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Abstract

We present next-to-leading order QCD corrections to production of two W bosons in

hadronic collisions in the extra dimension ADD model. Invariant mass and rapidity

distributions are obtained to order αs in QCD by taking into account all the parton level

subprocesses. The computation is organized using the monte carlo based method of phase

space slicing. We estimate the impact of the QCD corrections on various observables and

find that they are significant. We present some results for a 10 TeV LHC but most of the

results presented here are for 14 TeV LHC. We also show the reduction in factorization

scale uncertainty when O(αs) effects are included.
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1 Introduction

The fact that electroweak symmetry breaking scale of the Standard Model (SM) cannot

be made stable against the quantum corrections (hierarchy problem) within the SM

indicates to the possibility of new physics at TeV scale. The Large Hadron Collider

(LHC) which will operate at an enormous center of mass energy (
√
S = 14TeV ) offers

to shed light on the existence of new physics. The most popular new physics models are

based on the ideas of supersymmetry and extra spatial dimensions. Proposals to address

the hierarchy problem using extra dimensions were introduced in [1, 2]. In this paper

we will consider the model by Arkani-Hamed, Dimopoulos and Dvali (ADD) [1]. In this

model all SM fields are confined to a (3+1) dimensional manifold and the extra d spatial

dimensions are compactified, with same radius of compactification R, on a d-torii. The

effect of extra dimensions appears as Kaluza Klein (KK) gravitons on the 3-brane which

couple to SM fields through energy momentum tensor with a strength κ which is related

to the volume of the extra dimensions, and the fundamental scale Ms in 4+d dimensions

by [3]

κ2Rd = 8π(4π)d/2Γ(d/2)M−(d+2)
s . (1)

Although the coupling κ is MP l suppressed, the fact that there are large number of KK

modes that couple to the SM fields makes the cumulative effect significant and leads to

observable effects. One extra dimension ie. d = 1 is ruled out [4] and d = 2 is severely

constrained so we will consider in this paper d = 3 and above. There are two ways to

probe such effects at colliders, either through gravitons emission or by virtual graviton

exchange. In this paper we will consider only the effects of virtual spin-2 KK states.

The precise measurement of hadronic production of gauge boson pairs is one of the

important endeavors at the LHC both in the context of SM and new physics studies.

Studies in other channels have been reported in [5] in extra dimension models. In this

paper we will consider production of W pair at the LHC. Owing to its importance,

its study has attracted a lot of attention in the literature. Many studies have been

carried out for its production in the SM; a study in the context of anomalous triple
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gauge boson vertices was carried out in [6]. Leading order (LO) studies in the SM can

be found in [7]. As is well known the LO results are highly sensitive to the arbitrary

renormalization and factorization scales. At this order the factorization scale µF enters

solely through the parton distribution functions as the parton level cross-section, at this

order, does not depend on µF . As we include higher order terms of the perturbation

series the dependence will reduce and an all order result will be completely independent

of these arbitrary scales. In addition the NLO results are usually significantly enhanced

as compared to the LO results. It is thus important to carry out NLO calculation to

reduce sensitivity to these scales. Because of its importance, W+W− production has

been studied to next-to-leading-order (NLO) accuracy in the SM [8, 9]. It has also

been studied via gluon fusion through a quark box loop or triangle quark loop with

γ or Z boson exchange [10] and at one and two loop levels in high energy limit in

SM [11]. The significance of NLO computations in the extra dimension models for Drell-

Yan [12], diphoton [13], ZZ [14], graviton+photon [15], graviton+jet [16] production has

already been demonstrated. These studies show that not only the predictions at NLO

are enhanced but are also less sensitive to the factorization scale. With this in mind we

carry out a complete NLO calculation of hadronic W+W− production in ADD model in

this paper. W+W− production in Randall Sundrum model is presented in our work [17].

We organize the paper in the following sections as follows. In section 2 we give the

details of NLO computation for theW+W− production. Here we give the matrix element

squares for all the 2 → 2 subprocesses both at leading order and at loop level at order

as (= g2s/16π
2). All the Feynman diagrams are collected in the appendix. The virtual

corrections contain soft and collinear singularities which appear as simple and double

poles in ǫ as we use dimensional regularization with n = 4 + ǫ. The 2 → 3 real emission

matrix elements which were also calculated analytically are not presented here (to save

space as the expressions are lengthy) and can be obtained on request. These compu-

tations were done using the symbolic manipulation program FORM [18]. We intend to

use monte carlo methods for obtaining kinematical distributions. These methods prove
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very useful if experimental cuts need to be imposed on the final state particles and they

avoid the need for repeating calculations for obtaining different distributions as would

be required by completely analytical methods. In this paper we employ the method

of two cutoff phase space slicing [19] to carry out our calculation. This method gives

numerically stable results as has been demonstrated in [19] and also in our previous

works [13, 14]. An alternative to this is dipole subtraction method [20] which is also

widely used in higher order QCD calculations. We describe, in brief, phase space slicing

method and how the soft and collinear singularities that appear at virtual level and real

emission level are treated. In section 3 we present some checks on our code and then

present some useful kinematical distributions.

