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Abstract

Most applications of Bayesian Inference for parameter estimation and model selection in astrophysics
involve the use of Monte Carlo techniques such as Markov Chain Monte Carlo (MCMC) and nested
sampling. However, these techniques are time consuming and their convergence to the posterior could
be difficult to determine. In this work, we advocate Variational inference as an alternative to solve
the above problems, and demonstrate its usefulness for parameter estimation and model selection in
Astrophysics. Variational inference converts the inference problem into an optimization problem by
approximating the posterior from a known family of distributions and using Kullback-Leibler divergence
to characterize the difference. It takes advantage of fast optimization techniques, which make it ideal to
deal with large datasets and makes it trivial to parallelize on a multicore platform. We also derive a new
approximate evidence estimation based on variational posterior, and importance sampling technique
called posterior weighted importance sampling for the calculation of evidence (PWISE), which is useful
to perform Bayesian model selection. As a proof of principle, we apply variational inference to five
different problems in astrophysics, where Monte Carlo techniques were previously used. These include
assessment of significance of annual modulation in the COSINE-100 dark matter experiment, measuring
exoplanet orbital parameters from radial velocity data, tests of periodicities in measurements of Newton’s
constant G, assessing the significance of a turnover in the spectral lag data of GRB 160625B and
estimating the mass of a galaxy cluster using weak gravitational lensing. We find that variational
inference is much faster than MCMC and nested sampling techniques for most of these problems while
providing competitive results. All our analysis codes have been made publicly available.

Keywords: Astronomy data analysis – Bayesian Model Comparison

1 INTRODUCTION

Markov Chain Monte Carlo (MCMC) is the most com-
mon method for inference, and for sampling multi-modal
probability distributions (Hastings, 1970; Gelfand &
Smith, 1990; Sharma, 2017; Hogg & Foreman-Mackey,
2018; Speagle, 2019). Following the rapid rise in the
usage of Bayesian analysis in astronomy, MCMC (and
nested sampling) techniques are now widely used (start-
ing with Saha & Williams 1994) for a variety of problems
ranging from parameter estimation, model comparison,
evaluating model goodness of fit, to forecasting for future
experiments. This is because it is usually not possible
to analytically calculate the multi-dimensional integrals
needed for computing the Bayesian posteriors or evi-
dence, and the numerical evaluation of these integrals
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can easily get intractable. Also, almost all numerical
optimization techniques run into problems while maxi-
mizing the Bayesian posterior, when the total number
free parameters gets large. For this reason, there has
been an unprecedented surge in the usage of Monte
Carlo techniques in astrophysics. However, MCMC tech-
niques are not tied only to Bayesian methods. They have
also been used in frequentist analysis, for sampling com-
plex multi-dimensional likelihood needed for parameter
estimation (Wei et al., 2017). That said, the ubiquity
of MCMC methods in Astronomy has been driven by
the increasing usage of Bayesian methods. Applications
of MCMC to a whole slew of astrophysical problems
have been recently reviewed in (Sharma, 2017). Al-
though a large number of MCMC sampling methods
have been used, the most widely used MCMC sam-
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pler in Astrophysics is Emcee (Foreman-Mackey et al.,
2013a). Bayesian model comparison is usually done using
Nested sampling (Skilling et al., 2006), which is also a
Monte Carlo based technique. A large number of pack-
ages have been used in Astrophysics for carrying out
Bayesian model comparison using Nested Sampling tech-
niques, such as MultiNest (Feroz et al., 2009), Nestle 1,
dynesty (Speagle, 2020) etc. These techniques are how-
ever computationally expensive.

Although, MCMC has evolved into one of the most im-
portant tools for Bayesian inference (Robert & Casella,
2011), there are problems for which we cannot easily use
this approach, especially in the case of large datasets
or models with high dimensionality. Variational infer-
ence (Jordan et al., 1999) provides a good alternative
approach for approximate Bayesian inference and has
been the subject of considerable research recently (Blei
et al., 2017). It provides an approximate posterior for
Bayesian inference faster than simple MCMC by solv-
ing an optimization problem. Ranganath et al. (2014)
and Kucukelbir et al. (2016) compare the convergence
rates for variational inference against other sampling
algorithms. They both show that variational inference
convergences much faster in lesser number of iterations,
even when the Metropolis-Hastings algorithm doesn’t
converge for the same problem.

The use of variational inference with deep learning is
becoming more widespread in Astrophysics, especially in
the areas of image generation and classification. Generat-
ing reliable synthetic data that can be used as calibration
data for future surveys is an important task, which oth-
erwise is a expensive task. Ravanbakhsh et al. (2016);
Spindler et al. (2020); Bastien et al. (2021) have used con-
ditional variational auto encoder (cVAE) for the task of
image generation. Ravanbakhsh et al. (2016) used cVAE
with convolutional layers and adversarial loss to generate
galaxy images using galaxy zoo dataset, Bastien et al.
(2021) used cVAE with fully connected layers for the
task of generating synthetic images from radio galaxies.
Walmsley et al. (2019) used Bayesian neural networks
(BNN) for calculating posterior over image labels, which
can provide uncertainties for each label for a given im-
age. This can be converted to traditional deterministic
classification by collapsing posterior to corresponding
point estimates.

Jiang et al. (2021) used BNN for tracing fibrils in the
Hα images of the sun. A specific BNN dubbed FibrilNet
was used for the segmentation task i.e the probability of
each pixel being a fibril is predicted with a uncertainty,
then a fibril fitting algorithm is used on this mask to
trace firbils and identify their orientation. A significant
number of confirmed exoplanets (about 4000 which is
30% of all identified exoplanets) have been identified
through the validation of false positive cases from non-

1http://kylebarbary.com/nestle/

planet scenarios. Armstrong et al. (2020) used Gaussian
process classifier (GPC) for this validation task and
showed that their method is much faster than the com-
peting algorithm vespa with comparable results. Lin &
Wu (2021) combined deterministic deep learning clas-
sifier CLDNN (it combines CNN and a LSTM) with
variational inference to detect events of binary coales-
cence in observation data of gravitational waves along
with uncertainty estimates. This can be used in real
time detection of events and the events with high un-
certainty can be pushed for further examination rather
than accepting or discarding event. Morales-Álvarez
et al. (2019) used variational gaussian processes for tack-
ling the problem of crowdsourcing in Glitch detection
in LIGO. They show that variational gaussian processes
very well compared to other traditional deep learning
techniques and also take less time to train.

