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Abstract Topologies of large deformation Contact-aided Compliant Mechanisms (CCMs), with
self and mutual contact, exemplified via path generation applications, are designed using the
continuum synthesis approach. Design domains are parameterized using honeycomb tessella-
tion. Assignment of material to each cell, and generation of rigid contact surfaces, are ac-
complished via suitably sizing and positioning negative circular masks. To facilitate contact
analysis, boundary smoothing is implemented. Mean value coordinates are employed to com-
pute shape functions, as many regular hexagonal cells get degenerated into irregular, concave
polygons as a consequence of boundary smoothing. Both, geometric and material nonlinearities
are considered in the finite element analysis. The augmented Lagrange multiplier method in
association with an active set strategy is employed to incorporate both self and mutual contact.
CCMs are evolved using the stochastic hill climber search. Synthesized contact-aided compli-
ant continua trace paths with single and importantly, multiple kinks and experience multiple
contact interactions pertaining to both self and mutual contact modes.

Keywords: Contact-aided Compliant Mechanisms; Topology Synthesis; Boundary Smoothing;
Self and Mutual contact; Fourier Shape Descriptors; Nonlinear Finite Element Analysis;

1 INTRODUCTION

Contact-aided Compliant Mechanisms (CCMs) transfer energy, force, and motion in a desired
manner via large deformation of their flexible members that experience mutual and/or self-
contact. Self-contact occurs when a body comes into contact with itself, while in mutual contact,
the body interacts with neighboring objects (Fig. 1). Compliant mechanisms, in general, yield
smooth output responses if the material model is continuous and/or buckling in their members
is not permitted [1, 2]. In contrast, contact constraints alter deformation characteristics of
compliant mechanisms instantly thereby helping achieve nondifferentiability in their output
responses. However, such constraints introduce strong boundary nonlinearities when contact
pairs are not known a priori [3]. These nonlinearities become even more pronounced when
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boundaries evolve, e.g, in topology optimization. In addition, large deformation in flexible
branches of a CCM requires consideration for geometrical and/or material nonlinearities within
the synthesis approach. Several other challenges, e.g., contact-pair detection and dynamic mesh
handling (temporary removal of non-existing cells for contact analysis) need to be addressed
when synthesizing CCMs especially via topology optimization.

Numerous approaches exist to synthesize optimal topologies of compliant mechanisms for differ-
ent applications [4]. These approaches extremize the objectives stemming from a combination
of flexibility property (e.g., output displacements) and strength/stiffness measure (e.g., stress
constraints/strain energy) of the mechanisms. Ananthasuresh et al. [5] employed the homog-
enization approach with an optimality criterion to minimize the linearly weighted objective
involving output displacement and strain-energy. Nishiwaki et al. [6] and Frecker et al. [7]
maximized the ratio of flexibility and stiffness measures. Saxena and Ananthasuresh [8] gen-
eralized the multi-criteria objective. Sigmund [9] optimized an objective based on mechanical
advantage. Saxena and Ananthasuresh [10] and Pedersen et al. [11] synthesized path gen-
erating fully compliant mechanisms considering nonlinearity in geometry alone. In [10], line
tessellation was used while in [11], rectangular mesh was employed. Synthesis approaches in
[11, 10, 12] involved least-square error objectives. Swan and Rahmatalla [13] proposed a control
based approach to obtain a compliant mechanism which could also trace paths close to the
specified path. Ullah and Kota [14] used Fourier Shape Descriptors (FSDs) [15], as the least
square objective introduces an unnecessary timing constraint making it difficult to search for an
optimal solution. Rai et al. [16, 17] employed such an objective to synthesize path generating
fully and partially compliant mechanisms with curved beam and rigid truss elements. Saxena
[18, 19] presented the Material Masks Overlay Strategy (MMOS) which uses hexagonal cells to
discretize the design space, and negative circular masks to decipher material states of each cell.
Gradient based optimization was used in [20]. Saxena and Sauer [21] combined zero and first
order search approaches to synthesize such mechanisms considering geometrical and material
nonlinearities.

CCMs were introduced by Mankame and Anathasuresh [22]. They synthesized CCMs via topol-
ogy optimization using frame elements with intermittent rigid contact surfaces [1] and later
extended their work to synthesize non-smooth path generating CCMs by considering large
deformations, and using an objective based on FSDs [23]. Therein, contact locations were pre-
specified. Reddy et al. [24] used curved beam elements to parametrize the design space and
found contact locations systematically. Tummala et al. [25] designed a compliant spine, a CCM
joint that is flexible in one direction while rigid in the other, using the multi-objective formu-
lation. Kumar et al. [2] synthesized C0 path generating CCMs with continuum discretization
using hexagonal cells where external, rigid contact surfaces were generated automatically. In
[26], they synthesized such mechanisms with only self contact. Various CCM designs and appli-
cations are presented in [27, 28, 29, 30, 31, 32]. As aforementioned, few works exist that address
topology design of contact-aided compliant mechanisms. Of those, ones that employ triangular,
quadrilateral or hexagonal cell parameterization are rare. To our knowledge, design of CCMs
that observe both self and mutual contact modes at multiple sites has not been addressed yet
using continuum topology optimization.

The notion of contact MMOS is extended herein, for synthesis of Contact Aided Compliant
Mechanisms the constituents of which can undergo a number of both, self and mutual contact
modes. CCMs are synthesized with only mutual contact in [2], and only self contact in [26].
By combining both interaction modes in this paper, as opposed to restricting their nature as in
[2, 26], potency of the design space is showcased via CCM examples which can witness multi-
ple contact interactions, both in number and mode, and exhibit comparatively more intricate
deformation characteristics, e.g., tracing of a desired output path with multiple kinks.
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In particular, the present approach is novel in the following aspects compared to our previous
efforts in [2, 26]:

• Continuum synthesis via contact MMOS of CCMs which experience both, self and mutual
contact at multiple sites, all determined systematically by the proposed algorithm, during
their deformation. This was proposed as future work in [2], section 8. In particular, a CCM
that traces a desired, challenging Z-path with two non-differentiable sites is synthesized.