2 Next-to-leading-order Computation

The hadronic production of W bosons at NLO has three pieces of computation. A LO

piece which is a 2 → 2 parton level process (qq̄ → W+W− and gg → W+W−); second

is the 2 → 2 order as piece which originates from loop corrections to the LO piece; the

third and final part originates from real emission processes where in addition to two W

bosons, a parton is also emitted in the final state (qq̄ → W+W−g, qg → W+W−q, and

gg → W+W−g ). Let us take up these three pieces in turn.

2.1 Born Contribution

The charged vector-boson production in the leading partonic scattering processes corre-

sponds to

a(p1) + b(p2) → W+(p3) +W−(p4). (2)

where p1 and p2 are the momenta of initial state partons while p3 and p4 are those of final

state vector bosons. The W boson pair can couple to KK gravitons, so it is possible to

produce them through virtual graviton exchange at the leading order [21]. In SM this

proceeds via t channel (or u channel) quark anti-quark annihilation along with s-channel

γ and Z boson exchange shown in Fig. 10. The coupling of fermions to W and Z bosons
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are respectively

− i
eTW

2
γµ
(

1− γ5
)

, −i
eTZ

2
γµ
(

Cv − Caγ
5
)

. (3)

where TW and TZ read

TW =
1√

2 sin θW
, TZ =

1

sin θW cos θW
. (4)

The coefficients Cv and Ca are given by

Cv = T f
3 − 2 Qf sin

2 θW , Ca = T f
3 , (5)

The Qf and T f
3 denote the electric charge and the third component of the weak isospin of

the fermion f respectively, θW is the weak mixing angle and mz is the mass of Z boson.

The Z boson propagator is given as

−igµν
s−m2

z + i Γzmz
. (6)

We have used unitary gauge in the electroweak sector ie. ξ = ∞, this simplifies the

calculation as both the goldstone boson and ghosts in the electroweak sector disappear.

The γ5 matrices that appear in the intermediate stages of the computation require

special care as they are not defined in arbitrary dimensions. We have used naive anti-

commutation relations between γ5 and other gamma matrices in n dimensions and the

resulting traces are then computed in n dimensions as they are free of γ5. Alternatively,

one can use other method namely HVBM-scheme which was proposed in [22] and gen-

eralized in [23]. In this approach, Gamma matrices and momenta in the loop and final

state phase space integrals are split into a 4 and an n − 4 dimensional part. The γ5

anti-commutes in 4 dimensions and commutes in n − 4 dimensions with rest of the γ

matrices.

We give below the matrix element squares summed (averaged) over the final (initial)

state spins, colors and polarizations notated by an overline in n = 4 + ǫ dimensions .

s, t and u are the usual Mandelstam invariants. We will denote by sm, gr and int the
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contributions from SM, gravity, and interference of SM with gravity respectively. The

SM at LO gives order e4 contribution to the cross sections:

|M (0)|2qq,sm =
e4

N
(Aq

1B
q
1 + Aq

2B
q
2 + Aq

3B
q
3) (7)

where

Au
1 = T 4

W ,

Au
2 =

e2q
s2

+ eq Cv TZ cot θW
(s−m2

z)

s [(s−m2
z)

2 + Γ2
zm

2
z]

+(C2
v + C2

a) T 2
Z cot2 θW

1

4 [(s−m2
z)

2 + Γ2
zm

2
z]

,

Au
3 =

eqT 2
W

s
+ (Ca + Cv) T 2

W TZ cot θW
(s−m2

z)

2 [(s−m2
z)

2 + Γ2
zm

2
z]

.

(8)

Aq
i are in their essence combinations of EW couplings and propagator factors and Bq

i are

the functions of the kinematic invariants. N denotes the number of colors. In case of

up type quark initiated processes, Bu
1 originates from purely t-channel, Bu

2 from purely

s-channel while Bu
3 from the interference of t and s-channel diagrams. These functions

are given by

Bu
1 =

1

4m4t2

[

−
{

m8 (−2 + n)2
}

+ t3u− 2m2 (−2 + n) t2 (t + u)

+m4t
{

(−9 + 4n) t+ (−2 + n)2 u
}

]

, (9)

Bu
2 =

1

2m4

[

− 20m8 (−2 + n) + 8m6 (−2 + n) (t+ u) + tu (t + u)2

−2m2 (−2 + n) (t+ u)3 +m4
{

(−9 + 4n) t2 + 2 (−13 + 6n) tu

+ (−9 + 4n)u2
}

]

, (10)
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Bu
3 =

1

2m4t

[

− 10m8 (−2 + n) + 4m6 (−2 + n) (t+ u) + t2u (t+ u)

−2m2 (−2 + n) t (t+ u)2 +m4t {(−9 + 4n) t+ (−13 + 6n) u}
]

. (11)

Here m denotes the mass of final state W bosons. The Bq
i expressions for down type

quarks are related to that of up type quarks as follows

Bd
1 (t, u, s) = Bu

1 (u, t, s) ,

Bd
2 (t, u, s) = Bu

2 (t, u, s) , (12)

Bd
3 (t, u, s) = −Bu

3 (u, t, s) .