VI has also been used in the task of parameter es-
timation. (Hortúa et al., 2020a) combined BNN with
normalizing flows (NF) for estimating astronomical and
cosmological parameters from 21cm surveys. Gabbard
et al. (2020) use cVAE for estimating the source parame-
ters for gravitational wave detection. They show that the
estimated parameters are close to the parameters from
traditional MCMC algorithms. The significant amount
of time taken in this process is training of the cVAE
network; it takes about O(1) day. Once trained the net-
work need not be trained again, and the GW detection
parameters can be obtained 6 orders of magnitude faster,
when compared to existing techniques.

Few works were done comparing MCMC and VI ap-
proached. In the work done by (Regier et al., 2018),
a generative model for constructing astronomical cata-
logs using telescope image datasets was developed using
Bayesian inference. They developed two approximate
inference procedures using MCMC and variational in-
ference for their statistical model and compared the
effectiveness of the methods. The aforementioned paper
found that for the synthetic data generated from their
model, MCMC was better in estimating uncertainties,
but it was about three orders slower compared when
compared to the competing variational inference pro-
cedure. Whereas on real data taken from SDSS, the
uncertainty estimates in both the procedures were far
from perfect. In that work, they were successful in apply-
ing variational inference to the entire SDSS data, thus
demonstrating its feasibility on very large datasets. This
technique has also been used in lensing for estimating
the uncertainties in parameters through Bayesian neu-
ral networks Blundell et al. (2015) for the problem of
Singular Isothermal Ellipsoid plus external shear and to-
tal flux magnification (Perreault Levasseur et al., 2017).
Recently, Hortúa et al. (2020b) used BNN for estimat-
ing parameters for cosmic microwave background. They
found that VI was 4 orders faster when compared to
MCMC with slight compromise in accuracy. They also
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showed that using output from BNN as initial proposal
for Markov chain resulted in higher acceptance rate for
Metropolis-Hasting algorithm.

For the purpose of computing Bayesian evidence,
needed for model comparison, (Bernardo et al., 2003)
have compared Variational Bayes and Annealed impor-
tance sampling (AIS) (Neal, 2001) for the task of evi-
dence estimation and posterior evaluation. Their results
show that Variational Bayes is about 100 times faster
when compared to AIS without any significant loss in
accuracy.

In this work, we shall explain how a particular adapta-
tion of variational inference (dubbed ADVI) can super-
sede Monte Carlo techniques such as MCMC and nested
sampling for parameter estimation and Bayesian model
comparison and apply these techniques to five different
problems in astrophysics and compare the results to
Monte Carlo methods. The outline of this paper is as
follows. In section 2, we introduce the idea of Bayesian
modeling and provide an introduction to MCMC. In
section 3, we present an overview of the variational
inference method. In section 4, we discuss a specific im-
plementation of variational inference called Automatic
differentiation variational inference (ADVI). In section 5,
we explain how variational inference can be used for pa-
rameter estimation and model comparison. Applications
to ancillary problems in astronomy are outlined in sec-
tion 6. We conclude in section 7. The code for all the
analyses in this manuscript can also be found on a github
link provided at the end of this manuscript.

2 OVERVIEW OF BAYESIAN

MODELING AND MCMC

We first start with a very brief primer on Bayesian
modeling and parameter inference, and then explain
how Monte Carlo methods are applied to these problems.
More details on Bayesian methods and their applications
in astrophysics are reviewed in (Trotta, 2017; Sharma,
2017; Kerscher & Weller, 2019) and references therein.
Bayes Theorem in general terms is given as,

p(θ|D) =
p(D, θ)
p(D)

=
p(D|θ)p(θ)

p(D)
, (1)

where p(θ) is the prior belief on the parameter θ, p(D|θ)
is known as the likelihood, which models the probability
of observing the data D given parameter θ. p(θ|D) called
posterior probability, is the conditional probability of θ
given D, which can be interpreted as the posterior belief
over the parameters after evidence or data D is observed.
p(D) is termed as the marginal likelihood or model
evidence, which is obtained by integrating out θ from
the joint probability distribution p(D, θ), the numerator
term in Eq. (1). All the conditional probabilities in
Eq. (1) are implicitly conditioned on the model m. Hence
the marginal likelihood p(D) provides the probability

that the model m will generate the data irrespective of
its parameter values and is a useful quantity for model
selection.

Bayesian models treat the parameters as a random
variable and impose preliminary knowledge about the
parameter through the prior. Inference in the Bayesian
model amounts to conditioning on the data and com-
puting the posterior P (θ|D). This computation is in-
tractable for models where the prior and likelihood take
different functional forms (non-conjugates). In these
cases, analytical closed form estimation of the marginal
likelihood is also intractable. This has led to the us-
age of sampling methods to solve for such intractable
distributions.

MCMC methods are sampling techniques, which
enable us to sample for any unnormalized distribu-
tion (Hastings, 1970; Gelfand & Smith, 1990; Sharma,
2017; Hogg & Foreman-Mackey, 2018; Speagle, 2019).
The idea of MCMC algorithms is to construct and sam-
ple from a Markov chain whose stationary distribution is
the same as the desired distribution, and use those sam-
ples to compute expectations and integrals of required
quantities using Monte Carlo integration techniques. We
will briefly introduce the Metropolis-Hastings algorithm
(M-H) (Metropolis et al., 1953; Hastings, 1970), which
is the simplest MCMC algorithm. Although the M-H al-
gorithm is simple, it shares many of the same principles
with the newer and more complex MCMC algorithms.
M-H algorithm requires a proposal distribution q(θ′|θ),
which is used to generate parameter samples. Assume
the unnormalized posterior distribution over the pa-
rameters θ to be represented as the function f(θ), i.e.
f(θ) ∝ p(D|θ)p(θ). The M-H algorithm works as follows.

