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Abstract

The origin of the long carrier-lifetime in Lead halide perovskites is still under debate and, among
different hypothesis, the formation of large polarons preventing the recombination of charge
couples is one of the most fascinating. In this work, using state of the art ab initio calculations,
we report a systematic study of the polaron formation process in metal halides perovskites
focusing on the influence of the chemical composition of the perovskite on the polaron
properties. We examine variations in A-site cations (FA, MA, Cs and Cs:MA), B-site cations
(Pb, Sn and Pb:Sn) and X-site anions (Br, I). Our study confirms the stronger structural
distortions occur for Cs than for MA and FA, with the effect of different A-site cations being
almost additive. For the same A-cation, bromide features stronger distortions than iodide
perovskites. The pure Sn phase has an almost double polaron stabilization energy than the pure
Pb phase. Surprisingly, the trend of polaron stabilization energy is non monotonic in mixed
Sn:Pb perovskites, with a maximum for small Sn percentages. Polaron formation is found to be
promoted by bond asymmetry, ranging from small to large polarons in mixed Sn:Pb perovskites

depending on the relative Sn percentage.
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Metal halide perovskites with chemical formula ABX3, where A= monocation, B= dication and
X= halide, have gained great interest as very promising materials for efficient solar cells.! These
materials provide high power conversion efficiencies in solar cell devices due to a direct band
gap with an associated large absorption cross section,” ® and to low recombination rates of the
photo-generated charge carriers. Very long lifetimes and diffusion paths of electrons and holes
are reported in this class of materials, even in presence of moderately high densities of defects in
the lattice, coupled to high carriers mobilities.*® The origin of the low electron-hole

recombination rate is still under debate and multiple possibilities have been proposed by the
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community, e.g. Rashba effect,” '© a ferroelectric behavior''!?, or the formation of large
polarons.!* 15 The Rashba effect is the splitting of VB and CB of the perovskite into two bands
laterally separated in momentum and in energy due to spin-orbit coupling, particularly relevant
for the heavy Pb and I nuclei. This leads to a change of the band gap from direct to indirect, by
partially suppressing the radiative recombination rate of the photo-generated carriers.” ' 7 On
the other hand, formation of ferroelectric domains may promote the spatial separation of
electrons and holes, thus lowering the spatial overlap and the carrier recombination rate.!! !2
Formation of polarons has also been proposed to explain the low recombination rates of charge
carriers in lead-halide perovskites.!* !> Due to the soft nature of the lattice, photo-generated
charge carriers can couple to polar optical phonons by generating polarons. In this process the
free carriers are stabilized by, and accommodate a local lattice distortion induced by the optical
phonon. The electron—phonon coupling strength determines both the binding energy and the
spatial extension of the polaron.'® Few previous studies have attempted to explain the nature of

D 15, 19-22

polarons and their binding energy in 3 as well as in 2D and OD perovskites.”>? In a

previous work, by a combined experimental-theoretical work based on optical Kerr effects



experiments and hybrid functional Density Functional Theory (DFT), some of us showed that in
lead halide perovskites polarons extending over several unit cells can form under photo-
excitation.!> Formation of such ‘large polarons’ has different implications for carriers dynamics
than formation of ‘small polarons’, commonly encountered in e.g. oxides and organics, where
the structural distortion occurs locally.?! Formation of small polarons is usually facilitated by the
presence of lattice defects and can activate charge trapping processes with detrimental effects for
the carrier transport and overall solar cell device efficiency.?® 2’ On the other hand, formation of
large polarons is mostly associated to a bending of the band edges (valence band upshift and
conduction band downshift for positive and negative carriers, respectively) while partly retaining
the delocalized nature of the free carrier.?®?® A different spatial localization of electron and hole
polarons in the lattice, associated to opposite structural displacements (i.e. a bond compression