• Exploring the boundary smoothing scheme further (section 2.2) and noting that higher
number of boundary smoothing steps may lead to ‘element flipping’. To assuage notches
at the continuum boundaries to facilitate contact analysis, few boundary smoothing steps
are adequate.

• Formulation of an active set strategy (Table 1) to examine active or inactiveness of both,
self and/or mutual contact boundary constraints within the Newton-Raphson solution
iterations.

• Presentation of many examples with a variety of desired output paths wherein multiple
number and/or modes of contacts are witnessed, as intended. In examples in [2], only a
single mutual contact mode is observed.

• Appraising the synthesis approach by varying mesh sizes (section 5.1), number of integra-
tion points (section 5.4), estimating computational costs (section 5.4), and demonstrating
existence of multiple CCM solutions for identical design specifications.

The remainder of the paper is organized as follows: Section 2 describes topology optimization
with hexagonal cells and negative circular masks, the latter also having the capability to generate
contact surfaces. Boundary smoothing (Section 2.2) is used to subdue jumps of the surface
normals. The finite element formulation with contact is briefed, and the active set strategy
with self contact search is discussed in Section 3. Friction and adhesion are not considered,
though friction [33] can be incorporated in the formulation. In Section 4, FSDs objective and
hill climber search are presented. Synthesized CCMs are presented in Section 4.3. Lastly, the
synthesis approach and examples are discussed and conclusions are drawn in Sections 5 and 6,
respectively.

2 TOPOLOGY OPTIMIZATION AND CONTACT SURFACE
GENERATION

Various features of topology optimization with hexagonal cells (ΩH, [34, 35, 36, 37, 38]) and
negative circular masks (ΩM) are described in [18, 39, 20, 21]. Hexagonal cells provide edge-
connectivity between any two contiguous cells within the parameterized design. Consequently,
point-connections and checkerboards patterns are automatically alleviated [18, 35, 37, 40, 41].
One can still observe layering/islands and V-notches on the boundary in the final continua [20].
Blurred boundary also persists with gradient search [20, 42]. V-notches (Fig. 2a) render jumps
in the boundary normals, which is not desirable in contact analysis [43]. To subdue these,
boundary smoothing [44, 42] is employed (Fig. 2c, Section 2.2).

Material state ρ(ΩH) of each cell is determined via negative circular masks (ΩM) which act as
material sink [20, 21]. Ideally, ρ(ΩH) should either be 0 or 1. In the Material Mask Overlay
Strategy, ρ(ΩH) = 0 is set when the centroid Ωc

H of a cell ΩH is within an overlaying mask and
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Desired path (output)
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Notch
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Figure 1: A set of hexagonal cells ΩH discretize the design space Ω. Negative circular masks ΩM (circles)
superposed on Ω help determine the material state of ΩH. Five variables (xp, yp, rp, sp, fp) define each mask.
(xp, yp) and rp are center coordinates and the radius of the pth mask. sp = 1 (figure b) implies a rigid contact
surface (dark, filled circular regions) of radius fprp is generated within the pth mask while with sp = 0 (figure
a), no contact surface is generated. ρ(ΩH) = 0 (ΩH ⊂ any ΩM) implies a void material state while ρ(ΩH) = 1
indicates full material state. Rigid contact surfaces can interact with the continuum. In addition, surfaces
(e.g., Γs1 and Γs2) of the continuum may interact in self contact mode.

ρ(ΩH) = 1 is set when Ωc
H is not enclosed within any mask (Fig. 1a). Thus, one defines ρ(ΩH)

as

ρ(ΩH) =

{

0, if Ωc
H ⊂ any ΩM

1, otherwise
(1)

All cells with ρ(ΩH) = 1 constitute a potential candidate continuum (T0
H) for the CCM (Fig.

1b), i.e.,
T0
H = {ΩH|ΩH ∈ Ω; Ωc

H /∈ any ΩM ⇒ ρ(ΩH) = 1}. (2)

2.1 Negative Circular Masks and Mutual Contact Surfaces

The pth mask is defined via its center coordinates (xp, yp) and radius rp. As in [2], masks
are also used to generate rigid contact surfaces Γrs (Fig. 1b), which necessitates the use of
two additional variables, i.e, sp and fp. sp is strictly 0 or 1, and 0 ≤ fp ≤ 1. sp = 1 implies
that a rigid contact surface Γrs of radius fprp is generated within the mask (Fig. 1b). Mask
variables are evolved stochastically via the hill climber search. With M masks, the design vector
v contains 5M variables (v = {xp, yp, rp, sp, fp, ...}, p = 1, ...,M) when both self and mutual
contact modes are permitted. The number of design variables relate to the number of masks
used and is independent of the number of hexagonal cells in the tessellation. While boundary
smoothing is not a necessity, it is still desirable to achieve better convergence in contact analysis.

2.2 Boundary Smoothing

Systematic identification and shifting of boundary nodes is implemented within each iteration
of the solution process. All boundary edges and nodes are first identified. Thereafter, mid-
points of boundary edges are joined via straight lines. Boundary nodes are projected along
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their shortest perpendiculars (Fig. 2b). This step can be performed multiple (β) times where
β is specified prior to the analysis. Thus, new positions of the boundary nodes are obtained
while retaining those for the interior nodes. Updated nodal coordinates are used in the finite
element analysis. The elemental connectivity matrix is unaltered ensuring edge-connectivity
between cells. However, many cells get altered into concave elements. For the example shown
(Fig. 2d), at high values of β, internal edges (e.g., 4-5 and 5-6) first get straightened, and as
β is increased further, hexagonal cells at bottom left and right become concave in shape, and
eventually flip at β = 28. Lengths of other internal edges (marked i) do not change. In our
experience, β = 10 provides adequately smooth boundaries [42]. For higher values, significant
distortion or reduction in sizes of boundary elements may result. Also, some elements may flip,
as shown in Fig. 2d. Element flipping can be detected by noting that the element Jacobian
becomes negative. Boundary smoothing may be executed until a stage where the Jacobian
determinant becomes too low.