• Assume that θk is the previous sampled point, draw
the next sample θ′ from the proposal distribution
q(θ′|θk)

• Draw a random number r from a uniform distribu-
tion between 0 and 1

• Accept the sample if f(θ′)q(θt|θ′)
f(θk)q(θ′|θt

) > r (θk+1 ← θ′)
else reject the sample (θk+1 ← θk)

When run long enough, the M-H algorithm produces
samples from the desired posterior distribution. Al-
though the algorithm is simple, there are many different
parameters in the algorithm that are to be tuned to
achieve ideal results. One of the important parameters
for the algorithm is the number of samples that the
algorithm has to run for achieving reliable results. There
is nothing called absolute convergence for a MCMC al-
gorithm and one can only rely on heuristics. We can
run multiple chains with different initial points and can
compare posterior inferences like the mean and vari-
ance from both the chains. There are other metrics like
autocorrelation time (Sokal, 1997) and Gelman–Rubin
diagnostic (Gelman & Rubin, 1992) which can be used
to check for pseudo-convergence of MCMC algorithms.
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Choosing a proposal distribution also plays a vital role
in the quality of samples that are produced. A proposal
distribution that is too narrow can result in accepting
all the samples and will take a lot of time covering the
entire parameter space, while a proposal distribution
that is too wide can result in taking large steps and
rejecting most of the samples. For example, consider a
Gaussian distribution N (0, σ) as the proposal distribu-
tion and θk is the current sample, then the next sample
θ′ is calculated as θ′ ← θk + N (0, σ). The value of σ
dictates the distance between the two proposal and it is
the step size in this case. One can use a simple heuristic
like the acceptance ratio for tuning the step size, high
acceptance ratio means that you are accepting all the
generated samples and hence has to reduce the step size
and vice-versa. The choice of proposal distribution is not
problem independent and finding efficient proposal dis-
tribution can become increasingly difficult with increase
in dimensions of parameter space.

Initialization like proposal distribution is an input
parameter to most of the MCMC algorithms. A badly
initialized chain can spend a lot of time in regions of
low probability, which can result in a large number iter-
ations for the MCMC algorithm to reach a stationary
condition. In such cases we discard a certain number
of initial samples from the chain before the stationary
condition is reached. This idea is called as burn-in and
the length of burn-in depends on each individual prob-
lem and initialization. If the proposal distribution is
multi-modal, then starting multiple chains with differ-
ent initializations and comparing the samples will help
in identifying if chains have covered all the modes. If
different initializations result in different chains, then
there is no straight forward method of combining the
samples from multiple chains. One has to run a MCMC
algorithm for a long time so that each chain can cover
all the modes, and produce a representative sample or
resort to Nested sampling techniques.

There are many advanced methods like temper-
ing (Vousden et al., 2015), which help the MCMC sam-
plers from being stuck at one mode in multi-modal distri-
butions. Hamiltonian Monte Carlo (HMC) (Betancourt,
2018) which uses the gradients of the function f(θ) for
efficient generation of proposals. HMC avoids the ran-
dom walk sampling approach and hence can be efficient
in exploring parameter space even for high dimensional
cases. HMC’s performance is sensitive to two tunable
parameters: the step size ǫ and the desired number of
steps L. If L is too small then HMC ends up exhibiting
random walk behaviour which is undesirable, and if L is
too high the algorithm can waste a lot of computational
power. No-U-Turn Sampler (NUTS) (Hoffman & Gel-
man, 2011) is an extension to HMC which eliminates
the manual tuning of L and calculates the number of
steps through a recursive algorithm. Therefore, NUTS
is as efficient as HMC if not better in most of the cases

and eliminates the need for manual tuning.
Affine invariant ensemble sampling uses multiple ran-

dom walkers for drawing proposal samples and it sig-
nificantly outperforms the standard M-H algorithm in
drawing independent samples with much lesser auto-
correlation time (Goodman & Weare, 2010; Foreman-
Mackey et al., 2013b). Nested sampling (Feroz et al.,
2019) converts the multi-dimensional integration of evi-
dence D into a 1-D integration by mapping likelihood
to the corresponding prior volume in the corresponding
iso-likelihood contours on a 2-D curve. This 1-D curve in-
tegration can be evaluated using trapezoid rule. MCMC
methods as seen, may require a lot of tuning and in
most cases this tuning can require a deeper mathemati-
cal understanding of algorithm being used for achieving
desirable results.

Therefore in this work, we study a alternative method
for performing Bayesian inference called called as vari-
ational inference, which is considerably faster than
MCMC techniques and does not suffer from any conver-
gence issues.

3 VARIATIONAL INFERENCE

The central idea behind variational inference is to solve
an optimization problem by approximating the target
probability density. The target probability density could
be the Bayesian posterior or the likelihood from fre-
quentist analysis. The first step is to propose a family
of densities and then to find the member of that fam-
ily, which is closest to the target probability density.
Kullback-Leibler divergence (Kullback & Leibler, 1951)
is used as a measure of such proximity.

For this purpose, we then posit a family of approx-
imate densities (variational distribution) Q. This is a
set of densities over the parameters. It is important to
choose an complex enough variational family such that
the target distribution lies in it, otherwise the solution
obtained will not be close to the target probability distri-
bution. Then, we try to find the member of that family
q(θ) ∈ Q, known as the variational posterior that mini-
mizes the Kullback-Leibler (KL) divergence to the exact
posterior,

q∗(θ) = arg min
q(θ)∈Q

KL(q(θ)||p(θ|D)) (2)

The KL divergence is defined as,

KL(q(θ)||p(θ|D)) = Eq(θ)[log q(θ)]− Eq(θ)[log p(θ|D)], (3)

where all the expectations are with respect to q(θ). We
shall see in Eq. (4) that KL divergence depends on
the posterior log p(θ|D), which is usually intractable to
compute. We can expand the conditional using (1) and
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re-write KL divergence as,

KL(q(θ)||p(θ|D)) = Eq(θ)[log q(θ)] + Eq(θ)[log p(D)]

−Eq(θ)[log p(D, θ)]

= log p(D) + Eq(θ)[log q(θ)]

−Eq(θ)[log p(D, θ)]. (4)

The expected value of the log evidence with respect
to the variational posterior is the log evidence term
itself, and is independent of the variational distribution.
Hence, minimizing the KL divergence term is equivalent
to minimizing the second and third terms in Eq. (4).
Equivalently, one could estimate the variational posterior
by maximizing the variational lower bound (also known
as evidence lower bound or ELBO (Blei et al., 2017))
with respect to q(θ).

