configura-

tion shown in Fig. 2. We use the notation r− if a test molecule

is traveling in the negative y-direction, and r+ if the molecule

is traveling in the positive y-direction. We also use the nota-

tions θ− and θ+ for the equally probable zenith angle trav-

eling direction of the molecule. These quantities are related

through r− = (H/2+y)/cosθ− and r+ = (H/2−y)/cosθ+,

where H is the distance between the two parallel plates.

The MFP based on the PL form of distribution function,

λeff(PL), is expressed by weighting the unconfined MFP, λ,

with p(r) as follows:

λeff(PL) =
λ

2

[
p(r−)+ p(r+)

]

= λ

{

1− 1

2

[(

1+
r−

a

)1−n

+

(

1+
r+

a

)1−n
]}

.(10)

A 3-dimensional MFP depending on the gas molecule’s dis-

tance to a surface is then obtained by averaging the free path

with respect to θ− and θ+ in the range [0,π/2] using the

mean integral theorem,

< λeff(PL)(θ) >=
2

π

∫

0

π/2

λeff(PL)(θ)dθ, (11)

where the integration domain is illustrated in Fig. 3 for a gas

molecule travelling in the negative y-direction. Averaging

over the free path in Eq. (11), using Simpson’s numerical

integration involving 16 subintervals, results in λeff(PL) =
λβPL, where

βPL = 1 − 1

96

[(

1+
H/2− y

a

)1−n

+

(

1+
H/2+ y

a

)1−n

+ 4
8

∑
i=1

(

1+
H/2− y

acos[(2i−1)π/32]

)1−n

+ 4
8

∑
i=1

(

1+
H/2+ y

acos[(2i−1)π/32]

)1−n

+ 2
7

∑
i=1

(

1+
H/2− y

acos[iπ/16]

)1−n

+ 2
7

∑
i=1

(

1+
H/2+ y

acos[iπ/16]

)1−n

], (12)

which is the normalized effective MFP based on the power-

law distribution function. It is evaluated using the rarefaction

parameter Kn, as a is dependent on the unconfined mean free

path. For thermal cases the expression requires aT .

From Eq. (12), it is easy to see that our PL model satis-

fies the physically intuitive requirements for Kn → 0, i.e.

βPL |wall ≈ 1/2, and βPL |bulk ≈ 1. (13)



It is interesting to note that the phenomenological vis-

cosity model derived by Fichman and Hetsroni [23], which

also considered KL effects, gives an effective transport prop-

erty value at the wall that is half its bulk value.

2.2 Comparison with Molecular Dynamics simulations

The β-function of Eq. (12) is now compared with MD

simulation results [15] and the classical exponential proba-

bility function models of Stops [11] and Arlemark et al. [13],

for both single- and parallel-wall cases. Single-wall results

are deduced by assuming that the second wall is located

an infinite distance from the first. In the case of parallel

walls, KL overlap becomes apparent as Kn increases. Ar-

lemark and Reese [15] carried out MD simulations using

50520 Lennard-Jones molecules, which yielded results that

are within 1% accuracy. All simulations were carried out

assuming a planar smooth bounding surface.

Figure 4a shows the variation of normalized effective

MFP profiles (i.e. β) with normalized wall distance, y/λ. Our

PL model predictions are in close agreement with MD sim-

ulations, although minor overpredictions are noticed in the

bulk region. The PL model has a sharp gradient close to the

wall, while both of the previous exponential-based models

have shallower gradients and underpredict the MFP values

in the wall vicinity. All three theoretical models converge to

a similar value in the bulk region, as expected.