> is essential to limit the associated

for a hole and a bond elongation for an electron), !
recombination rates. Theoretical works based on hybrid DFT-based molecular dynamics
confirmed that the coupling of the free charge with the lattice distortion leads to a localization of
holes and electrons in different planes of the MAPbI; perovskite, thus reducing their spatial
overlap and recombination probability.*® In the thermalization process, the polaron phonon cloud
get equilibrated by transferring thermal energy to the lattice, leading to a cooled charge carrier
state. It has been proposed that the long time decay (>100ps) of hot carriers in halide perovskites
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can be attributed to the large polaron screening at low excitation density” ™, whereas at higher

excitation densities the cooling of hot phonons is slower and can reheat the electronic degrees of
freedom®> 3> 3¢ (“phonon-bottleneck™) caused by large polaron overlapping.’’ Time-resolved

optical Kerr effect spectroscopy estimated large polaron formation times to be around 0.3 ps to

0.7 ps in MAPbBr3 and CsPbBr; perovskites.'> Using large-scale ab initio derived tight-binding



model, Zheng et al. reported that the large polaron slows down the electron mobility by roughly a

factor of two.3®

Despite these body of studies little is known about the polaron physics in different
perovskites and in particular on the effect of different chemical composition on polaron
energetics and spatial distribution. Understanding the role of the organic/inorganic A-site cations
on the polaron physics is particularly important in relation to the recent practice of introducing
mix-cations in order to increase the stability of the perovskite lattice.’® On the other hand, the
impact of the divalent metal substitution on the B-site is particularly interesting due to the raising
interest in mixed Pb-Sn and lead-free perovskites which share similar properties with the most
efficient lead-halide perovskites. Longer carrier lifetime*® and intermediate bandgap between
than that of two APbX3 and ASnX3 end compositions *!*¢ in mixed Pb-Sn perovskites have been
reported, with the additional possibility of tuning the associated bandgap by varying the Sn:Pb
ratio. This paves the way to the design of novel full perovskites tandem cells.>® Notably, the
notorious instability of Sn-based perovskites can be significantly improved by Pb alloying in
mixed compositions.** 474 Similarly, variations on the X halide are expected to lead to
quantitative differences in the response to charges, due to the different energetics and spatial
extent of the halide p orbitals. While iodide perovskites are dominating the solar cell literature,

bromide perovskites are interesting also for lighting applications.’*

In light of the huge interest in tuning chemical perovskite composition towards specific
optoelectronic response, in this work we systematically investigate the nature, spatial extent and
energetics of polaron formation in metal halide perovskites by focusing on the effects of A, B
and X substitution on the polaron stabilization energy and the resulting coupling with the lattice

phonons. Starting from the prototype MAPDI; perovskite, we have collectively investigated



substitution at the A- (Cs — MA — FA), B- (Pb — Sn) and X-sites (I — Br), considering in
selected cases mixed phases, such as the A-mixed (Cs/MA)PbI3 and the B-mixed MA(Sn/Pb)I3
perovskites. We find that polaron formation is enhanced by apolar small A-cations (Cs vs. MA
and FA) and by lighter X-halides (Br vs. I), with their combined effect being roughly additive.
While pure B- perovskites (e.g. MAPbIz and MASnI3) show delocalized large polarons,
surprisingly a small polaron emerges in mixed Sn/Pb compositions in the small Sn doping
regime. Such small polaron, associated to trapping of photogenerated holes, transforms into a
delocalized large polaron upon increasing the Sn:Pb ratio to 50:50. Our results provide a
quantitative analysis of carrier/lattice coupling in a wide compositional perovskite range,

delivering at the same time the interpretative basis for the associated varying polaron properties.

To quantitatively estimate the response of the lattice to photo-generated charges we have
carried out hybrid PBE0** functional atomic relaxation of the tetragonal and/or orthorhombic
lattice (four formula units, Z=4, with the exception of FAPbl; where we used a trigonal cell with
7=3) by subtracting and adding one-unit charge to represent the positive and negative polaron,
respectively, while keeping fixed the cell parameters to the experimental values (see Text S1
and Table S1 in Supporting Information for details). The use of hybrid functionals is
fundamental in order to quantitatively investigate polarons properties in metal halides

perovskites. Semi-local functionals, e.g. the PBE functional®

, commonly employed in DFT
calculations of solids do not provide an accurate description of the electronic properties of these
systems due to self-interaction error.® 37 This error is partially corrected by including fractions