In addition, two more processes are allowed as the KK gravitons can appear at the

propagator level, qq → G∗ → WW and gg → G∗ → WW , as shown in Fig. 12. As

we use unitary gauge in the electroweak sector the term proportional to 1/ξ in the

WW−graviton vertex [3] drops out. The qq and gg initiated contributions which are of

order κ4 are given below.

|M (0)|2qq,gr =
1

64N
|Ds|2κ4

[

n
{

8m8 − 16m6(t + u) + tu(3t2 + 2tu+ 3u2)

+m4(9t2 + 30tu+ 9u2)− 2m2(t3 + 7t2u+ 7tu2 + u3)
}

−
{

8m8 − 24m6(t+ u) + tu(7t2 + 10tu+ 7u2)

+m4(17t2 + 62tu+ 17u2)− 4m2(t3 + 9t2u+ 9tu2 + u3)
}

]

, (13)

6



|M (0)|2gg,gr =
|Ds|2κ4

(N2 − 1)

1

128
×
[

128m8 + 9t4 + 28t3u+ 54t2u2 + 28tu3 + 9u4

−256m6(t+ u) + 192m4(t+ u)2 − 64m2(t+ u)3 − 72

(n− 1)2
s3(4m2 − s)

− 3

n− 1
s2
{

188m4 − 17t2 − 226tu− 17u2 + 60m2(t+ u)
}

+
32

(n− 2)2

{

− 44m8 + 40m6(t+ u)− 40m2tu(t+ u) + 9tu(t+ u)2

+m4(−9t2 + 26tu− 9u2)
}

+
4

n− 2

{

692m8 − 13t4 − 196t3u− 362t2u2

−196tu3 − 13u4 − 544m6(t+ u)− 8m4(t2 + 83tu+ u2)

+16m2(5t3 + 53t2u+ 53tu2 + 5u3)
}

]

. (14)

We have denoted the sum of spin-2 KK graviton propagators by Ds, then Ds times square

of the coupling can be written as

κ2Ds =
8π

iM4
s

(√
s

Ms

)d−2
[

π + 2iI(Λ/
√
s)
]

(15)

The function I(Λ/
√
s) depends on the ultraviolet cutoff Λ on the KK modes and its

expression can be found in [3]. The default choice for Λ would be the fundamental scale

Ms unless mentioned otherwise.

Next we give the interference of SM qq process with the gravity mediated qq subpro-

cess. For convenience we will denote M
(0)
qq,smM

(0)∗
qq,gr + c. c. by |M (0)|2qq,int.

|M (0)|2qq,int =
e2 κ2

N
(Cq

0Z
q
0 + Cq

1Z
q
1 + Cq

2Z
q
2) (16)

Zu
0 = Γz mz Cv TZ cot θW ImDs

1

(s−m2
z)

2 + Γ2
z m2

z

,

Zu
1 = T 2

W ReDs , (17)

Zu
2 = ReDs

[

Cv TZ cot θW
(s−m2

z)

(s−m2
z)

2 + Γ2
z m2

z

+
2 Qu

s

]

.
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where Zq
i are in their essence combinations of EW couplings and propagator factors while

Cq
i are the functions of kinematic invariants. These Cq

i functions are given below

Cu
1 =

1

8m2t

[

4m8 (−1 + n) + t2 (t− u)u−m6 {(−20 + 11n) t+ nu}+

m4t {(−17 + 8n) t + (−11 + 4n)u} −m2t
{

2 (−2 + n) t2

+ (−4 + n) tu+ (−4 + n) u2
}]

, (18)

Cu
2 =

1

8m2

[

− 10m6 (−2 + n) (t− u) +m4 (−17 + 8n)
(

t2 − u2
)

+

tu
(

t2 − u2
)

− 2m2 (−2 + n)
(

t3 − u3
)

]

, (19)

Cu
0 = −Cu

2 . (20)

The Cq
i expressions for down type quarks are related to that of up type quarks as follows.

Cd
1 (t, u, s) = Cu

1 (u, t, s) ,

Cd
2 (t, u, s) = Cu

2 (t, u, s) , (21)

Cd
0 (t, u, s) = Cu

0 (t, u, s) .

Note that the W boson polarization sum −gµν +kµkν/m
2, which correctly takes into

account 3-polarizations of a massive particle, does not give rise to negative powers of m

and the m → 0 limit is smooth.

2.2 Radiative Corrections

In Fig. 10, the order as loop diagrams that appear in SM and in Fig. 12 the diagrams with

a graviton propagator are presented. We will use Feynman gauge ξ = 1 in the QCD sector

and we retain the term proportional to ξ in the gluon-gluon-graviton vertex. However this

term does not contribute to the matrix element squares. Here we consider only 5 flavors of

quarks and treat them as massless. These diagrams contribute through their interference

with the leading order diagrams. In general loop diagrams give ultraviolet divergences
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and infrared divergences when the integration over loop momenta is carried out. We use

dimensional regularization (n = 4 + ǫ) to regulate these divergences; these divergences

then appear as poles in ǫ. Note however that owing to the gauge invariance and the fact

that the KK gravitons couple to SM energy momentum tensor, a conserved quantity,

this process is UV finite. The external parton leg corrections vanish in dimensional

regularization for massless partons. From the loop Feynman diagrams in the appendix

we find that all 2-,3-and 4-point loop integrals appear in the calculation. The maximum

rank of tensor integrals is 3 and originate from the fermion box. These tensor integrals

were reduced to scalar integrals following the procedure of Passarino-Veltman [24]. The

4-point scalar integrals that appear in the gg initiated box diagrams were taken from [25].