ELBO(q(θ)) = Eq(θ)[log p(D, θ)]− Eq(θ)[log q(θ)]. (5)

ELBO can be viewed as a lower bound to the evidence
term by re-arranging the terms in Eq. (4).

log p(D) = KL(q(θ)||p(θ|D)) + ELBO(q(θ)). (6)

The KL divergence between any two distributions
is a non-negative quantity and hence, log p(D) ≥
ELBO(q(θ)). Again, we can see that as the evidence
term is independent of the variational distribution, max-
imizing ELBO will result in minimizing the KL diver-
gence between the variational posterior and the actual
posterior.
Expanding the joint likelihood in Eq. (5), the variational
lower bound can be rewritten as:

ELBO(q(θ)) = Eq(θ)[log p(D|θ)] − Eq(θ)[log q(θ)]

+Eq(θ)[log p(θ)]

= Eq(θ)[log p(D|θ)] − KL(q(θ)||p(θ)). (7)

The first term in Eq. (7), which can be interpreted as
the data fit term, will result in selecting a variational
posterior, which maximizes the likelihood of observing
the data. While the second term can be seen as the
regularization term, which minimizes the KL divergence
between the variational posterior and the prior. Thus,
ELBO implicitly regularizes the selection of the varia-
tional posterior and trades-off likelihood and prior in
arriving at a proper choice for the variational poste-
rior. The log evidence term in Eq. (6) and hence the
variational lower bound (ELBO) are implicitly condi-
tioned on the hyper-parameters of the model. The hyper-
parameters can be learned by maximizing the variational
lower bound. Typically, the variational parameters and
the hyper-parameters are learned alternatively by maxi-
mizing the variational lower bound.

Variational inference converts the Bayesian parameter
estimation into an optimization problem through the
maximization of the variational lower bound. Hence,
convergence is guaranteed in variational inference, as is

the case of any optimization problem, to a local opti-
mum and if the likelihood is log-concave then to a global
optimum. Another important feature of variational infer-
ence is that it is trivial to parallelize. It can handle large
datasets with ease without compromising on the model
complexity with the use of stochastic variational infer-
ence (Hoffman et al., 2013). In the case of some specific
likelihoods and variational families, ELBO cannot be
computed in closed form as the computations of required
expectations are intractable. In these settings, either one
resorts to model specific algorithms (Jaakkola & Jordan,
1996; Blei & Lafferty, 2007; Braun & McAuliffe, 2010)
or generic algorithms that require model specific calcu-
lations (Knowles & Minka, 2011; Wang & Blei, 2013;
Paisley et al., 2012).

Recent advances in variational inference use “black
box” techniques to avoid model specific lower bound
calculations (Ranganath et al., 2014; Kingma & Welling,
2013; Jimenez Rezende et al., 2014; Salimans & Knowles,
2014; Titsias & Lázaro-Gredilla, 2014). These ideas were
leveraged to develop automatic differentiation varia-
tional inference techniques (ADVI) (Kucukelbir et al.,
2016) that works on any model written in the proba-
bilistic programming systems such as Stan (Carpenter
et al., 2016)2 or PyMC3 (Salvatier et al., 2016)

4 AUTOMATIC DIFFERENTIATION

VARIATIONAL INFERENCE

Variational inference algorithm requires model specific
computations to obtain the variational lower bound.
Typically, variational inference requires the manual cal-
culation of a custom optimization objective function
by choosing a variational family relevant to the model,
computing the objective function and its derivative, and
running a gradient-based optimization.

Automatic differentiation variational inference
(ADVI) (Kucukelbir et al., 2016) automates this by
building a “black-box” variational inference technique,
which takes a probabilistic model and a dataset as
inputs and returns posterior inferences about the
model’s latent variables. ADVI achieves the results by
performing the following sequence of steps.

• ADVI applies a transformation on the latent vari-
ables θ to obtain real-valued latent variables ζ,
where ζ = T (θ) and ζ ∈ R

dim(θ). The transfor-
mation T ensures that all the latent variables lie on
a real co-ordinate space, and allows ADVI to use
the same variational family q(ζ; φ) (for e.g. Gaus-
sian where q(ζ; φ) = N (ζ; µ, Σ)) on all the models.
This transformation changes the variational lower
bound and the joint likelihood p(D, θ) is written
in terms of ζ as p(D, ζ) = p(D, T −1(ζ))|JT −1(ζ)|,

2We have used the ADVI implementation in PyMC3 for our
case studies



6

where | · | represents the determinant. Here, JT −1(ζ)
is the Jacobian of the inverse of the transformation
T . The variational lower bound takes the following
form under this transformation.

ELBO(q(ζ; φ)) =Eq(ζ;φ)[log p(D, T −1(ζ)) + log|JT −1 (ζ)|]

− Eq(ζ;φ)(log q(ζ; φ)). (8)

• The variational objective (ELBO) as a function of
the variational parameters φ (for instance mean µ
and covariance Σ of a Gaussian) can be optimized
using gradient ascent.
However, the calculation of gradients of ELBO
with respect to the variational parameters is gen-
erally intractable. To push the gradients inside the
expectation, ADVI applies elliptical standardiza-
tion. Consider a transformation Sφ, which absorbs
the variational parameters φ and converts the non-
standard Gaussian ζ into a standard Gaussian η,
η = Sφ(ζ). For instance, η = L−1(ζ−µ), where L is
the Cholesky factor for the covariance Σ. The expec-
tation in the variational lower bound can be written
in terms of the standard Gaussian q(η) = N (η; 0, I)
and the variational lower bound becomes:

ELBO(q(ζ; φ)) =EN (η;0,I)[log p(D, T −1(S−1
φ

(η)))

+ log |JT −1 (S−1
φ

(η))|] + H(q(ζ; φ)). (9)

• The entropy term in Eq. (9) is problem independent
and its gradient can be evaluated in closed form
for a Gaussian distribution. Therefore, its gradients
are evaluated before hand and are used for all the
problems. The variational lower bound Eq. (9) has
expectations independent of ζ, and hence the gra-
dient of ELBO with respect to φ can be calculated
by pushing the gradient inside the expectations.