Results for the normalized MFP between two parallel

surfaces are presented in Fig. 4b. MD simulation results

for planar smooth surfaces are compared with both PL and

exponential distribution-based models for various Kn in the

transition regime. At Kn = 0.2, which is just beyond the

slip-flow regime, the PL model is in fair agreement with the

MD data in the near-wall region, but deviates slightly in the

bulk region. The two exponential based models underpre-

dict in the KL, but Arlemark et al. [13] achieve good agree-

ment with the MD data in the bulk region. As the value of

Kn increases, and the flow becomes increasingly rarefied, the

classical models fail to predict the effective MFP in the wall

region, or in the bulk. Both classical models underpredict

the effective MFP values, although the Arlemark et al. re-

sults are slightly above Stops’. Effective MFP values pre-

dicted by the PL model compare very well to the MD data

for both Kn = 0.5 and 1, although it overpredicts for Kn = 1

in the bulk. By Kn = 2, when the Knudsen layers from each

surface completely overlap each other, the PL model shows

significant deviations from the simulation data and overpre-

dicts in the near-wall region, although there is fair agreement

in the bulk region. The MD data shows a relatively sharp

gradient of effective MFP in the near-wall region, compared

to the theoretical predictions.

3 A new way of modeling rarefied gas flows

3.1 Isothermal pressure-driven gas flows

To test the merits of our PL-based effective MFP scaling,

we further first consider isothermal pressure-driven gas flow

along a planar-wall channel with walls a distance H apart,

as depicted in Fig. 2. The channel height H is assumed to

be much smaller than the channel width, so that the fluid es-

sentially sees two infinite parallel plates separated by H, at

coordinates y = ±H/2. The flow is assumed to be fully hy-

drodynamically developed and two-dimensional, isothermal,

laminar and steady, with a low Reynolds number (Re) so that

inertial effects may be neglected.

With these assumptions, the governing equation is:

0 = −∂P

∂x
− ∂τ

∂y
, (14)

where x is the streamwise coordinate, y the wall-normal co-

ordinate, P the pressure and τ the stress, which is given as:

τ = −µ
[
∇U+(∇U)tr

]
+

(
2

3
µ−κ

)

(∇.U)I, (15)

where µ is the fluid dynamic viscosity, κ the bulk viscosity,

I the identity tensor and tr the transpose operator.

In Eq. (15) we can neglect volume dilation effects for

rarefied gases [24]. From the kinetic theory of gases, the fluid

viscosity can be explained in terms of the collisions between

gas molecules, and of the free paths which the molecules de-

scribe between collisions. The collision time, or equivalently

the free flight path between two successive collisions of a gas

molecule, is closely related to the momentum exchange. The

unconfined MFP is related to the shear viscosity [25]:

µ = ρ
λ

√

π/2RT
, (16)

where R is the specific gas constant and T the gas tempera-

ture.

Equation (16) is assumed to be valid only for flows that

are quasi-equilibrium. As discussed in section 2, within the

KL the flight paths of gas molecules are affected by the pres-

ence of a solid wall. Using Eqs. (12) and (16) we can there-

fore posit a non-linear stress/strain-rate relation:

τ = − µβPL
︸ ︷︷ ︸

µeff(PL)

∂Ux

∂y
, (17)

where Ux is the fluid velocity in the axial direction.

Using Eq. (17) in Eq. (14) results in the following gov-

erning equation:

µ
∂

∂y

(

βPL
∂Ux

∂y

)

=
∂P

∂x
. (18)



This needs to be solved in conjunction with an appropriate

slip boundary condition to capture the non-equilibrium phe-

nomena in the slip and transition flow regimes.

The first-order slip boundary condition proposed by

Maxwell [1] fails to predict the Knudsen-minimum in the

mass flow rate [26], and researchers have consequently pro-

posed higher-order slip models for a wide-range of Knudsen

numbers. A review of a number of these higher-order slip

models can be found in Reese and Zhang [27]. Deissler [28]

derived a second-order slip boundary condition based on the

concept of MFP for momentum and energy transfer, which

can be expressed in its generalized form as:

Uslip = −C1λ

(
∂Ux

∂y

)

w

−C2λ2

(
∂2Ux

∂y2

)

w

, (19)

where Uslip is the slip velocity at the fluid-surface interface,

and w indicates a quantity evaluated at the surface. While

there is no general consensus on the slip coefficients C1 and

C2, C1 is set to ∼ 1 by many authors and C2 has a wide range

from −0.5 to 5π/12 [27]. Cercignani [29] proposed C2 to

be 0.9756 from kinetic theory considerations, and Hadjicon-

stantinou [30] corrected C2 to 0.31.