Normals
xs

Bs

Bm

F

Γcm

Γcs

(a) Body Bm without boundary
smoothing

Cell unaffected by boundary smoothing

V-notch

(b) Boundary smoothing scheme

xs

Bs

Bm

F

Γcm

ΓcsNormals

(c) Body Bs with boundary
smoothing; considering β = 1

(i) β = 0 (v) β = 10

(viii) β = 25

1

2

3

4

5
6

(x) β = 28

6

5
1

2

(ii) β = 1

(ix) β = 26(vii) β = 22

(iii) β = 2 (iv) β = 5 (vi) β = 15

i i

i i i

i ii ii ii ii i

i i i i i i i

(d) Higher values of β can result in significant distortion of elements, and also, element flipping.

Figure 2: V-notches furnish jumps in boundary normals (Γcm) (Fig. 2a) which are subdued via boundary
smoothing (Fig. 2c) to facilitate contact analysis. Fig. 2b depicts the way boundary smoothing is performed.
Fig. 2d shows that for higher values of β, some elements may experience flipping.

Cells are removed in two steps: In the first, cells exposed to masks are removed and thereafter
boundary smoothing is performed. As smoothing alters boundary cells but not the interior ones,
the latter have original, regular shapes. In the second stage, these regular cells are also removed
(Fig. 2b). This is equivalent to placing additional negative masks over such cells. Removal
in the second stage is done so that the constituting members become slender allowing them to
undergo large deformation. An added advantage is the reduction in volume. As a consequence
of this removal, new serrated boundaries get generated. At this stage, considering all remnant
hexagonal cells in their original, regular forms, boundary smoothing is performed again, prior
to further analysis. Note that the removal of hexagonal cells is only temporary, to facilitate the
contact analysis. Mean value coordinate shape functions [45, 46] which can cater to polygonal
elements of any shape, are employed in the finite element analysis [47, 48].
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(d)

Figure 3: A schematic diagram for the contact formulation. (a) Deformed configurations, (b) Contact de-
scription with tractions, (c) Closet point evaluation and (d) Contact discretization: piecewise linear segments
approximate interacting boundaries

3 FINITE ELEMENT FORMULATION WITH CONTACT

The finite element formulation with contact is briefly reviewed. Consider two bodies Bk|k=s,m

(current configurations) in contact, with known sets of surface tractions t̄k on ∂tBk ⊂ ∂Bk,
volumetric body loads b̄k in Bk and given deformation on ∂uBk ⊂ ∂Bk (Fig. 3a). The surface
∂Bk = ∂uBk ∪ ∂tBk, with ∂uBk ∩ ∂tBk = ∅ where ∂uBk and ∂tBk are portions for prescribed
displacements and tractions boundary respectively. Contact surfaces ∂cBk ⊂ ∂tBk originate
when bodies are in contact (Fig. 3a).

The deformation field uk ∈ Uk is computed by satisfying the following weak form

2
∑

k=1

[

δΠint, k + δΠc, k − δΠext, k

]

= 0 ∀δuk ∈ Wk, (3)

where

δΠint, k =

∫

Bk

σk : grad(δuk)dvk, δΠc, k = −
∫

∂cBk

δuk · tckdak,

and δΠext, k =

∫

∂tBk

δuk · t̄kdak +
∫

Bk

δuk · ρkb̄kdvk

are the internal, contact and external virtual work, respectively. Uk and Wk are the sets of
kinematically admissible deformations and variations, respectively. dvk and dak denote elemen-
tal volumes and areas respectively, and tck is the contact traction on surface ∂cBk arising due
to contact (Fig. 3b). If one body is rigid, summation and index k are dropped from Eq. (3).
σk represents the Cauchy stress tensor evaluated using the constitutive model of neo-Hookean
material (strain energy function W = µ

2 [tr (FF T )− 3− 2 ln J ] + Λ
2 (ln J)

2) [49] as
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σ =
µ

J
(FFT − I) +

Λ

J
(ln J)I (4)

where F = Gradu + I is the deformation gradient, µ = E
2(1+ν) and Λ = 2µν

1−2ν are Lame’s

constants, J = det(F ), and I is the unit tensor. Gradu represents the gradient of u with
respect to undeformed coordinates X, and E and ν are Young’s modulus and Poisson’s ratio,
respectively.

The elemental displacement field ue(= xe −Xe) and corresponding variation δue is approxi-
mated3 as

ue ≈ uh
e =

nnd=6
∑

I=1

NIuI = Nue,

δue ≈ δuh
e =

nnd=6
∑

I=1

NIvI = Nve,

(5)

Here NI are the mean value shape functions [46] with N =
[

N1I, N2I, · · · , Nnnd
I
]

and ue =
[

uT
1 , uT

2 , · · · ,uT
nnd

]T
. uI and vI denote the nodal displacements and variations, respectively.

Likewise, geometry of the element in undeformed (Xe) and deformed (xe) configurations are
approximated. In the discretized setting (Eq. 5), Eq. (3) yields

vT
[

fint + fc − fext
]

= 0 ∀v ∈ Wk (6)

where v is the global vector comprising of the kinematically admissible variation in nodal dis-
placements uI . fint, fc, fext are internal, contact and external forces, respectively. Eq. (6) leads
to nonlinear equilibrium equations f(u) = fint + fc − fext = 0 (f(u) is the residual force) which
are solved using the Newton-Raphson (N-R) iterative procedure.

The internal elemental forces f eint are given as
∫

Be
k

BT
ULσdv, whereBUL is the strain-displacement

matrix [50]. To evaluate the integral over each cell, the latter is divided into six triangular re-
gions with respect to its centroid. 25 Gauss points are employed for integration over each
triangular region for reasonable accuracy [47] (see section 5.4). Evaluation of contact forces fc
is described next.

Contact pairs are detected using the formulated active set strategy of Table 1. Contact tractions
are treated as respective Lagrange multipliers via the augmented Lagrange multiplier method
[3] combined with a segment-to-segment contact approach. Frictionless and adhesionless contact
is considered. In augmented Lagrange multiplier method, contact tractions are modeled as

tck =

{

λnp gn < 0

0 gn ≥ 0,
(7)

where np denotes the normal vector at projection point xp of point xs ∈ Bs and λ = λold− ǫgn,
is the Lagrange multiplier that is updated by an iteration. Here, gn = g · np = (xs − xp) · np

3denoted via superscript h
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Table 1: Active constraint strategy for self and mutual contact

Initialize: MutualContactPairsExist = 0; SelfContactPairsExist = 0;
At each load step r → r + 1:
Compute f eck (Eq. (9)) and ke

c,kl| (k = s,m), (l = m, s) for the contact surfaces Γe
ck for each

such quadrature point xk ∈ Γe
ck (Fig. 3d):

1. for closest projection point computation

• compute xp = xm(ξp) (Eq. (8)).