The one loop matrix elements are recorded below. The finite pieces of matrix element

squares denoted by a superscript fin are given in the appendix.

The SM contribution is found to be

|MV |2qq,sm = as(µ
2
R)f(ǫ, µ

2
R, s)CF

[

Υ (ǫ) |M (0)|2qq,sm + |MV |2finqq,sm

]

, (22)

the interference of SM with the gravity mediated processes are

|MV |2qq,int = as(µ
2
R)f(ǫ, µ

2
R, s)CF

[

Υ (ǫ) |M (0)|2qq,int + |MV |2finqq,int

]

(23)

|MV |2gg,int = as(µ
2
R)CA

[

|MV |2fingg,int

]

, (24)

Note that in the above gg initiated SM diagrams with a quark triangle and γ/Z propa-

gator do not contribute as they vanish in massless limit due to Furry’s theorem and weak

isospin invariance. Also note that |MV |2gg,int is completely finite; it does not contain any

soft or collinear divergences because in SM the gg contribution begin at the loop level

and a lowest order term should be finite.
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The pure gravity contributions are

|MV |2qq,gr = as(µ
2
R)f(ǫ, µ

2
R, s)CF

[

Υ (ǫ) |M (0)|2qq,gr + 4(2ζ(2)− 5)|M (0)|2qq,gr

]

(25)

|MV |2gg,gr = as(µ
2
R)f(ǫ, µ

2
R, s)CA

[

{

−16

ǫ2
+

4

CAǫ

(

11

3
CA − 4

3
nfTf

)}

|M (0)|2gg,gr

+
1

9

(

72ζ(2) + 70
nfTf

CA
− 203

)

|M (0)|2gg,gr

]

(26)

where

Υ (ǫ) = − 16

ǫ2
+

12

ǫ
, f(ǫ, µ2

R, s) =
Γ
(

1 +
ǫ

2

)

Γ(1 + ǫ)

(

s

4πµ2
R

)
ǫ
2

(27)

The theory is renormalized at scale µR. CF is the Casimir of the fundamental represen-

tation while CA is the Casimir of adjoint representation in the color group.

CF =
N2 − 1

2N
, CA = N, Tf =

1

2
(28)

We can now write the order as(µ
2
R) contributions coming from virtual diagrams as,

dσvirt = as(µ
2
R)dx1dx2f(ǫ, µ

2
R, s)

×
[

CF

(

−16

ǫ2
+

12

ǫ

)

∑

i

dσ
(0)
qiqi

(x1, x2, ǫ)
(

fqi(x1)fq
i
(x2) + x1 ↔ x2

)

+CA

{

−16

ǫ2
+

4

CAǫ

(

11

3
CA − 4

3
nfTF

)}

dσ(0)
gg (x1, x2, ǫ)

(

fg(x1)fg(x2)
)

+CF

∑

i

dσV,fin
qiqi

(x1, x2, ǫ)
(

fqi(x1)fq
i
(x2) + x1 ↔ x2

)

+CA dσV,fin
gg (x1, x2, ǫ)(fg(x1)fg(x2))

]

. (29)

The poles of order 2 in ǫ in the one loop matrix elements correspond to the configurations

which are both soft and collinear simultaneously. These double poles cancel when real

emission contributions are included, the remaining simple poles do not cancel completely

and are factorized into the bare parton distribution functions at the scale µF .
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Several checks ensure the correctness of the matrix elements. The W boson polariza-

tion sum −gµν+kµkν/m
2, which correctly takes into account 3-polarizations of a massive

particle, does not give rise to negative powers of m and the m → 0 limit is smooth. Fur-

ther, for gluon initiated process the gluon polarization sum is −gµν + (kµnν + kνnµ)/k.n

where n is an arbitrary light like vector and the results are independent of the vector n.

Furthermore the SM matrix elements are in agreement with the literature [8].

At NLO we also have to include 2 → 3 real emission processes. A generic process is

of the form

a(p1) + b(p2) → W+(p3) +W−(p4) + c(p5). (30)

In Fig. 11 we show the qq and qg initiated real emission Feynman diagrams which appear

in SM. In addition, in the ADD model the 2 → 3 diagrams with graviton propagator are

shown in Fig. 13. Here all the three kinds, qq, qg, gg initiated subprocesses occur. The

2 → 3 contributions to cross-section reveal the infrared divergences when the integral over

the final state particles is carried out. The sum of virtual and real emission cross section

is finite after mass factorization is carried out. For details we refer to the review [19].

Although the details of phase space slicing method to deal with soft and collinear

singularities in real emission processes were given in our earlier works [13, 14], we shall

recapitulate it for completeness. The 2 → 3 phase space is divided into soft and collinear

regions using two small dimensionless slicing parameters δs and δc . The soft region

is defined as the part of phase space where the final state gluon is soft and has an

energy less than δs
√
s12/2 in the center of mass frame of incoming partons. The region

complementary to the soft region is hard region and contains collinear singularities.