It is important to note that Maxwell [1] and Deissler [28]

derived first- and second-order slip boundary conditions as-

suming that the MFP is constant in the wall-adjacent gas

layer. Guo et al. [10] proposed the following heuristic slip

boundary condition to take into account the KL correction:

Uslip = −C1

(

λeff
∂Ux

∂y

)

w

−C2

[

λeff
∂

∂y

(

λeff
∂Ux

∂y

)]

w

.

(20)

This simply reduces to the conventional second-order

slip boundary condition (19) if there is no KL, i.e. if λeff =
const. In the present analysis, we implement this second-

order slip boundary condition, and use λeff(PL) given by Eq.

(12). Values of C1 and C2 are chosen as 1 and 0.31 [30] re-

spectively for the results reported below.

3.1.1 Solution procedure

We require results for the flow velocity profile across the

channel, and some integral flow parameters, through solution

of the governing equation with the slip boundary condition

discussed above. In addition to the governing Eq. (18) and

slip boundary condition (20), the ideal gas law is

P = ρRT, (21)

and the Knudsen number is defined as

Kn =
λ

H
. (22)

The wall-normal coordinate, y, is normalized by H, and

the axial velocity, Ux, by the free-molecular velocity U0 =

−2H(∂P/∂x)/(ρ
√

2RT ) [31]. Using Eqs. (16) and (12),

Eq. (18) in normalized form (indicated by ∗) is

∂

∂y∗

(

βPL
∂U∗

∂y∗

)

= −
√

π

2Kn
, (23)

and Eq. (20) in normalized form is

(U∗)slip = − C1Kn

(

βPL
∂U∗

∂y∗

)

w

− C2Kn2

[

βPL
∂

∂y∗

(

βPL
∂U∗

∂y∗

)]

w

. (24)

Equation (23) is numerically solved for the normalized ax-

ial velocity profiles U∗ by applying the slip boundary condi-

tion (24) at the upper wall (y∗ = 0.5) and a symmetry condi-

tion at the centre of the channel (y∗ = 0).

The solution of the conventional Navier-Stokes (NS)

equations, with constant viscosity and first-order velocity

slip, and using the unconfined MFP, is:

U∗ =

√
π

16Kn

[
1−4(y∗)2 +4C1Kn

]
, (25)

while the NS solution with second-order velocity slip using

the unconfined MFP, is:

U∗ =

√
π

16Kn

[
1−4(y∗)2 +4C1Kn+8C2Kn2

]
. (26)

The normalized mass flow rate G is in all cases

G =
2
∫

0
H/2ρUxdy

ρUoH
=

∫

0

0.5

U∗dy∗. (27)

3.1.2 Results

In what follows, the PL model is the modified govern-

ing equation (23), with the use of effective MFP (12) and

the second-order slip boundary condition (24). The cross-

sectional velocity profiles of pressure-driven Poiseuille flow

over a range of Knudsen numbers are presented in Fig. 5.

Our PL model is compared with a Boltzmann solution [31]

and with three hydrodynamic models: conventional first-

(Eq. 25) and second-order (Eq. 26) slip models, and the R26

equations [32]. At Kn = 0.113, which is just beyond the slip-

flow regime, the four hydrodynamic models predict similar

values of slip velocity at the wall and all are close to the

solution obtained from the Boltzmann equation. The con-

ventional NS equations with both first- and second-order slip

boundary conditions significantly underpredict the velocity

in the bulk region. Our PL model and the R26 equations are

in fair agreement with the Boltzmann solution, although the



PL model slightly underpredicts, and the R26 equations over-

predict, the maximum velocity. At Kn = 0.226, the NS equa-

tions with slip boundary conditions overpredict the slip ve-

locity and underpredict the maximum velocity at the centre.