• evaluate the normal gap gn, normal vector np at xp and corresponding ns
p

at xs.

2. for contact identification

• In case of mutual contact
if λ ≥ 0, MutualContactPairsExist = 1, i.e., new mutual contact pairs are
detected

• In case of self contact
if λ > 0& (ns

p ·np) < 0, SelfContactPairsExist = 1 i.e., new self contact pairs
are detected

3. for contact computation

• if contact constraint becomes active or new contact is detected, evaluate f eck
and ke

c,kl and solve for equilibrium f(u) = 0

• if contact constraint is inactive or previous contact is lost, f eck and ke
c,kl are

set to zero.

(Fig. 3d) is the normal gap. When evaluating gn, one finds the closest projection point xp on
the contact surface ∂cBk|k=m,s corresponding to each point of the contact surface ∂cBl|l=s,m.

For a known point xs ∈ ∂cBs, one searches for the closest projection point xm ∈ ∂cBm (Fig.
3c). The search is performed by minimizing the distance d = ||xs − xm|| between points Ps

and Pm in the convective coordinates setting ξ = (ξ1, ξ2) to represent each point on the surface
∂cBm [3]. The tangent vectors at xm are given as ∂xm

∂ξα = aα; α = 1, 2. Minimization of d gives
two nonlinear equations

∂d

∂ξα
= −

(

xs − xm(ξ)
)

· aα = 0. (8)

Solving for these yields ξ = ξp(= ξ1p , ξ
2
p) so that xp = xm(ξp) is the projection point closest

to xs. The contact surface ∂cBm at point xp is described via the co-variant tangent vectors

a
p
α =

∂xp

∂ξα and the normal vector np =
a
p
1×a

p
2

||ap
1×a

p
2||

[3]. Using np, one can find the normal gap gn

and contact tractions (Eq. 7). In case of mutual contact, if λ becomes positive, the contact
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constraint set to active, and thus contact forces are incorporated in the mechanical equilibrium
conditions. In case λ becomes negative, either previous contact is lost, or there is no contact.
However, to detect self contact pairs, an additional check with normals is needed (section 3.1).

Contact surfaces ∂cBk are approximated using surface (line) elements Γe
ck containing two nodes

at each such element (Fig. 3d). Displacements and corresponding variation fields are approxi-
mated with 2D linear Lagrange basis functions NI |I=1, 2 [49]. In view of Eq. (3), contact forces
are evaluated using the full pass algorithm as

f eck = −
∫

Γe
ck

NT
k tckda, f ecl =

∫

Γe
ck

NT
l tckda (9)

where Γe
ck ⊂ ∂cBhk , Γe

cl ⊂ ∂cBhl and Nk/l = [N1I N2I]. Further, N1 = 1
2(1 − ξp) and N2 =

1
2(1 + ξp) with ξp ∈ [−1 1]. If body Bm is rigid and motionless, f ecm = 0. Contact stiffness
matrices ke

c,kl| (k = s,m), (l = m, s) are determined via linearization. A detailed derivation is
given in [51].

3.1 Self contact search algorithm

An active set strategy to detect both self and mutual contact surface pairs, within each Newton-
Raphson iteration, is presented in Table 1. In multi-body contact problems, mating surfaces
(slave and master) are usually specified prior to the analysis making it relatively straightforward
and efficient. In cases where members of a body themselves are deemed to come in contact, it
is difficult to predetermine contact pairs. Identification of the latter depends on the topology of
the body and loading boundary conditions. Such identifications become even more challenging
with the evolution of topology of the body, as is the case with the synthesis of CCMs. It
therefore becomes imperative to estimate contact pairs as part of the analysis, as opposed to
specifying them a priori.

To determine self contact pairs, efficient algorithms of order O(nlogn) exist, e.g., in [42],
though an O(n2) strategy, termed as global or nearest neighboring search [52], is presented
here, notwithstanding efficiency. For any point xs on the boundary (interior or exterior) of
the body as reference, its nearest neighbor, xp, not the same as xs, is determined by solving
Eq. 8. The tangent vectors are evaluated at xp, and the normals at both, xs and xp. The
normal gap between xs and xp is computed. The dot product between normals at xs and xp

is also evaluated. If both, the normal gap and dot product are negative, boundary elements
(line segments) containing xs and xp intersect. In that case, the two elements constitute a self
contact pair for which contact forces and stiffness matrices are computed. If the normal gap is
negative but the dot product is positive, (e.g., for points xp1 and xp2 in Fig. 4), corresponding
boundary elements do not intersect. Identification of self contact line pairs is performed for all
points on the continuum boundary(ies).

4 SYNTHESIS OF CONTACT-AIDED COMPLIANT CON-
TINUA

The design approach is illustrated via synthesis of four large, C0 path generating CCMs. Capa-
bility of the approach is demonstrated by synthesizing a CCM that can trace a Z−path (multiple
kinks), exemplifying the possibility of obtaining intricate deformation characteristics. CCMs
are obtained by minimizing the FSDs objective [15] using a stochastic hill climber search [53].
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g

g2 = (xs − xp2
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P2

np

n
s
p

np2

np1

F

Γs1

Γs2

g1 = (xs − xp1
)

P1

xp1

xpxp2
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Figure 4: Schematic describing self contact when two surface regions Γs1 and Γs2 of the same body penetrate
each other. The hatched portion shows that the top part of the body has penetrated into the bottom part.
Arrows are marked on the boundary to indicate orientation and to differentiate between two interacting surfaces.
For point xs ∈ Γs1 , point xp ∈ Γs2 is the nearest neighbor. xp1 ∈ Γs1 or xp2 ∈ Γs1 are also candidate nearest
neighbors since normal gaps g1 ·np1 and g2 ·np2 are negative in both cases. Such candidate nearest neighbors
are discarded noting that the dot products between normals, e.g., ns

p · np1 and n
s
p · np2 are positive.