of exact exchange, as for instance in PBEO and HSEO6 functionals, or by introducing Hubbard

corrections as in the DFT+U approach.’® These methods have been successfully applied to the



study of polarons in oxides and organo-halides perovskites, by showing better accuracies

compared to semi-local functionals.!®- 3%

In our calculations we have not included spin-orbit coupling (SOC) effects on the
structural relaxation to reduce the computational effort. The inclusion of SOC has a significant
impact on the electronic structure of lead halide perovskites leading to a large stabilization of the
conduction band (CB) of ~0.8 eV %’ but it has a limited impact, ~0.1 eV, on the valence band
(VB) energetics. In order to estimate the effects of the inclusion of SOC on the electrons
relaxation energies, we have performed benchmark PBE and PBE-SOC negative relaxations on
the MAPbI; perovskite. Stabilization energies of 9 and 20 meV have been calculated without and
with SOC, respectively. This highlights that, although SOC dramatically affects the energy of the
CB in perovskites, the effects on the electron polarons stabilization energies are rather limited.
On the other hand, the properties of hole polaron are adequately described by our approach due
to the more limited effect of SOC on the VB. The polaron binding energy is defined in terms of
the relaxation energy following addition of a charge to the optimized geometry of the neutral
system. Such relaxation energies monitored for several perovskites of different composition are

summarized in Table 1.

Table 1. Polaron stabilization energy for different systems. Some values are replicated in the

rows for better understanding the trend.

Systems Polaron Stabilization Energy (meV)
+1 | -1
Variations in A-site cations
MAPDI; 46 6
FAPDI; 47* 5
Cs0.25sMAo.75Pbl; 52 9
CsPbl; 96 0
Variations in X-site anion




MAPDI; 46 6
MAPDbBr3 60 10
CsPbBr3; 161 10
Variations in B-site cation
MAPDI; 46 6
MASnNI3 75 35
CsSnl; 188 57
Variations in mixed B-site cation

MAPDI; 46 6
MAPbo,7ssno,2513 155 29
MAPbo.505n0.5013 97 65
MAPbo,soSHo,soI3 -diagonal 92 8
MAPb.25Sn0.7513 80 68
MASnNI; 75 35

* the value has been scaled by 34 to account for the same charge density.

First, we start analyzing results for the prototype tetragonal MAPDbI3. We define the polaron
stabilization energy as the energy gain adding a charge to the neutral optimized structure and the

relaxed optimized structure with the charge, see Scheme 1.
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Scheme 1. (A) Relaxed structures of CH3NH3Pblz with positive and negative charge injection.
Potential energy surfaces along with structural changes for relaxation of the CH3NH3Pbls upon
positive (B; red dot) and negative (C; blue dot) charge injection. The neutral state energy (black

dot) along the distortion coordinate is also shown in the bottom panel of (B) and (C).

We find that the hole and electron stabilization energies are 46 and 6 meV, respectively. For all

investigated perovskites the relaxation energies induced by the electron are very limited
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compared to positive relaxations, see Table 1. Upon hole injection, an average shortening of the
Pb-I bond lengths of 0.04 A and an average reduction of the equatorial Pb-I-Pb bond angle of

5.4° are calculated, in agreement with previous works.!> The hole injection weakly affects the

axial bond lengths and bond angles, see Figure 1.

Neutral

Positive

Figure 1. (a) Charge density of hole and (b) structural parameters in neutral and positively
charged state of MAPDbI;. The two different colors signify the charge accumulation and

depletion. Organic Cations have been removed for clarity in the panel (b).

The positive charge delocalizes over all the Pb-I bonds across the lattice, see Figure la. To
provide a picture of the phonon modes activated by the polaron formation, we have spanned the
cartesian lattice relaxation of all ions in the cell induced by the hole over the phonon eigen-
displacements calculated at the PBE level for the MAPbI; perovskite. The coefficients of the
spanning procedure reported in the diagram are proportional to the density of phonon modes

11



activated in the process and are reported, together with the phonon spectrum®, in Figure 2. The
added hole leads to the activation of low energy Pb-I bending and stretching modes below 150

cm’! responsible for the shortening of the Pb-I bonds showed by the structural analysis.
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Figure 2. Calculated IR spectrum (top panel) and the coefficients of the displacement vector

associated with a positive charge injection (bottom panel) in MAPDI3 projected to the normal

modes.