The second-order slip solution lies above the first-order slip

results. Both our PL model and the R26 equations compare

well with the solution obtained from the Boltzmann equa-

tion, however, the R26 equations show minor deviations in

the wall-slip velocity. At higher Kn, the flow enters the tran-

sition regime and the non-equilibrium regions from each of

the parallel walls start to overlap each other. Hence, the first-

order slip model is solved only up to Kn = 0.226, and the

second-order slip model up to Kn = 1.128. At Kn = 0.451

and Kn = 0.677, the PL model and R26 equations compare

reasonably well with the Boltzmann solutions, although the

R26 equations overpredict the slip velocity. At Kn = 1.128,

deviations from the Boltzmann predictions are relatively less

for our PL model than for the R26 equations.

Predictions of normalized slip velocity (U∗)slip are pre-

sented as a function of Kn in Fig. 6, and compared to Boltz-

mann simulation data [31]. First-order slip is a constant, and

higher than the Boltzmann result for Kn < 1 and lower for

Kn > 1. The second-order NS slip is too high, particularly

at large Knudsen numbers. Our PL model and the R26 equa-

tions agree well with the Boltzmann solution up to Kn ≃ 0.5.

Both models overpredict the wall-slip velocity for Kn > 0.5,

though the deviations are relatively less with the PL model.

It is evident from Figs. 4 and 5 that in the transition

regime, non-equilibrium effects are no longer limited to the

wall-adjacent layer, but prevail in the bulk flow due to the

overlap of Knudsen layers. Hence, simply using a higher-

order slip model with modified slip coefficients may result

in good wall slip-velocity results but will not improve the

overall predictive capabilities of the NS equations into the

transition regime. The accurate prediction of integral flow

parameters in micro/nano-conduits is important in engineer-

ing MEMS devices. To obtain the integral flow parameters

correctly, it is essential that field variables such as MFP and

cross-sectional velocities are correct. However, it is impor-

tant to note that the accurate prediction of integral flow pa-

rameters does not inturn guarantee that all the field variables

are predicted accurately.

Figure 7 shows the variation of normalized flow rate G

with inverse Knudsen number, δm =
√

π/(2Kn). In Fig. 7a,

our PL model results are compared with experimental data

[33], BGK simulation data [34] and the NS equations with

Stops’ MFP model and the second-order slip condition (24).

In the slip flow regime, both the PL model and Stops’ model

agree reasonably well with the experimental data and the

BGK simulation results. However, around δm ∼ 1, Stops’

MFP based slip model starts to significantly underpredict the

flow rate, whilst our PL model follows the BGK simulation

data reasonably well until Kn reaches about 10.

Flow rate results of our PL model with n = 3 are shown

in Fig. 7b to compare with the exact Boltzmann solution [31],

DSMC data [35], R26 results [32], NS equations with first-

and second-order slip, and our PL model with first-order slip.

Here the first-order slip for the PL model results are obtained

simply by setting C2 = 0. For Kn > 0.1, which is just be-

yond the slip flow regime, the NS equations with first-order

slip underpredict the flow rate, although the other hydrody-

namic models are in good agreement with the Boltzmann and

DSMC data up to Kn ∼ 0.2. The NS results with second-

order slip are good up to Kn ∼ 0.5, but significantly overpre-

dict beyond that. The R26 equations show good agreement

until Kn ∼ 2. But our PL model with second-order slip fol-

lows the Boltzmann results up to Kn ∼ 10. Both PL and NS

models with first-order slip fail to predict the Knudsen min-

imum. The other three hydrodynamic models show a Knud-

sen minimum; however, the NS equations with second-order

slip predict the minimum at a value of Kn smaller than that

predicted by the Boltzmann equation.

3.2 Thermal transpiration

To further test the applicability of our PL-based effec-

tive MFP scaling, we consider thermal transpiration of a rar-

efied gas along a planar-wall channel with walls a distance

H apart. We consider the steady-state situation of a closed-

ended channel with insulated sidewalls, filled with a single-

component rarefied gas. The channel ends are maintained at

different uniform temperatures. Reynolds’ [36] experimen-

tal and Maxwell’s [1] independent theoretical studies were

the first to describe the phenomenon of thermal transpiration

(creep), where the fluid starts moving in the direction from a

cold region towards a hot region. Due to this flow, a pressure

difference between the hot and cold ends of the capillary will

be established, and a pressure return flow will occur that will

partially or completely balance the thermal creep flow. The

physical explanation of thermal creep has been presented by

Sone [3].