The design variables used are the mask parameters (section 2.1). The magnitude of the input
force (along with the possibility of force reversal along a prescribed direction) is also considered
a design variable. The overall schematic is depicted via a flow chart in Fig. 5.

4.1 Fourier Shape Descriptors (FSDs) objective

Traditionally, an objective based on the sum of the squares of the difference between coordi-
nates of the constitutive precision points of the desired and actual paths is used to synthesized
path generating mechanisms. Though simple to implement, it has shortcomings [14, 23]. It
suffers from timing constraints and does not permit individual control on shape, size and initial
orientation of the path. The FSDs objective [14] offers more flexibility in that shapes of the two
paths can be compared independent of the number of precision points used to specify them.
Shape and size measures can also be decoupled. This objective is minimized herein to synthesize
CCMs. An FSDs objective is evaluated from the Fourier coefficients of the specified and actual
paths. To determine the respective coefficients, the paths are closed in clockwise sense such
that they do not self-intersect, and parameterized as functions of the respective normalized arc
length parameters [15].

Let Aj
m and Bj

m be the Fourier coefficients, Lj be the total length and θj be the initial orientation
of two paths, j = s (specified), a (actual). The objective used is

f(v) = waAerr + wbBerr + wLLerr + wθθerr (10)

where wa, wb, wL, andwθ are user defined weights (Table 2) for errors Aerr, Berr, Lerr and θerr,
respectively (Eq. 11). Aerr and Berr are the errors in the Fourier coefficients [16] that quantify
discrepancy in shape. The last two error measures capture the difference in length (size) and
initial orientation of the desired path. Larger weights are used to capture path shapes, while
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Figure 5: A schematic flowchart for a single design iteration within the proposed optimization approach

relatively smaller weights are used for path lengths and much smaller weights are used for path
orientation, with the reasoning that a CCM can be rotated in order for the orientation of the
desired path and that achieved to be alligned. Inverse problems, such as those posed by Eq.
(10) can yield numerous solutions [54]. With multiple possibilities for contact, both in type (self
and mutual) and number, a single set of weights for identical specifications can yield multiple
solutions for CCMs (e.g., Figs 7 (c) and 12a) in that the corresponding design space is expected
to be non-convex.

The errors are defined as

Aerr =

N
∑

m=1

(As
m −Aa

m)2, Berr =

N
∑

m=1

(Bs
m −Ba

m)2,

Lerr = (Ls − La)2, θerr = (θs − θa)2.

(11)

Here, N = 50 is the number of Fourier coefficients used. The optimization problem using the
FSDs objective is stated as:

min
v

f(v) + λv(V − V ∗),

such that f(u) = 0; zL ≤ zi ≤ zU |zi=xi, yi, ri

si (= 0 or 1) ; fi [∈ (0, 1)]

(12)

where v is the design vector, and V and V ∗ are the current and permitted volumes of the
continua, respectively. In general, volume penalization parameter λv should be taken relative
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to the objective. For the examples herein, it is taken as 20 if V ≥ V ∗, otherwise λv = 0.
f(u) = 0 is the mechanical equilibrium equation (Eq. 6). zL and zU are the lower and upper
bounds for zi ∈ v (section 2.1). M is the total number of overlaying masks kept constant
throughout the optimization (see section 5.3).

4.2 Hill-climber search

Evolution of the CCM continua is performed via a random mutation based stochastic, hill-
climber search [53]. However, in general, one can use any stochastic search algorithm. The
cardinal reason is to evaluate a realizable, smooth, perfectly binary design in each search itera-
tion using large deformation nonlinear contact finite element analysis. For M negative circular
masks, a design vector v contains 5M variables (section 2). Positions (center coordinates) and
sizes (radii) of these masks define a potential CCM in each optimization iteration, and si, fi
from the ith mask provide status and size of contact surface within that mask. To mutate the
design vector, one sets a small probability mutation number pr (= 8%). A random number η is
generated for each variable p. If η < pr, the variable is mutated as p = p±(c×mmax); otherwise
p remains unaltered. Here, c is a random number and mmax is set to 15% of the max (Lx, Ly).
Lx andLy represent the design domain dimension in horizontal and vertical directions, respec-
tively. For si, if η < pr and c > 0.5, si = 1, otherwise si = 0. fi is mutated similarly in [0, 1).
After mutation, one gets the new design vector vn. The FSDs objective f(vnew) is evaluated
if the corresponding new CCM is well connected, has all input and output ports and requisite
number of fixed degrees of freedom, and if the contact analysis converges. Else, the degenerate
CCM solution is penalized and a new solution is sought. If f(vnew) < f(v) then v ← vnew.
Magnitude F of the input force is also taken as a design variable [23, 55] and is mutated as
F = F ± (c×mmax). The input force is only permitted to flip along the prescribed direction.

4.3 Evolved CCMs

Four examples of path generating Contact-aided Compliant Mechanisms are presented using
identical design specifications but with different, long (> 10% of the characteristic length,
L0), specified non-smooth paths to demonstrate the versatility of the synthesis approach. The
specified paths are shown in Fig. 6b. The design requirements are depicted in Fig. 6a and the
associated parameters are depicted in Table 2. We initiate the optimization with an actuating
input force of 100 N in the positive horizontal direction.

4.4 CCM Continua

The final solutions of the four CCMs for the specified paths in Fig. 6b are shown in Fig. 7a.
Optimal topologies of CCMs and negative masks are depicted. To generate CCM III, 7 × 7
masks are used and for other CCMs, 8×8 masks are employed. Masks suspending rigid contact
surfaces (black, filled circles) are also depicted. Actuating forces and (remnant) fixed boundaries
are annotated. Note that not all fixed boundaries specified prior to optimization are retained
in the final designs.

CCM I is obtained after 4375 search iterations with 131.05 N input force in the positive hori-
zontal direction. CCMs II, III and IV are achieved after 3891, 6673 and 8675 search iterations
with the required input forces 134.65 N, 97.91 N and 189.60 N along the positive horizontal
direction, respectively. The undeformed and deformed (blue) configurations are shown with
active contact locations encircled within the dash-dotted gray circles (Fig. 7).
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Table 2: Parameters used for synthesizing CCMs.