This region is thus further divided into hard collinear region (the region of phase space

where the final state parton is collinear to one of the initial state parton) which contains

collinear singularities and hard non-collinear region which is free of any singularities.

All the order as pieces together; the virtual cross-section dσvirt the soft piece dσsoft and

the mass factorized hard collinear contribution dσHC+CT (CT denotes mass factorization
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counter term) is referred to as 2-body contribution.

dσ2−body(δs, δc, µF ) = dσvirt + dσsoft(δs, δc) + dσHC+CT (δs, δc, µF ). (31)

The only order as piece, dσ3−body(δs, δc), which remains to be included is hard non

collinear and which is finite as the integration over 3-body phase space here does not

include soft and collinear regions. The integration over the 3-body phase space is car-

ried out using monte carlo, and it is constrained to avoid collinear and soft regions.

The qq and gg initiated processes contain both kinds of divergences so the integral is

constrained using δs and δc to avoid these regions. The qg initiated process, however,

contain only collinear singularities (as soft fermions do not give singularities) and the

3-body integration is constrained using only δc.

The NLO result is sum dσLO+dσ2−body(δs, δc, µF )+dσ3−body(δs, δc). The sum dσ2−body

(δs, δc, µF ) +dσ3−body(δs, δc) constitutes QCD correction, but dσ2−body(δs, δc, µF ) and

dσ3−body(δs, δc) independently are not physical quantities as these depend on the (arbi-

trary) slicing parameters. The sum of these two pieces should be independent of the

slicing parameters as these were introduced at the intermediate stages of calculation.

We have checked that the sum of 2-body and 3-body contribution is independent of the

δs and δc over a large range of their values.

In the next section we present the results using our monte carlo code which incorpo-

rates the above given details. We will present the stability of results against variations

of the slicing parameters. This code can easily accommodate any cuts on the final state

bosons and can evaluate various kinematical distributions.

3 Kinematical distributions and Results

The LHC with a center of mass energy of 14 TeV will be our default choice. However

we will also present some results for a center of mass energy of 10 TeV for the LHC. For

numerical evaluation, the following SM parameters [26] are used

mW = 80.398 GeV, mZ = 91.1876 GeV, ΓZ = 2.4952 GeV, sin2 θW = 0.231 (32)
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where θW is the weak mixing angle. For the electromagnetic coupling constant α we use

α−1 = 128.89. CTEQ6 [27] density sets are used for parton distribution functions. 2-loop

running for the strong coupling constant is used . The number of active massless-quark

flavors is taken to be 5 and the value of ΛQCD is chosen as prescribed by the CTEQ6

density sets. At leading order, that is at order α0
s, we use CTEQ6L1 density set (which

uses the LO running as) with the corresponding ΛQCD = 165 MeV . At NLO we use

CTEQ6M density set ( which uses 2-loop running as ) with the ΛQCD = 226 MeV ; this

value of ΛQCD enters into the evaluation of the 2-loop strong coupling. The default choice

for the renormalization and factorization scale is the identification to the invariant mass

of the W boson pair ie., µF = µR = Q. Furthermore the W bosons will be constrained

to satisfy |yW | < 2.5, where yW is the rapidity of a final state W boson .

We will present below the following kinematical distributions:

1. Invariant mass distribution, dσ/dQ, where Q is the invariant mass of the final state

W boson pair,

2. Rapidity distribution dσ/dY where Y = 1/2 ln(P1 · q)/(P2 · q), where P1 and P2

are incoming proton momenta and q is the sum of the W boson 4-momenta.

First we demonstrate that the sum of 2-body and 3-body contributions is fairly indepen-

dent of the slicing parameters. In Fig. 1 (for SM) and Fig. 2 (for signal) we show the

variations of these two pieces with the slicing parameters in invariant mass distribution

at a value of invariant mass equal to 800 GeV . Here both δs and δc are varied together

with the ratio δs/δc fixed at a value of 100 [19]. We note that the sum of 2-body and

3-body contributions is fairly stable against variations in these parameters and this gives

us confidence in our code. In what follows we will use δs = 10−3 and δc = 10−5.

In Fig. 3 we have plotted the invariant mass distribution both for the SM and the

signal, in the range 300 GeV to 1300 GeV . In this plot we display for three extra

dimensions ie., d = 3 and for fundamental scale equal to 2 TeV . To highlight the

importance of QCD corrections we have also displayed the LO results of SM and the

13



signal, and we observe that the K factors (defined as K = dσNLO/dσLO) are significantly

large. We note that for the signal (sm+gr+ int) K factor varies between 1.55 to 1.98 in

the invariant mass range of 300 to 1300 GeV . This also shows that the LO results can

be only treated as first approximations and to have more precise estimates we should

go beyond the leading order. We note here that present computation does not take

into account decay of W bosons to leptons which is observed experimentally, but as

QCD corrections are independent of these decays, the K factors obtained here would

not change when decays are taken into account.