12



Notice that in our static picture there is very limited contribution of the MA cation vibrational
modes to the polaron formation, see Figure 2. Cation reorientation is, however, not captured
within a static picture based on geometry optimization but requires a dynamical picture.
According to Zhu and coworkers and others, for instance, the A-site organic dipoles can play an
active role in the polaron stabilization process due to the screening of the electron—hole Coulomb
potential that favors the dissociation of excitons into free carriers, lowering the associated
recombination rates.?® ®* %2 On the other hand, Dastidar et al.®> and Hutter et al.**, by studying
CsPbl; and MAPbI; systems, reported that dipoles have no roles towards the recombination rate
and charge carrier mobility, rather fully dominated by the lead iodide framework and emphasized
A-site independent factors (e.g. Rashba effect) as the reason of slow recombination rates of

hybrid perovskites. Using first principle calculations, Kawai et al.%’

investigated the hot-carrier
lifetimes from electron-phonon interaction in MAPbI3 and CsPblz, concluding that the holes
decay via the motion of I and Pb ions only, and not the motion of the A-site cation. Ab initio
molecular dynamics simulations, however, have shown that the charge-induced relaxation of Pb-
I modes is partly assisted by reorientation of the MA cations,*® confirming a partial role of

dipolar cations in stabilizing the polaron formation, though this mainly occurs within the

inorganic sub-lattice.

The impact of different A-site cations on the lattice distortion induced by injection of the
positive charge is next addressed. We find FA to give rise to the same polaron stabilization than
MA, while, in line with previous work on APbBr3 perovskites, Cs has a significantly stronger
impact on charge stabilization due to its apolar character not screening added charges.'
Replacement of one MA-cation of MAPDbI; with Cs, thus modelling the Cso.25sMAo.75Pbl3

composition, induces a slight increase of the polaron stabilization energy, in line with the

13



increase found for the pure CsPbls phase, Table 1. The relaxed Pb-I bond lengths of the
octahedral of Cs-neighbor of the neutral structure of CsMAPDI3 are 3.12 and 3.17 A, whereas the
same are 3.17 and 3.19 A in the MA-neighbor octahedral (see Figure S1 in Supporting
Information). Therefore, the structure is already distorted in the neutral state. However, upon
positive charge injection, the Pb-I bonds get shorter from both type of octahedra by the same
extent (0.04 A), whereas the octahedral distortion is slightly more pronounced in the Cs-

octahedra.

By focusing on halide variation, we find that the polaron stabilization energies and the
associated structural distortion are larger in bromide than in iodide perovskites. Comparing
APbX; structures, we find a larger hole stabilization energy by 14 and 65 meV for MAPbBr; and
CsPbBr3 compared to MAPbI3 and CsPbls, see Table 1. This result is somehow expected based
on the higher ionization energy of bromide perovskites compared to iodide perovskites, inducing
large lattice response to the injection of the charge. The higher electronegativity of Br than I is
likely at the origin of the larger distortions reported in bromide perovskites. The higher ionicity
of the Pb-Br bond induces a stronger localization of charges associated with higher stabilization
energies. Also noticeable is the almost additive effect of changing the A-cation and the X-halide,
with CsPbBr3 showing a much stronger coupling to the excess positive charge than MAPbBr3;

and CsPbls.