Parameter’s name Units Value

Design space (Ω) − 25ΩH × 25ΩH

number of masks in horizontal direction (Nx) − 8
number of masks in vertical direction (Ny) − 8
Maximum radius of masks mm 8.0
Minimum radius of masks mm 0.1
Maximum number of function evaluations − 20000
Young’s modulus (E0) MPa 2100
Poisson’s ratio − 0.33

Permitted volume fraction (V
∗

V ) − 0.30
Mutation probability(pr) − 0.08
Contact surface radii factor (max(fi)) − 0.90
Maximum mutation size (mmax) − 6
Upper limit of the input load (FU ) N 500
Lower limit of the input load (FL) N −500
Weight of aerr (wa) rad−2 100
Weight of berr (wb) rad−2 100
Weight of path length error (wL) mm−2 1
Weight of path orientation error (wθ) rad−2 0.1
number of Fourier coefficients − 50
Boundary smoothing steps (β) − 10

Maximum characteristic length (max(Lx, Ly)) mm 25
√
3

Penalty parameter, mutual contact (ǫn) Nmm−3 50E0/L0

Penalty parameter, self contact (ǫs) Nmm−3 4E0/L0

Fixed

Fixed

Fixed

Output

Input force

Fixed

: Negative circular masks

L0

X

Y

(a) Design specification for all examples with the
initial guess for mask parameters

0 5 10

[mm]

22

24

26

28

30

32

[m
m

]

CCM I

CCM II

CCM III

CCM IV

(b) Desired output paths for all four CCMs are
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Figure 6: Design specification and specified paths for four different CCMs
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(a) CCM I (b) CCM II

(c) CCM III (d) CCM IV

Figure 8: Deformed configurations of CCMs at stages A, B and C (Fig. 7)

Table 3: Errors in FSDs coefficients, lengths and orientations of the paths traced by CCMs with respect to
their corresponding desired paths

Mechanisms Aerr Berr ζl (%) θdiff(degree)

CCM I 0.0613 0.0750 13.5282 6.2848
CCM II 0.1879 0.1559 19.6902 7.2912
CCM III 0.0332 0.5312 23.3727 4.9178
CCM IV 0.5486 0.5581 30.1120 56.1630

To compare errors in shape between the specified and actual paths of the CCMs, we use Aerr

and Berr (Eq. 11). In addition, ζl and θdiff = |θs − θa| are used to show deviation in lengths
and initial orientations between both paths. Here, superscripts s and a represent the specified
and actual paths, respectively and ζl is defined as:

ζl =
|Ls − La|

Ls
× 100%. (13)

Notwithstanding orientation and size (length), in most cases, the actual paths compare well
(Table 3) with the respective desired paths in shape. In all cases, discrepancies in length (ζl)
of the paths are large, possibly because the weight wL for Lerr used is significantly smaller
(wL = 1) than that (wa = wb = 100) used for the FSD coefficients (Table 2). CCM IV traces a
Z−path, representative of how intricate the deformation characteristics can be achieved by the
CCMs designed using the proposed approach. While the overall shapes agree well (Table 3),
discrepancy is primarily due to path size (the segment after the second kink is smaller in size
than desired) and the initial orientation (θdiff = 56.1630o) of the actual Z-path is not the same
as that of the desired one (Fig. 7h). Reasons for these differences could be the lower weights
(wl = 1, wθ = 0.1) used, as, only capturing shape and size of the desired path is intended
primarily. For CCMs I, II and III, discrepancies in initial orientations with respect to the
respective desired paths are within 8%.

The length of the actual path obtained via the presented approach is about 7.40 mm for CCM
I, 7.30 mm for CCM II, 4.75 mm for CCM III, and 10.50 mm for CCM IV. These correspond
to approximately 17%, 16.9%, 11% and 24% of the maximum characteristic size (25

√
3 mm) of

the design regions suggesting that all presented CCMs undergo large deformation. In addition,
mechanisms also experience self and mutual contacts at various time steps in their deformation
histories. Deformation profiles of these CCMs at stages A, B and C (Fig. 7–middle column)
are depicted in Fig. 8. The synthesis algorithm suggests many rigid contact surfaces, however,
only some participate in active contact (Fig. 7–third column). CCM I, when deforming, first
experiences mutual contact (Fig. 8a). Thereafter, two of its branches interact with each other
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Table 4: Errors in FSD coefficients, lengths and orientations of the paths traced by the manufactured prototypes
and respect to their corresponding models

Mechanisms Aerr Berr ζl (%) θdiff(degree)

CCM I 0.1572 0.2114 0.8754 0.0938
CCM II 0.0578 0.0637 3.3197 3.0436
CCM III 0.0207 0.1866 3.3776 9.9943
CCM IV 0.1950 0.1933 2.8241 3.6853

Table 5: Errors in FSD coefficients, lengths and orientations of the paths traced via CCMs and that obtained
using ABAQUS

Mechanisms Aerr Berr ζl (%) θdiff(degree)

CCM I 0.0883 0.1250 2.2428 14.3154
CCM II 0.0366 0.0347 2.3377 1.2158
CCM III 0.0579 6.7219 10.7810 4.174
CCM IV 0.0609 0.0647 1.5912 0.5231

which is followed by mutual contact with another rigid surface (Fig. 7b). CCM II first comes
in contact with two rigid contact surfaces at different time instances (Fig. 8b) and thereafter
two of its constituting members interact with each other (Fig. 7d). With CCM III, self contact
is observed with the potential of another self contact site on top left (Fig. 7f). CCM IV
experiences large deformation with two mutual contacts at different temporal configurations,
both, mandatory to yield the two desired kinks (Fig. 7h).