∇φELBO(q(ζ; φ)) =EN (η;0,I)[{∇θ log p(D, θ)∇ζT −1

+ ∇ζ log|JT −1 (ζ)}∇φS−1
φ

(η)]

+ ∇φH(q(ζ; φ)). (10)

The gradients inside the expectations are computed
using automatic differentiation, while the expecta-
tion with respect to the standard Gaussian is com-
puted using Monte Carlo sampling. The values of
ζ = S−1

φ (η) and θ = T −1(S−1
φ (η)) at corresponding

η are calculated and substituted while evaluating
the expectation.

5 PARAMETER ESTIMATION AND

BAYESIAN MODEL SELECTION

Once we have the approximate posterior, we can draw
samples from the variational posterior over the parame-
ters. Unlike in MCMC, the number of samples required
is not an input to the optimization and it does not affect
the training time of variational inference. We can find

a point estimate of the parameters using the mean (or
median) of the samples from the variational posterior.
In certain cases, we consider the variational distribution
family to be parameterized by the mean, and we learn
the variational posterior by maximizing the variational
lower bound with respect to the mean. In these cases, we
can directly make use of the mean rather than sampling
from the variational posterior. The errors and marginal-
ized credible intervals for the parameters can be obtained
by passing the samples from ADVI (similar to MCMC)
to the corner module (Foreman-Mackey, 2016) or simi-
lar packages such as ChainConsumer (Hinton, 2016) or
GetDist (Lewis, 2019).

A major challenge in statistical modeling is choosing
a proper model, which generates the observations. In a
Bayesian setting, one could use a posterior probability
over the models in choosing the right model. Consider
two models M1 and M2 with a prior probability over
them denoted by p(M1) and p(M2). The probability of
these models generating the observations irrespective of
the parameter values is given by the evidence (marginal
likelihood) p(D | M1) and p(D | M2). Combining the
prior and the likelihood, one could obtain the posterior
over the models p(M1 | D) and p(M2 | D).

As discussed earlier, the evidence term is computed
by evaluating the integral over the parameter likelihood
and prior:

p(D | M) =
∫

p(D | θ, M)p(θ | M)dθ. (11)

This is independent of θ and represents a normaliza-
tion constant associated with the posterior. The evi-
dence term provides the probability of generating the
data by some model M . It implicitly penalizes models
with high complexity through the Bayesian Occam’s
Razor (MacKay, 1992; Murphy, 2013). Complex mod-
els (models with large number of parameters) will be
able to generate a wider set of observations but with
a lower probability for each set of observation, since
p(D | M) over observation sets should sum to unity.
While simpler models will be able to generate only a
fewer set of observations with a higher probability to
each set of observations. For given set of observations
D, one could choose an appropriate model based on
the complexity involved in generating D. If D is simple,
we will choose a simple model. Simple models will be
able to provide high likelihood values p(D | θ, M) for a
large number of parameter values θ, and the prior value
p(θ |M) also takes higher values as the parameter space
is small. When the model complexity increases the prior
over the parameters p(θ | M) takes a lower value. Also,
a complex model will give a high likelihood value only
for a small number of parameters. For a large number
of parameter values, it will not be able to model simple
data sets.
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5.1 Posterior weighted importance sampling

for evidence

The evidence term p(D | M) is intractable for non-
conjugate cases, and variational inference provides a
lower bound to the evidence term (ELBO), which acts
as a proxy to the evidence. The tightness of the ELBO
bound depends on how close the approximate posterior
is to the actual posterior. ELBO provides a good proxy
for the evidence only when the variational posterior is
the same as the actual posterior. If the variational ap-
proximation assumed is not close to the actual posterior,
the bound can be very large and hence using ELBO for
model comparison might not be always correct. In this
work, we derive an approximation to Bayesian evidence
based on the variational posterior and the importance
sampling technique.

Monte Carlo integration technique allows us to ap-
proximate Eq. (11) by replacing the integral with a sum
over samples taken from p(θ).

p(D | M) =
∑

θi

p(D | θi, M). (12)

This approximation generally results in a good estimate
for the expectation but can require a large number of
samples in some cases. Consider a scenario where the
likelihood is small in regions where p(θ) is large, and
the likelihood is large where p(θ) is small. In such a
scenario, the approximation is dominated by regions of
low likelihood and can require large number of samples
from p(θ) to achieve the desired estimate. Importance
sampling provides a methodology for efficient sampling
for such scenarios. In importance sampling, we choose
a proposal distribution and use the samples from the
proposal distribution for evaluating the expectation in
the Eq. (11).

p(D | M) =
∫

p(D | θ, M)p(θ | M)
q(θ)

q(θ)dθ.(13)

=
∑

θi

p(D | θi, M)p(θi | M)
q(θi)

, (14)

where θi denote the samples from the proposal distri-
bution. The quantities p(θi)

q(θi) are known as importance
weights and these importance weights compensate for the
bias introduced because of sampling from q(θ) instead
of p(θ). It can be easily seen that a proposal distribution
should have a large value whenever the product of the
likelihood and the prior is large and a small value when-
ever the product is small. From Eq. (1) we can see that
the posterior is equal to the product of likelihood and
prior divided by a normalizing constant and hence is a
perfect choice for a proposal distribution. Since the pos-
terior distribution is unknown and is approximated by
the variational distribution, we can use the variational
distribution as the proposal distribution. We propose

to use Eq. (14) to compute the approximate evidence
term with q(θ) as the variational approximation to the
posterior learnt by maximizing ELBO. We call this ap-
proximate quantity as posterior weighted importance
sampling for evidence (PWISE) and this will be used
as a proxy to the evidence (or marginal likelihood) for
performing Bayesian model comparison.