3.2.1 Solution procedure

The flow is assumed to be fully hydrodynamically devel-

oped and two-dimensional, laminar and steady, i.e. zero net

mass flow, with a low Reynolds number (Re) so that inertial

effects may be neglected.

With these assumptions, the governing equations are:

0 = −∂P

∂x
− ∂τ

∂y
, (28)

and

0 = −∂q

∂x
, (29)

where q is the heat flux, which is given as:

q = −k
∂T

∂x
, (30)



where k is the thermal conductivity, defined as [25]:

k = ρCp

λT
√

π/2RT
. (31)

Using the non-dimensional effective MFP for a thermal

case, βPL(T), we therefore posit a non-linear constitutive re-

lation for heat flux:

q = −kβPL(T)
∂T

∂x
. (32)

Equations (28), (29) and (32) are solved in conjunction with

the following slip boundary condition:

Uslip = −C1

(

λeff
∂Ux

∂y

)

w

−C2

[

λeff(T)
∂

∂y

(

λeff(T)
∂Ux

∂y

)]

w
︸ ︷︷ ︸

UPslip

+
3

4

kβPL(T)

CvρT

(
∂T

∂x

)

w
︸ ︷︷ ︸

UT slip

, (33)

where UPslip and UT slip are the isothermal and thermal creep

components of the slip velocity. This boundary condition

simply reduces to the conventional slip condition if there is

no KL, i.e. if λeff = const.
The wall-normal coordinate, y, is normalized by H, i.e.

y∗ = y/H and the axial velocity components, UT , the ther-

mal creep velocity and UP, the Poiseuille velocity, by the

free-molecular velocities UT 0 =
√

2RT (H/T )(∂T/∂x) and

UP0 = −2H(∂P/∂x)/(ρ
√

2RT ). Using Eqs. (16, 31, 12 and

18) we solve for the normalized velocity components (U∗
T ,

U∗
P), normalized flow rate components (GT = 2

∫

0
0.5

U∗
T dy∗,

GP = 2
∫

0
0.5

U∗
Pdy∗), and thermo molecular pressure differ-

ence (TMPD) i.e. (T/P)(dP/dx)/(dT/dx), with the as-

sumption of zero net mass flow rate at steady state.

3.2.2 Results

The thermal creep components of the cross-sectional ve-

locity profiles over a range of Knudsen numbers are pre-

sented in Fig. (8). Our PL model for this thermal case is

validated against a Boltzmann solution [31] and compared

with two hydrodynamic models: a conventional slip solution,

and the Arlemark et al. [13] exponential-based results. At

Kn = 0.2, which is just beyond the slip-flow regime, the PL

MFP model predicts a wall-slip velocity close to the solution

obtained from the Boltzmann equation, and displays minor

deviations in the KL. The exponential MFP model produces

shallower gradients in the KL, compared to the PL model,

and underpredicts the velocities in the bulk flow region. The

conventional NS equations with second-order slip boundary

conditions overpredict in both the KL and bulk flow regions.

At Kn = 0.8 and Kn = 2.0, which are in the transition regime,

the exponential model overpredicts in both the Knudsen layer

and the bulk flow. The PL model has fair agreement in the re-

gion close to the wall, with minor deviations in the bulk flow

region. At even higher Kn, the non-equilibrium regions from

each of the parallel walls start to overlap each other: the PL

model underpredicts, and the exponential model overpredicts

the results (not shown in this paper, see Dongari et al. [37]).

Figure (9) shows the variations of the thermal creep and

Poiseuille components of the normalized flow rates (GT and

GP) with Knudsen number. Our PL model results are com-

pared with hard sphere Boltzmann results [38], BGK sim-

ulation data [34], the NSF equations using the exponential

MFP model, and a conventional 2nd order slip solution. The

classical slip solution has fair agreement up to the slip flow

regime, but diverges with further increase in Kn. The expo-

nential MFP model predicts good results up to Kn ∼ 0.5 in

the case of the thermal creep component and up to Kn∼ 2 for

the Poiseuille component, but overpredicts and underpredicts

for higher Kn, respectively. The PL model is in fair agree-

ment with the hard sphere data up to Kn ∼ 10, with minor

underpredictions for both GT and GP.