Then, we move to look to the effect of polaron stabilization by changing the B-site
cation. The replacement of Pb by Sn leads to higher polaron stabilization energies independently
of the MA or Cs cations, again the effects being almost additive, Table 1. In the case of iodide
perovskites, the full Pb replacement by Sn increases the stabilization energies by 29 and 92 meV

for MAPbI; and CsPbls, respectively. We have then investigated intermediate compositions
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modelling the mixed alloys MAPbg.75Sno 2513, MAPbo 50Sno.5013, MAPbo.25Sno.7513. Upon positive
charge injection, we find that the structural distortion is more prominent on the equatorial Sn-I
bonds for all substituted systems. Most notably, the polaron stabilization energy does not change
monotonically by increasing the tin content, but starting from pure MAPbI3 (46 meV) it shows a
maximum of 155 meV for MAPby.75Sno.25I3 and then it reduces to quite lower values of 97, 80
and 75 meV for MAPbgs0Sno.sols, MAPbo25Sno7sI3 and MASnI3, respectively. We have
rationalized the large polaron stabilization energy of MAPbg.75Sno.2513 by looking to its structural
relaxation features and the associated electronic structure. In MAPbg 75Sno 2513, the four equatorial
Sn-I bond distances are 3.00, 3.14, 3.20 and 3.39 A, which becomes 2.86, 2.93, 3.43 and 3.13 A,
respectively upon positive charge injection. Therefore, there are shortening of two equatorial Sn-I
bonds of the octahedra of value 0.14 and 0.21 A, while the maximum shortening of Pb-I bonds
lengths of the same plane is 0.08 A (central panel of Figure 3b). The shortening of other Pb-I
bonds of top layer are negligible (left panel of Figure 3b). The analysis of the projected density
of states (PDOS) reported in Figure S2b (Supporting Information) highlights that Pb and Sn
along with I contribute to the VBM of MAPby 75Sno.2513. In all substituted systems, however, the
electronic states due to Sn are closer in energy to the VBM with respect to the Pb states, in
agreement with the lower redox potential of Sn compared to Pb (see Figure S2b-d in Supporting
Information). The plot of the VBM Kohn-Sham orbital confirms that the charge density of this
state spreads exclusively on the Sn-I-Pb plane, while no charge density is reported on the other
two leads in the upper plane (see Figure S3 in Supporting Information). These results suggest
that the hole polaron is mainly coupled to deformations of the Sn-I bonds in the lattice and
localizes firstly on the Sn-I-Pb plane by leading to a short-long distribution of bonds and

allowing a large stabilization. On the other hand, moving from MAPb755n02513 to
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MAPbo.50Sno 5013, the short—long nature (see Figure S4 in Supporting Information) of Sn-I bonds
is more limited due to the distribution of the lattice strain over the whole cell. This leads to a
diffuse polaron spreading across all metal iodide bonds (see Figure 4c) with a small hole polaron
stabilization energy of 97 meV. We have considered two geometries of MAPbo.50Sno 5013; in one
case the Sn atoms placed in the same plane and in another case two Sn atoms are placed
diagonally. The first case is more stable than the second by 4 meV and 22 meV in GGA and
PBEO level of theory, respectively, with the hole polaron stabilization energy, however, differing
by only 5 meV. The different localization of hole polaron in the MAPbo75Sno2sI3 and
MAPbo.50Sno 5013 systems highlights that asymmetries in the distribution on bond lengths across
different layers lead to preferential polaron ‘nucleation’ in the layer where shorter metal-halide
bonds are present. The equalization of this asymmetry results in a lower localization and
stabilization energy of the polaron. This trend proceeds linearly in MAPbo25Sno7513 system
whose stabilization energy is further reduced to 80 meV, and as expected, also in this case the
distortion is mainly localized on the Sn-I bonds, however with small extent (maximum bond
shortening of 0.07 and 0.11 A in the equatorial and axial, respectively) and concomitantly with a
delocalization of the polaron density over both planes of the unit cell (see Figure 4d and S5 in
Supporting Information). Similarly, in the full replaced MASnI3 system, the Sn-I bonds get
shorten throughout the lattice with a maximum shortening of 0.17 and 0.08 A in the equatorial
and axial Sn-I bonds (see Figure S6 in Supporting Information), respectively, and therefore the
hole charge density is distributed in all equatorial Sn-I bonds of the lattice (see Figure 4e). Then,
it is clear from the above results that the polaron stabilization is mainly influenced by the
presence of bond asymmetry, i.e the short-long nature of the metal-halide bond length, with the

positive charge mostly accommodating in the short bond lengths region of the lattice. We have
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shown that small percentage of Sn-doping creates such structural asymmetry and likely tend to
form smaller polarons. To further quantify the nature of small polaron formation in Sn-doped
MAPbDI;, we have further reduced the Sn-doping concentration to 3 % by considering a 2 X 2x 2
supercell (with 32 formula units). Interestingly, we find that the hole polaron is formed only at
Sn-1 bonds and forms a small polaron (see Figure 4a), indicating a possibility of trap states at the

Sn-center of lightly Sn-doped MAPbI3.