6 APPLICATIONS TO ASTROPHYSICAL

PROBLEMS

As a proof of principle, we now apply ADVI to five dif-
ferent problems from astronomy, particle astrophysics,
and gravitation, where MCMC and nested sampling
techniques were previously used for parameter estima-
tion and model comparison. We discuss in detail the
ELBO derivation for one of these problems, namely the
COSINE-100 dark matter experiment, in section 6.1.
We also compare the computational costs using ADVI
over MCMC and nested sampling techniques. In this
work, we use the PyMC3 python package for all our ADVI
experiments and PyMC3 or emcee python packages for
our MCMC experiments. We also use nestle or dynesty

packages to calculate evidence and compare with our
approximate evidence calculation using PWISE.

Previously, Cameron et al. (2019) had compared AIS
and nested sampling and showed that nested sampling
outperforms AIS in many cases with much shorter run
time. Although other sampling techniques such as Gaus-
sianized Bridge Sampling (Jia & Seljak, 2019), proximal
nested sampling (Cai et al., 2021), stepping stone algo-
rithm (Maturana-Russel et al., 2019), diffuse nested sam-
pling (Brewer, 2014), Adaptive Annealed Importance
Sampling (Liu, 2014) have been investigated, Nested
sampling is most widely used because of the ready avail-
ability of packages such as Dynesty and Nestle. Hence
for model selection problems, we check if Nested samling
and approximate evidence lead to the same qualitative
conclusion using Jeffreys scale.

6.1 Assessment of significance of annual

modulation in cosine-100 data

Weakly Interacting Massive Particles (WIMP) are ele-
mentary particles beyond the Standard Model of Particle
Physics that are hypothesized as dark matter candi-
dates (Desai et al., 2004). Over the past few decades
many experiments have been carried out to detect
WIMPs, and out of all of these, only DAMA/LIBRA has
identified annual modulations, which show all the cor-
rect characteristics of being generated by WIMP particle
interactions (Bernabei et al., 2018). This result however
has been ruled out by many other direct detection ex-
periments. However all these experiements used a target
material different than DAMA/LIBRA. The COSINE-
100 experiment dark matter experiment (Adhikari et al.,
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2019) is the first experiment with target material, which
is a replica of the DAMA/LIBRA target, and therefore
can be used to verify the claims of annual modulation
of DAMA/LIBRA using an independent detector target.
This experiment has recently started taking data and
released its first results about two years ago (Adhikari
et al., 2019). An independent analysis of this data using
Bayesian model comparison methods was carried out in
(Krishak & Desai, 2019). The COSINE-100 experiment
uses data from five different crystals. The event rate for
each of these crystals is given by:

R = C + p0 exp (
− ln 2 · t

p1
) + A cos ω(t− t0). (15)

The last term in Eq. (15) corresponds to the an-
nual modulation caused by the WIMP particle inter-
actions (Freese et al., 1988). We do a model selection
between two hypothesis: viz., that the data from the
crystals consist of the cosine term (H1), versus without
the cosine term (H2). For this purpose, the data of all
the five crystals is fit simultaneously using the same
values for the cosine parameters across all crystals, and
crystal specific values for the remaining background-only
parameters.

Before we move on to model comparison, we explain
the process involved in variational inference and the
lower bound derivation for this problem. This will pro-
vide a deeper theoretical understanding of variational
inference and also serve as a motivation for using auto-
matic differentiation variational inference. As discussed
in Section 3, we first need to posit a family of varia-
tional distributions Q that approximate the posterior
distribution. Let us approximate the variational family
as a Gaussian distribution with diagonal variance i.e.
qφ(θ) = N (µ, Σ). For this particular problem, the like-
lihood P (D|θ) is a Gaussian with mean given by the
event rate described in Eq. (15) and standard deviation
given by the errors in the data. The priors P (θ) used
for all the parameters are uniformly distributed. More
details of the analysis and choice of priors can be found
in (Krishak & Desai, 2019).

q(θ) =
∏

i∈(C,p0,p1,A,ω,t0)

1
√

2πσ2
i

exp(− (θi − µi)2

2σ2
i

).

p(θ) =
∏

i∈(C,p0,p1,A,ω,t0)

1
maxi −mini

.

p(D|θ) =
∏

i

1
√

2πσ2
i

exp(− (r −Ri)2

2σ2
i

),

where µi and σi are the variational parameters (denoted
by φ) and Ti = p0 exp ( − ln 2·ti

p1

) + A cos ω(ti − t0). The
variational parameters (φ) are then estimated through
evidence lower bound (ELBO) maximization. The ELBO

for the cosine problem is given in the equation Eq. (16),
and we will simplify the equation for one chosen latent
variable ‘C’ for brevity.

ELBO =Eq(C,p0,p1,A,ω,t0)[log p(D|C, p0, p1, A, ω, t0)]

− KL(q(C, p0, p1, A, ω, t0)||p(C, p0, p1, A, ω, t0))

=Eq(θ)

[

Eq(C)

[

log p(D|θ)] log
p(C)

q(C)

]]

− KL
(

q(θ)||p(θ)
)

, (16)

where (p0, p1, A, ω, t0) are the latent variables θ. Eq. (17)
shows the final equation for ELBO for the latent variable
‘C’ after substituting for the aforementioned likelihood,
prior, and variational distribution. For a detailed deriva-
tion of Eq. (17), please refer to the Appendix.

ELBO =
1

2
+ log

B
√

2πσ2
C

Cmax − Cmin

−
∑

i

1

2σ2
i

(

Eq(p0,p1,A,ω,t0)

[

(ri − Ti − µC)2
]

+ σ2
C

)

− KL(q(p0, p1, A, ω, t0)||p(p0, p1, A, ω, t0)) (17)

where µC and σC are the variational parameters de-
scribing the posterior over "C". The log term (second
term) in Eq. (17) is the result of KL divergence between
the variational distribution and the prior distribution.
This acts as a regularization term, which will prevent
σC (variance of variational posterior) from going to zero
during the maximization of ELBO (due to the third
term, which is negative). Consequently, the variational
posterior learnt by maximizing ELBO will be a well
formed distribution, with probability density not only
around the mean but over a larger region covering the
posterior. We can calculate the gradients of the ELBO
with respect to the variational parameters (φ) and use
stochastic gradient decent for estimating φ.