To estimate the effect of the number of extra dimension on the invariant mass distri-

bution, we plot in Fig. 4 the signal for three different values of d (3,4,5) with Ms fixed at

2 TeV . We note that the lower the value of d, more is the strength of the signal. Next

in Fig. 5 we have plotted dσ/dQ for three different values of Ms (2.0, 2.5, 3.0) at a fixed

value 3 for the number of extra dimensions. As expected, with increase in the funda-

mental scale the deviations from SM predictions become less, and significant deviations

from SM are observed at higher energies still. Next, in Fig. 6 we present the effect of

variation of the UV cutoff Λ that appears in the expression of graviton propagator (see

eq. 15) for Ms = 3TeV and d = 3. We observe that lowering the cutoff from Ms by 25%

lowers the predictions by 14%.

In Fig. 7 we have plotted the rapidity distribution dσ/dY at LO and NLO both for

SM and the signal for d = 3 and Ms fixed at 2 TeV. We have plotted this distribution in

the interval −2.0 < Y < 2.0 and have carried out an integration over the invariant mass

interval 900 < Q < 1100 to increase the signal over the SM background. As expected

the distribution is symmetric about Y = 0.

As was noted before the NLO QCD corrections reduce the sensitivity of the cross

sections to the factorization scale µF ; this we now show in the Fig. 8. We have plotted

SM and the signal both at LO and NLO, and have varied the factorization scale µF in the

range Q/2 < µF < 2Q. The central curve in a given band (shown by the dotted curves)

correspond to µF = Q. In all these the renormalization scale is fixed at µR = Q. We

14



notice that the factorization scale uncertainties in SM are less compared to the signal.

This is because of the dominant role of the gluon gluon initiated process in the signal.

We see in this figure that a significant reduction in theoretical uncertainty, arising from

the factorization scale, is achieved by our NLO computation. At Q = 1300 GeV the

dσ/dQ for the signal varies by 18.8 % at LO as µF is varied between Q/2 to 2Q and it

varies by 7.6 % at NLO. At the end we present in Fig. 9, dσ/dQ for LHC with a centre

of mass energy of 10 TeV at NLO both for SM and signal. For comparison we have also

plotted the 14 TeV results in the same figure.

4 Conclusions

In this paper we undertook computation of W boson pair production at the LHC at

next-to-leading order in QCD in the extra dimension model of ADD. Here only spin-2

KK gravitons appearing at the propagator level were considered. W boson production

is one of the important channels at the LHC to probe both the standard model and

new physics. As the leading order results serve only as first approximations we need to

go beyond it to NLO to have more precise estimates. The NLO results are generally

not only significantly larger as compared to the LO results but they are also much less

sensitive to the arbitrary factorization scale and renormalization scale (if the LO already

starts at order as).

Here we carried out a full NLO computation and presented analytical expressions

of matrix element squares for all the SM, gravity mediated and the interference of SM

and gravity mediated processes both at the LO and virtual level. We used dimensional

regularization to regulate soft and collinear divergences and the singularity structure in

the loop level matrix elements is shown and it is observed that the singular pieces are

proportional to the born contributions. As different kinematical distributions such as

invariant mass distribution and rapidity distribution are evaluated with cuts on the final

state W bosons it is useful to use monte carlo based semi analytical methods which

allow to tailor code easily to these requirements. For this we used the two cutoff phase

15



space slicing method to divide phase space in soft and collinear regions and filter out the

singularities in the real emission contributions which appear on phase space integrations.

A brief discussion on this method was presented. To save space we omitted the real

emission matrix elements as the expressions are voluminous and can be obtained on

request. We have used MS scheme throughout this paper.

We have presented distributions for the LHC at 14TeV and 10TeV . We first offered

some checks on our monte carlo code such as stability of sum of 2 − body and 3 − body

contributions against variation of the slicing parameters δs and δc and then presented

invariant mass and rapidity distributions both at LO and NLO. We use CTEQ 6L1 and

CTEQ 6M parton density sets for LO and NLO observables, respectively. Significant

enhancements over the LO predictions are observed. The K factors are found to be

large in the invariant mass distribution. For LHC at 14TeV we find that K factor in

the invariant mass distribution for the signal (sm + gr + int) varies between 1.55 and

1.98 as Q varies between 300 to 1300 GeV . We have shown that a significant reduction

in theoretical uncertainty, arising from the factorization scale, is achieved by our NLO

computation. At Q = 1300 GeV the dσ/dQ varies by 18.8 % at LO as µF is varied

between Q/2 to 2Q and it varies by 7.6 % at NLO. These observations justify the entire

exercise and give results that are precise and suitable for further studies for constraining

the parameters of the ADD model. Invariant mass distribution is also presented for LHC

at a center of mass energy of 10TeV at the NLO level.
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Figure 1: Variation of 2-body and 3-body contributions (of dσ/dQ at Q = 800 GeV in
SM) and their sum with δs. Here δs/δc = 100 has been used.
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Figure 2: Variation of 2-body and 3-body contributions (of dσ/dQ at Q = 800GeV in
signal) and their sum with δs. Here δs/δc = 100 has been used.
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WW production at the LHC (√ S =14 TeV)