Prototypes of these CCMs (scale 2:1) are manufactured and tested. Their undeformed and
deformed configurations are depicted in Fig 9. Low values of Aerr, Berr and ζl (Table 4) indicate
good agreement in shapes and sizes of the paths traced. We also perform nonlinear contact
finite element analysis using ABAQUS. The paths obtained are overlaid with the actual and
desired paths and depicted in Fig. 7 (middle column) and the difference in the FSD coefficients
and the length comparison are reported in Table 5. One notices that Berr and the length error
ζl for CCM III are relatively high (section 5.1). Possible reason for high Berr is an additional
kink observed in the path when CCM III is analyzed using ABAQUS (Fig. 7f), and higher ζl
is due to difference in path lengths.

5 DISCUSSION

This paper presents a continuum based synthesis approach for geometrically/materially large
deformation CCMs that incorporate self and mutual contact modes. We discuss below various
aspects of the approach.

5.1 Performance with finer meshes

Two different discretization types exist in the problem — that of the design domain for the
analysis using nel hexagonal finite elements, and the other of the design domain for the opti-
mization using nm circular masks. Here, we examine the convergence behavior for refinement
of the analysis discretization, keeping the number of masks fixed. The primary characteristics
(overall shape and desired kinks) of the desired output displacements are captured well (Table
3). Fig. 10 shows paths traced by the CCMs with different mesh resolutions with hexagonal
cells. The green paths depict those obtained with the original resolution used in the synthesis.
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Figure 9: (a) Prototypes of CCMs I-IV in their undeformed (left) and deformed (middle and right) configurations
(b) Paths from the prototypes (PP) compared with those traced by the CCMs (AP) in simulation. left-right:
CCMs I-IV.
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Errors in shapes (Aerr, Berr) and sizes of the respective paths (Fig. 7) are depicted in Table
6. With mesh refinement, ζl exhibits a decreasing trend for all CCMs. This is expected since
with increased number of elements, relatively more flexible CCM is simulated resulting in path
lengths being closer to those desired. Aerr, Berr decrease in case of CCMs I and II. For CCM III,
Aerr increases marginally though there is a sharp initial drop in Berr and ζl. Shape errors do not
change much for CCM IV. With mesh refinement, paths predicted by the resulting CCMs are
marginally more proximal, primarily in size, to the respective desired paths than those obtained
via CCMs with original resolution. No significant change in shape is observed. Except in case
of CCM III, not much improvement is observed with mesh refinement suggesting that coarse
meshes are quite adequate for use in synthesizing CCMs. Use of refined meshes in synthesis is
preferrable, albeit, with increase in computational cost. With the possibility of modeling a can-
didate CCM continua with refined hexagonal meshes, availability of better and efficient analyses
methods, mesh dependence and imposition of minimum length scales [56] with hexagonal cells
can be explored.
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Figure 10: Paths traced by CCMs I-IV meshed with different number of hexagonal cells (inset). In fig. (d),
desired path is rotated for better comparison. SP represents the desired path.

5.2 Zero order search

When synthesizing CCMs, to perform the contact analysis for each candidate continuum, non-
existing cells/elements from the parent finite element mesh are removed (temporarily) and nodal
displacements of the remnant continuum are computed. A candidate continuum changes in each
iteration and so does the set of removable elements. As displacement sensitivities cannot be
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Table 6: Aerr, Berr, ζl and θdiff measures for the paths traced via finer meshes with respect to respective
specified paths

Mechanisms CCMs (# cells) Aerr Berr ζl (%) θdiff(degree)

CCM I

(153) 0.0613 0.0750 13.5282 6.2848
(642) 0.0374 0.0474 12.6154 7.5042
(1658) 0.0336 0.0494 12.7506 7.8421
(2554) 0.0262 0.0287 11.8527 8.5042

CCM II
(191) 0.1879 0.1559 19.6902 7.2912
(832) 0.1534 0.1299 19.1125 7.1046
(2122) 0.1423 0.1198 19.0071 6.9247
(3312) 0.1418 0.1202 18.7344 5.2570

CCM III
(156) 0.0332 0.5312 23.3727 4.9178
(670) 0.0820 0.1197 15.1757 5.4855
(1658) 0.0836 0.1303 13.5780 5.9388
(2554) 0.1007 0.1587 11.2807 5.9825

CCM IV
(112) 0.5486 0.5581 30.1120 56.1630
(484) 0.5845 0.5988 27.8730 56.9761
(1240) 0.6000 0.6215 25.9711 57.0080
(1943) 0.5995 0.6199 25.1355 57.5288

computed at all nodes in the parent mesh, implementation of gradient based search becomes
difficult. Many other factors, such as, non-convergence of large displacement analysis (which
can stall gradient search) [21], material model being perfectly binary with one of the five mask
(design) variables being discrete4, additionally leads us to employ a zero-order search. An
evident drawback is the significantly large number of iterations required in many of which,
CCM candidates get penalized for the absence of input forces, output port, fixed dofs and well-
connectness, and thus do not get evaluated via the finite element contact analysis. Scalability
and efficiency, important features of the search, are not within the scope of the manuscript as
they require a separate and detailed study, intended in future.

5.3 Mask Addition and Deletion

Mask addition/deletion has been explored in previous efforts (e.g., [19], [21]). Mask addition
was performed by stochastically and precisely superposing some extra masks over some already
existing masks so that the previous topology remained unperturbed. Parameters of the newly
added masks were mutated in the subsequent step to generate a new topology which was evalu-
ated. Mask deletion was performed by identifying those that were redundant, that is, they were
either enclosed within other masks or, laid over the other previously processed masks. Such
masks do not directly contribute in determination of the topology. However, in the context of
CCM synthesis herein, they may still enclose active contact surfaces, e.g., CCMs I, II and IV
(Figs. 7a, c, g). As in [19] and [21], mask addition and deletion can be performed stochasti-
cally (i.e., with some probability, just as the design variables are mutated) with the proposed
approach as well, making it more generic so that topology optimization of CCMs with MMOS

4center coordinates and radius of a mask are continuous design variables; the fourth variable that helps decide
whether a contact surface within a mask exists, is discrete, and the fifth, that determines the radius of the rigid
contact surface, is continuous.
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does not depend on the prescribed number of masks. In essence, the number of masks may be
evolved simultaneously with the continuum topology. When performing mask deletion, those
generating active contact surfaces may not be considered redundant and therefore may not be
deleted.