The problem of choosing a suitable variational family
Q is not always easy. Consider the above case where
the variational distribution is the Gaussian distribution.
The prior for “C” is a uniform distribution between 0
and 400, which implies that the mean of the posterior
distribution µ should be a positive value. But there is no
explicit condition present in Eq. (17) that constrains the
µ to take only positive values after optimization. There-
fore the choice of the variational family Q depends on
each individual problem and involves solving a complex
constrained optimization problem.

ADVI mitigates the above problems by using a clever
transformation on the latent variables, by converting
the constrained latent space to unconstrained space as
discussed in Section 4. ADVI models the variational
distribution in the unconstrained space as a Gaussian
distribution and the transformations applied on the la-
tent variables will satisfy the required constraints on the
posterior distribution. The transformation into uncon-
strained space also mitigates the constraints of support
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PWISE dynesty
Hi ln(D) Bayes factor ln(D) bayes factor
H1 121.7 - 153.7 -
H2 132.9 e11.2 168.4 e14.7

Table 1 Log evidence values and Bayes factor for the two
hypotheses computed using PWISE, and dynesty packages.
This result favors H2, that there is no annual modulation in
COSINE-100 data.

matching that are essential, when choosing a variational
distribution in constraint space, making ADVI a desir-
able choice for performing variational inference.

For doing the Bayesian model comparison, Kr-
ishak & Desai (2019) used nested sampling with the
dynesty (Speagle, 2020) package for model comparison,
as the nestle package was not converging while calcu-
lating Bayesian evidence for this problem. To perform
model comparison, we calculate PWISE as discussed in
Section 5.1, using samples from the posterior approxima-
tion obtained through ADVI. Table 1 shows a compari-
son of the results between the proposed approximation
to evidence (PWISE) and Nestled Sampling (computed
using dynesty) for the same sets of priors. We can see
that the Bayes factor in both the cases is approximately
the same and leads to the same qualitative evidence
using Jeffreys scale Trotta (2017). Of course, one caveat
in directly applying the Jeffreys scale is that in case
the priors for an alternate model are not theoretically
motivated, the Jeffreys scale needs to be revised and
calibrated to the specific model used Gordon & Trotta
(2007). The Bayes factor calculated for H2 compared to
H1 with PWISE is e11.2. Hence, we conclude that H2
is favoured over H1, which agrees with the result from
(Krishak & Desai, 2019). For assessing the relative com-
putational cost between both the methods, we executed
the nested sampling code given in Krishak & Desai
(2019). The dynesty sampling code took about 13 hours
(using a single core), whereas ADVI took only 5 minutes,
which is two orders smaller than nested sampling.

6.2 Exoplanet Discovery Using Radial

Velocity Data

The presence of a planet or a companion star results
in temporal variations in the radial velocity of the host
star. By analyzing the radial velocity data, one can draw
inferences about the ratio of masses between the host
planet and the companion, and orbital parameters like
the period and eccentricity. For this purpose, a MCMC
package has been designed called Exofit (Balan & La-
hav, 2009), which enables the retrieval of the orbital
parameters of exoplanets from radial velocity measure-
ments. We shall determine the orbital parameters using
both MCMC and ADVI techniques and compare the

Parameter Priors
T (days) Jeffreys
k(ms−1) Mod. Jeffreys

e Uniform
ω(°) Uniform

v0(ms−1) Uniform
τ(°) Uniform

s(ms−1) Half Normal

Table 2 The assumed prior distribution of various parame-
ters and their boundaries. It is similar to choice of priors given
by Balan & Lahav (2009). For the parameters marked as
Jeffreys prior, the prior used is equal to the reciprocal of the
parameter. We note that modified Jeffreys refers to a slight
modification of the standard Jeffreys prior, in which additive
constants are added, since the lower limits are zero. (Gregory,
2005)

results.
The first step involves defining a model and impos-

ing priors on the latent variables. We follow the model
defined in section 2.2 of Balan & Lahav (2009). The
equations used for the analysis are now discussed. The
radial velocity of a star of mass M in a binary system
with companion of mass m in an orbit with time period
T , inclination I and eccentricity e is given by:

v(t) = k[cos(f + ω) + e cos ω] + v0, (18)

where

k =
(2πG)1/3m sin I

T 1/3(M + m)2/3
√

1− e2
. (19)

In Eqs. (18) and (19), v0 is the mean velocity of the
center of mass of the binary system, T is the orbital
period of the planet, and ω is the angle of the pericenter
measured from the ascending point.

If di is the observed radial velocity data, the likelihood
function is given by (Balan & Lahav, 2009):

P (D|θ, M) = A exp−
(

N
∑

i=1

[

(di − vi)2

2(σ2
i + s2)

]

)

, (20)

where A = (2π)−N/2

[

N
∏

i=1

(σ2
i + s2)−1/2

]

. Here, s is an

additional systematic term, which is estimated by maxi-
mizing the likelihood of Eq. (20). The choice of priors for
each of the above parameters can be found in Table 2.
PyMC3 allows us to easily place these priors on model
variables and define our model.

The data for this purpose has been obtained from
Sharma (2017) and the parameter values obtained from
both the procedures are shown in Table 3. We find
that ADVI converges to a solution in 10 seconds with
a mean error of 1.83 × 10−5 whereas MCMC took 31
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Parameter Actual MCMC ADVI
T (days) 350 349.746 349.630
k(ms−1) 0.105 0.150 0.150

e 0.300 0.301 0.303
ω(°) -90 -90.298 -90.241

v0(ms−1) 0 0.004 0.004
τ(°) 87.5 89.954 89.954

Table 3 The parameter values from both MCMC (comput-
ing using PyMC3) and ADVI for determination of exoplanet
parameters from radial velocity data. Both of these are com-
parable to the actual values obtained from (Sharma, 2017),
which are used to generate the synthetic data used for this
analysis.

seconds to converge with a mean error of 1.98 × 10−5.
The results and Bayesian credible intervals are shown
in Fig. 1 and agree with the corresponding results from
(Sharma, 2017). (cf. Figure 8 of (Sharma, 2017).)