 Q →Ms=2TeV, d=3
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Figure 3: Invariant mass distribution at LO and NLO in SM and for the signal at
Ms = 2TeV and 3 extra dimensions.
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WW production at the LHC (√ S =14 TeV)
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Figure 4: Effect of variation of number of extra dimensions in invariant mass distribution.
The fundamental scale Ms has been fixed at 2 TeV. The curves correspond to NLO
results.
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WW production at the LHC (√ S =14 TeV)

 Q →Ms variation,  d=3
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Figure 5: Effect of variation of the fundamental scale Ms in the invariant mass distri-
bution. The number of extra dimensions has been fixed at 3. The curves correspond to
NLO results.
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WW production at the LHC (√ S =14 TeV)

 Q →d=3,  Ms=3TeV , Λ=ηMs
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Figure 6: Effect of variation of the UV cutoff scale Λ in the invariant mass distribution
for d = 3 and Ms = 3TeV . The curves correspond to NLO results.

22



 LHC (√ S =14 TeV)

 Y →Ms=2TeV, d=3
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Figure 7: Rapidity distribution for Ms = 2TeV for SM and signal for d = 3 . We have
integrated over the invariant mass range 900 < Q < 1100 to enhance the signal.

23



µF variation,  LHC (√ S =14 TeV)
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Figure 8: Factorization scale variation in the invariant mass distribution. The number
of extra dimensions d = 3 and the fundamental scale Ms = 2TeV have been chosen.
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LHC at √ S =14 TeV and √ S=10 TeV

 Q →d =3,  Ms=2TeV
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Figure 9: Invariant mass distribution at NLO for SM and the signal. Here the thicker
curves correspond to

√
S = 10TeV and lighter curves to

√
S = 14TeV at the LHC.
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5 Appendix

Below we give the finite pieces of the matrix element squares that appear in Eq. 22

through Eq. 24 in section 2.

|MV |2finqq,sm =
e4

N
[Aq

0B
q
0 + Aq

1B
q
11 + Aq

2B
q
22 + Aq

3B
q
33] (33)

where Aq
i contain the coupling and propagator factors , Bq

i are the functions of the

kinematic invariants.

Au
0 =

1

2π

(Ca + Cv) Γz mz T 2
W TZ cot θW

(s−m2
z)

2 + Γ2
zm

2
z

(34)

and the rest Aq
i are given in eqn. (8). The Bq

i functions are as follows.

Bu
0 =

12

t

[

2G1

(

10m4 − 4m2(2t+ u) + t(2t + u)
)

− 1

(m2 − t)2

{

ζ(2)
(

15m8 − 6m6(2t+ u)− t2u(t+ 2u)− 3m4t(t + 3u)

+2m2t(t2 + 6tu+ 2u2)
)}]

, (35)

Bu
11 =

2G2

t2
(

−2m4 + tu
)

+ 2ζ(2)

{

7− 8m4

t2
+

6u

t
+

tu

m4
− 4(t+ u)

m2

}

+
G3

(m2 − t)t2

{

6m6 + 6m4t− 2t2u− 2m2t(2t+ 3u)
}

+
2(2m2 + t+ u)

m4(−4m2 + s)2t2

{

18m10 − 2t3u(t+ u) +m8(11t+ 9u)− 2m6t(14t + 9u)

+m4t(2t2 − 9tu− 9u2) + 4m2t2(2t2 + 3tu+ 2u2)
}

+
G4

(−4m2 + s)2t2

{

24m8 + 8m6(t + 3u) + 2t(t− u)(t+ u)(2t+ 3u) + 4m2t(t2 − 6tu− 3u2)

+m4(−22t2 − 8tu+ 6u2)
}

+
2G5

s(−4m2 + s)2t

{

− 12m8 + 4m6(s+ 2t)

+su(t+ u)2 + 2m2su(3t+ u) + 2m4(2t2 + s(t + u))
}

, (36)
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Bu
22 =

1

m4

[

− 4(−2 + ζ(2))
{

40m8 − 16m6(t+ u)− tu(t+ u)2 + 4m2(t+ u)3

−m4(7t2 + 22tu+ 7u2)
}]

, (37)

Bu
33 = 2

[

− G2

t

{

10m4 − 4m2(2t+ u) + t(2t + u)
}

+
2ζ(2)

m4t

{

− 30m8

+t2u(t+ u)− 4m2t(t+ u)2 + 5m4t(t+ 2u) + 4m6(4t+ 3u)
}

+
G3

t(m2 − t)2

{

15m8 − 6m6(2t+ u)− t2u(t+ 2u)− 3m4t(t + 3u)

+2m2t(t2 + 6tu+ 2u2)
}

+
G5

s(−4m2 + s)2

{

− 32m8 + 4m6(11s+ 8t)

−s(t+ u)2(2t+ u) + 2m4s(5t+ 17u) + 2m2s(−2t2 + tu+ 3u2)
}

+
G4(2m

2 + t + u)

t(−4m2 + s)2

{

30m6 +m4(−13t+ 3u) + t(t+ u)(2t+ 3u)

−2m2(t2 + 11tu+ 3u2)
}

+
(2m2 + t+ u)2

m4(−4m2 + s)2(m2 − t)t

{

85m10

+m6t(4t− 17u) + 4t3u(t+ u)− 4m2t2(t+ u)(4t+ 5u)

−m8(115t+ 34u) +m4t(44t2 + 79tu+ 18u2)
}]

. (38)
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|MV |2finqq,int = =
e2κ2

N
[Cq

00Z
q
0 + Cq

11Z
q
1 + Cq

22Z
q
2 + Cq

33Z
q
3 ] (39)

where Zq
i contain the coupling and propagator factors while Cq

i are the functions of

kinematic invariants.