Figure (9) also shows the TMPD variation with Knud-

sen number. This parameter is of great interest in micro/nano

machine engineering, as it describes the maximum pressure

difference that a thermal creep pump can produce for a given

temperature difference applied across the channel ends. The

BGK simulation underpredicts throughout the Kn regime,

which may be due to the limitations of the BGK model when

applied to non-isothermal flow cases.

4 Conclusions

We have developed new power-law probability distribu-

tion function for the free-paths of gas molecules in order to

better describe non-equilibrium particularly flow physics, in

the Knudsen layer. This power-law model for mean free path

has been validated against MD simulation data, and com-

pared with other existing theoretical models. A simple con-

stitutive scaling approach to model the Knudsen layer flow

within a conventional continuum fluid dynamics framework

has also been described. This was tested for the cases of

isothermal pressure-driven gas flow and thermal transpira-

tion of a rarefied gas in micro/nano channels.

In general, our new power-law MFP model is more ac-

curate than the conventional model in capturing many non-

equilibrium effects in the transition regime. Our results for

both isothermal and thermal creep flows indicate that it pro-

vides a reasonable description of the nonlinear flow charac-

teristics in the Knudsen layer up to Kn ∼ O(1). In predict-

ing integral flow parameters, such as normalized flow rate

and the TMPD, the power-law model provides a significant

improvement up to Kn∼ 5. The classical exponential proba-

bility distribution function MFP models provide accurate re-

sults in the Knudsen layer only up to Kn ∼ 0.2, and integral

flow parameter results are reasonable up to Kn ∼ 1.

The NSF equations with higher-order slip boundary con-

ditions can correctly capture the surface slip by tuning the

slip coefficients, but do not necessarily then provide accurate



velocity profiles in both the Knudsen layer and the bulk flow

regions. While the NSF equations with an exponential-based

MFP can provide good velocity profiles in the Knudsen layer

up to the early transition regime, with the new power-law

model we can also adjust the velocity profile at a fixed Knud-

sen number by using the exponent n.

The advantage of the power-law MFP constitutive scal-

ing technique is that it is based on simple physical arguments,

and it can easily be implemented in conventional CFD codes

in order to capture some of the trends associated with the

complex non-equilibrium physics of the Knudsen layer.

While it is important not to draw strong conclusions

based on just two test cases, the present results may motivate

future work into understanding the origin of non-equilibrium

physics in rarefied gases, including:

(i) whether the power-law behaviour is appropriate for rar-

efied gases in complex geometries, with specular-diffusive

and explicit rough walls, and also for non-isothermal cases;

(ii) developing a separate non-exponential distribution func-

tion to describe the thermal Knudsen layer (in particular, in

order to predict the bimodality in the cross sectional temper-

ature profile);

(iii) revisiting higher-order velocity slip and temperature

jump boundary conditions, that are conventionally derived

under the assumption of constant MFP in Knudsen layers,

using geometry-dependent effective MFP models.
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Fig. 1. Schematic of the momentum Knudsen layer (KL) close to a

planar wall, showing the microscopic slip u1(x,0); the macroscopic

slip u(x,0) is required when using the classical Navier-Stokes equa-

tions with a slip boundary condition. Here s denotes the plane, at the

outer edge of the KL.

Fig. 2. A molecule confined between two planar walls with spacing

H . The molecule has an equal probability to travel in any zenith angle

θ− or θ+ or to travel in either the positive or negative y-direction. The

molecule under consideration is assumed to have just experienced

an intermolecular collision at its current position H/2+ y.



Fig. 3. A molecule at a distance H/2 + y from a planar wall; pos-

sible trajectories for travelling in the negative y-direction in cylindrical

coordinates [H/2+ y,(H/2+ y) tanθ].
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