(a) (b)

Top Layer Bottom Layer

Neutral

Positive

Figure 3: (a) Charge density of hole and (b) structural parameters in neutral and positively
charged state of MAPb 75Sny »515. Highlighted red and black circle represent the Sn and Pb atom,

respectively.
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Figure 4. Charge density of hole polaron in (a) MAPbo97Sno03l3, (b) MAPbo.75Sno2513, (c)
MAPbo50Snos0ls, (d) MAPbo2sSno7sI3 and (e) MASnl;. Highlighted red and black circle
represent the Sn and Pb atom, respectively. Isosurface values of 0.001 e-A~> and 0.018 e-A~3

have been used for the charge density plots of figures (a) and (b)-(d), respectively.

As in the case of MAPDI;, the projections of ions cartesian displacements upon the hole
injection for all the mixed and full tin systems have been carried out (see Figure 5 and Figure S7-
10 in Supporting Information). In all cases the injection of the hole leads to the activation of low
energy Pb-I and Sn-I bending modes (<80 cm™' see Figure S11). Moreover, in the case of mixed

Pb-Sn systems the emergence of new higher energy phonon modes at 110.1 cm™, 110.7 cm™ and
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108.1 cm have been found for MAPbg75Sno2slz and MAPbgsoSnosols and MAPbg25Sng 7513
systems, respectively. These modes are activated in the metal-iodide stretching region (see
Figure S12). However, the coupling strength gradually decreases with increasing Sn
concentration from MAPbo.75Sno.2513 to MAPbo25Sno.7513, whereas these high energy stretching
modes are completely absent in the symmetrical structure of MAPbI3; and MASnI; and thus
indicating a typical nature in mixed Pb-Sn systems, which is likely related to the asymmetric
relaxation of the lattice responsible of polaron localization. It is noteworthy to mention that the
peak at 129 cm™,130 cm™ and 136 cm™ in MAPbI3, MAPby75Sng 2513 and MAPbg 50Sno.sols,

respectively arises due to the rotation of molecule and bending of Pb-I bonds.
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Figure 5. Coefficients of the displacement vector associated with a positive charge injection.
Strong signals represent the strongly-coupled phonon modes to the displacement. The high
energy stretching modes are activated in MAPbo75Sno.25I3 and MAPbos50Sno.s0l3, whereas low
energy bending modes are activated in the other cases. The red arrows in MAPbg75Sno.2513
indicates the bending and stretching modes and the specific atomic motions have been shown in

Figure S11 and S12 in Supporting Information.

In summary, we have systematically studied the influence of the chemical composition of the
perovskite on the polaron properties in metal halides ABX3 perovskites by means of state of the
art ab initio calculations. By varying the A-site cations (FA, MA, Cs and Cs:MA), B-site cations
(Pb, Sn and Pb:Sn) and X-site anions (Br, I), we find that the stronger structural distortions occur
for Cs than for MA and FA, with the effect of different A-site cations being almost additive. For
the same A-cation, bromide shows stronger distortions than iodide perovskites. On the other
hand, the pure Sn phase has an almost double polaron stabilization energy compared to the pure
Pb phase. Surprisingly, the trend of polaron stabilization energy is non monotonic in mixed
Sn:Pb perovskites, having the maximum for small Sn percentages. Polaron formation is found to
be attributed to bond asymmetry, i.e the short-long nature of the metal-halide bonds, ranging

from small to large polarons with the increasing Sn percentage in mixed Sn:Pb perovskites.
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