Zu
3 = T 2

W π ImDs (40)

and rest Zq
i are given in eqn. (17). The Cq

i functions are as follows.

Cu
11 =

1

4

[ 2G3

t(m2 − t)

{

− 9m8 − 4m4t2 + 3m6(5t+ u)−m2tu(9t+ u) + t2u(2t+ 3u)
}

+4G8

{−3m6

t
+ t2 +m2

(

−5t− 7u

2

)

+ tu+
u2

2
+m4

(

8 +
u

t

)}

−4G6

t

{

− 6m6 + 2m4(8t + u)−m2t(10t+ 7u) + t(2t2 + 2tu+ u2)
}

+
4ζ(2)

m2t

{

18m8 + t2(t− u)u− 2m6(20t+ 3u) +m4t(25t+ 12u)

−m2t(6t2 + 2tu+ u2)
}

− 2G5

s(−4m2 + s)2

{

− 32m10 + 16m8(3s+ 4t)

+m6(−42st− 32t2 + 34su)− 4m4s(4t2 + 10tu− u2) + s(t+ u)2(2t2 + 2tu+ u2)

+m2s(2t3 − 3t2u− 6tu2 − u3)
}

+
2G4

(−4m2 + s)2t

{

− 36m10 + 4m8(13t− 6u)

+m2t(2t− 9u)(t+ u)2 + tu(t+ u)2(2t+ 3u) +m6(−5t2 + 66tu+ 3u2)

+m4(−4t3 − 49t2u+ 2tu2 + 3u3)
}

+
1

(−4m3 +ms)2t

{

− 456m12

+8m10(55t− 38u)− 9t2(t− u)u(t+ u)2 +m8(226t2 + 648tu+ 38u2)

+m4t(9t3 − 217t2u− 201tu2 − 47u3)− 2m6(90t3 + 129t2u− 64tu2 − 19u3)

+2m2t(18t4 + 18t3u+ 17t2u2 + 16tu3 − u4)
}]

, (41)
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Cu
22 =

(4ζ(2)− 9)(t− u)

4m2

[

− 20m6 + 15m4(t+ u) + tu(t+ u)

−4m2(t2 + tu+ u2)
]

, (42)

Cu
33 =

2

4t

[ 1

m2 − t

{

− 9m8 − 4m4t2 + 3m6(5t+ u)

−m2tu(9t+ u) + t2u(2t+ 3u)
}

−2(G7 −G3)
{

− 6m6 + 2m4(8t+ u)−m2t(10t+ 7u)

+t(2t2 + 2tu+ u2)
}]

, (43)

Cu
00 = −Cu

22 . (44)

where

G1 = ζ(2) ln

(

(t−m2)2

m2s

)

− ln

(

− t

m2

)

,

G2 = 2 ln

(

− t

m2

)

ln

(

(t−m2)2

m2s

)

+ 4Li2

(

t

m2

)

− ln2

(−t

m2

)

,

G3 = ln

(

− t

m2

)

, G4 = ln
( s

m2

)

,

G5 =
1

β

[

ln2(γ) + 4Li2(−γ) + 2ζ(2)
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,
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(
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, β =

√
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|MV |2fingg,int = T 2
W

2
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e2κ2

N2 − 1
×
[

{

H1(t)
(

9m4 + 2t2 + 2tu+ u2 − 6m2(t + u)
)

+
H2(t)

4(t−m2)2

(
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+
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(
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(
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)

+
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4(t−m2)(u−m2)(4m2 − s)

(
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)

]

(46)

33



where

H1(t) =
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,
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)

,
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)

,

H5 =
1

8
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β
ln2 (γ) +

4

β
ReDsLi2(−γ) +
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β
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)

,
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(a) (b)

γ/Z

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 10: Leading order and order as virtual diagrams in SM for the subprocess uū →
W+W− and gg → W+W−. The diagrams for the subprocess dd̄ → W+W− are obtained
by replacing u → d and W+ ↔ W− in the diagrams shown here.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11: Order as real emission Feynman diagrams in SM for the subprocess uū →
W+W−g and ug → W+W−u. The diagrams for the subprocess dd̄ → W+W−g and
dg → W+W−d are obtained by replacing u → d and W+ ↔ W− in the diagrams shown
here.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 12: Leading order and order as gravity mediated virtual correctionss for the
subprocess qq̄ → W+W− and gg → W+W−. The big dashed lines represent gravitons
and the small dashed lines represent QCD ghosts.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 13: Gravity mediated real emission diagrams for the subprocess qq̄ → W+W−g,
qg → W+W−u and gg → W+W−g. The big dashed lines represent gravitons.
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