5.4 Boundary smoothing, Mean Value Coordinates and Computational Cost

Hexagonal cells, by virtue of their geometry, circumvent geometric singularities like the checker-
board patterns and point connections. However, they leave serrated boundaries [20]. Boundary
smoothing subdues these notches thereby making it easier for contact analysis to be accom-
plished. Boundaries still get approximated using piece-wise linear segments, however, alternat-
ing contact forces are avoided [43]. For contact analysis to be more accurate, and especially for
its implementation with friction, which will be explored in future work, the analysis will benefit
from a discretization based on C1− continuous curves for which tangent and normal vectors at
each point is well defined.

Computationally, only few Gauss points are needed to solve the problem, but for accuracy
and robustness of contact computations, especially in presence of concave cells resulting from
boundary smoothing, 25 Gauss points per triangle of a hexagonal cell are employed in the finite
elements analysis [47]. We further analyze all CCMs, considering them as candidate compliant
continua within the search process, with fewer Gauss points and provide an estimate of the
relative CPU times. The output paths almost overlap (Fig. 11), with reduced CPU times
suggesting that less number of Gauss points could be employed when performing integration.

We report an estimate of the computational cost with the CCM presented in Fig. 12a by
synthesizing it on INTEL CORE(TM) i5-6000 CPU @ 2.70 GHz machine. The associated
converge history is depicted in Fig. 12b. Each optimization iteration can be categorized into two
main steps. In the first step, (i) one performs systematic mutation of the design variables using
the hill-climber approach according to section 4.2, (ii) examines for the presence of input node,
output node, some fixed boundary and removes dangling elements in the candidate solution,
and (iii) implements boundary smoothing. The first step is repeated until one gets a potential
continuum for the second stage (see flow chart in Fig. 5). In the second stage, the N-R solution
procedure is performed and thereafter, the FSD objective is evaluated. In each N-R iteration,
(i) detection of contact pair, (ii) calculation of contact forces and matrices, and (iii) execution
of the finite element analysis, are performed. For a potential continuum, the second step uses
substantially more computational time. The first step may require many iterations to yield a
feasible CCM with zero order search leading to significant contribution to the computational
cost (Fig. 12b), which is a shortcoming of the synthesis method. It takes close to 880 iterations
(Fig. 12b) for the first feasible CCM to appear. For the example presented in Fig. 12a, the
overall search culminates approximately within 12 hours. Note that the solution is different from
that in Fig. 7c though both are synthesized using identical design specifications. Mankame and
Ananthasuresh [23], p. 2594, report the required computational time close to 72 hours (266
MHz, single processor, Sun Ultra Sparc 5 workstation) with the gradient based search, beams
representing the design space and contact locations prespecified.

5.5 Force transfer and Failure-free CCMs

Contact-aided compliant mechanisms are synthesized herein to primarily demonstrate that the
proposed approach is capable of achieving kinematic intricacies (single or multiple kinks) in path
generation. While force transfer and/or attaining compliant continua that does not fail is not
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Figure 11: Paths and CPU time with various Gauss points, Key: GP–Gauss Points, CT(s)–CPU time in
seconds.

the main goal, force transfer could be achieved by incorporating a spring of suitable stiffness,
constant or non-constant, at the output. The spring should cater to cases where there are
abrupt changes in the path, and/or if the continuum indulges in motion transfer prior to force
transfer. One also expects a monolithic continuum, contact-aided or otherwise, to not fail when
performing a mechanical transfer task for a single or many cycles. Failure theories have been
incorporated previously (e.g., [57]) in topology design of compliant mechanisms. A failure-free
objective can either be addressed along with the kinematic requirement in the multi-objective
setting [57], or separately and once the kinematic objective is achieved. In the former case, one
could choose the best solution from a Pareto-front, and in the latter, noting that the design
space for CCMs can be non-convex, one could further evolve multiple solutions (e.g., Figs.
8b, 8c and 12a), all satisfying the kinematic requirement, to ensure they sustain a prescribed
number of cycles.

5.6 Presence of numerous rigid contact surfaces

In case of CCMs I, II, and IV, numerous rigid contact surfaces are generated by the synthesis
approach though only a few interact actively (Fig. 7), not necessarily at the same time. Presence
of inactive contact surfaces contributes to the computational cost of detecting contact pairs.
However, their presence may help when CCMs are sought for more complex tasks, e.g., tracing
output paths with more than two kinks, or attaining intricate shape profiles in case of motion
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Figure 12: Computational cost and convergence history with INTEL CORE(TM) i5-6000 CPU @ 2.70 GHz.
Solution (a) is obtained after 6000 function evaluations. A feasible candidate continuum, that having the
required input/output ports, some fixed boundaries, and that is well connected, is not available for the first
880 iterations. The overall synthesis takes about 12 hours.

generation applications. In some cases, suitable sizes, shapes and positioning of these ‘external’
contact regions may cause some members of the CCM to buckle, a phenomenon that may
be utilized for applications involving, say, static balancing. Design of CCMs for many such
applications will be explored in future.

6 Closure

A continuum synthesis approach for large deformation, path generating Contact-aided Com-
pliant Mechanisms is presented. Honeycomb tessellation is employed to represent the design
region and negative circular masks for material assignment, and also, to suspend rigid contact
surfaces. The novelty of the proposed method is that it captures both, self and mutual contact
modes. The synthesis process is exemplified with four path-generating CCMs, each tracing a
large output path with at least one non-differentiable point. A single-piece CCM tracing a
‘Z’ path, that has two kinks, exemplifies the capability of the proposed approach to capture
multiple self/mutual contact modes to yield intricate deformation profiles. In all four cases,
path shapes characterized by Aerr andBerr are captured well. Discrepancies in the path lengths
and orientations exist, as expected, due to lower weights employed in the objective and due to
a finite number of masks. Coarse meshes and use of fewer Gauss points in the analysis seem
adequate in capturing the desired kinematic characteristics by and large, however with fine
meshes, accuracy does improve. As a stochastic search is employed, computational costs are
high. Future endeavors will be directed towards making analysis and search procedures more
efficient by considering the possibility of using first and second order searches, implementing
friction in synthesis, and exploring CCM design for applications like static balancing.
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