6.3 Testing the Periodic G Claim

Anderson et al. (2015) have argued for a periodicity of
5.9 years in the CODATA measurements of Newton’s
gravitational constant G, which also show strong corre-
lations with similar variations in the length of the day.
These results have been disputed by Pitkin (2015) using
Bayesian inference as well as by Desai (2016) using fre-
quentist analysis, both of which argued that the data for
G can be explained without invoking any sinusoidal mod-
ulations. Pitkin (2015) tested this claim by performing
Bayesian model selection using samples generated from
MCMC and found from the Bayesian Odds ratio that
the data favored a constant value of G with some extra
noise over a periodic modulation of G by a factor of e30.
We performed model selection using ADVI and nestle

on the data provided by Pitkin (2015) to compare the
accuracy of variational inference approach.

We compute the Bayesian evidence for all the four
hypotheses considered by Pitkin using the same notation
as in Pitkin (2015) and compare them as follows:

1. H1 - the data variation can be described by Gaus-
sian noise given by the experimental errors and an
unknown offset;

2. H2 - the data variation can be described by Gaus-
sian noise given by the experimental errors, an un-
known offset and an unknown systematic noise term;

3. H3 - the data variation can be described by Gaus-
sian noise given by the experimental errors, and
unknown offset, and a sinusoid with unknown pe-
riod, phase and amplitude;

4. H4 - the data variation can be described by Gaus-
sian noise given by the experimental errors, an un-

PWISE nestle
Hi ln(D) Bayes factor ln(D) Bayes factor
H1 227.5 - 232.1 -
H2 364.6 e137.1 364.7 e132.6

H3 243.4 e15.9 313.8 e81.7

H4 362.9 e135.4 364.9 e132.8

Table 4 Log evidence values for the four hypotheses and
Bayes factor computed with respect to H1 calculated using
both PWISE and nestle package. The log evidence for all
hypotheses are comparable, except for H3. However, even for
H3, the Bayes factor using both the methods qualitatively
leads to the same conclusion using Jeffreys scale of H3 been
decisively favored over H1.

known offset, an unknown systematic noise term,
and a sinusoid with unknown period, phase and
amplitude;

The general model used is

mi(A, P, φ0, Ti, t0) = A sin (φ0 + 2π(Ti − t0)/P ) + µG,

where A is the sinusoid amplitude, P is the period, φ0

is the initial phase, t0 is the initial epoch and µG is an
overall offset. The details of the model and assumptions
can be found in (Pitkin, 2015). We have assumed a
Gaussian likelihood and uniform prior for all the param-
eters. Following the model defined by (Pitkin, 2015), we
perform model selection using the approximate evidence
calculated using the PWISE. Our results computed us-
ing PWISE and nestle can be found in Table 4 . The
log evidence for all the hypotheses are comparable, ex-
cept for H3. However, even for H3, the Bayes factor
(compared to H1) using both the methods qualitatively
lead to the same conclusion using Jeffreys scale, viz. H3

been decisively favored over H1. All the experiments
were completed under a minute and the time taken by
both ADVI and nested sampling are similar.

6.4 Statistical significance of spectral lag

transition in GRB 160625B

Wei et al. (2017) have detected a spectral lag transi-
tion in the spectral lag data of GRB 1606025B, which
they have argued could be a signature of the violation
of Lorentz invariance (LIV). Ganguly & Desai (2017)
perform a frequentist model comparison test to ascertain
the statistical significance of this claim for a transition
from positive to negative time lags ,and showed the sig-
nificance of this detection is about 3-4σ, depending on
the specific model used for LIV.

For this analysis, Wei et al. (2017) have fit these
observed lags to a sum of two components: an assumed
functional form for the intrinsic time lag due to astro-
physical mechanisms and an energy-dependent speed
of light due to quadratic and linear LIV models (See
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Eqns. 2 and 5 of Wei et al. (2017)). Using the same
equations, we first carry out parameter estimation using
ADVI and our best-fit model can be found in Fig. 2.
Again, a Gaussian likelihood and uniform prior was used
for this analysis.

Furthermore, we supplement the studies in Ganguly
& Desai (2017) by performing Bayesian model selection
using ADVI by fitting a variational family on each of
the three models, consisting of the null hypothesis and
two Lorentz violation models. We then calculate the
approximate evidence using PWISE to perform model
selection as defined in Section 5.1. The credible intervals
for our parameters can be found in Fig. 2. The log
evidence values and the Bayes factors compared to the
null hypothesis are shown in Table 5 for both Nested
sampling (using nestle) and PWISE. We see that they
are comparable in both the cases and would lead to the
same conclusion using Jeffreys scale. For this example,
all the experiments were completed under a minute and
the time taken by both ADVI and nested sampling are
similar. Using Jeffery’s scale we can say that n = 2
(quadratic) LIV model is significantly favoured by the
data over the other two models, which is in agreement
with the information theory based model comparisons
carried out in (Ganguly & Desai, 2017).

6.5 Estimating the mass of a galaxy cluster

with weak lensing

The propagation of light is affected by the gravitational
field it passes through along its way from the observer.
This effect is called gravitational lensing (Schneider et al.,
1992). The distortion in the image of an object compared
to its true intrinsic shape is usually known as weak
lensing. (Hoekstra et al., 2013) outline how the mass of
galaxy clusters and mass-concentration relation can be
obtained using weak lensing. Here, we use MCMC to
estimate the logarithm of the virial mass (log10 M200)
and the concentration parameter c from synthetic lensing
observations.

Variational inference and Metropolis-Hastings MCMC
were used to calculate the aforementioned lensing param-
eters. The dataset used for this analysis was downloaded
from this this url. This lensing catalog has been ran-
domly sampled from the shear map of a simulated galaxy

PWISE nestle
Hi ln(D) bayes factor ln(D) bayes factor

Hn=1 -29.5 e16.4 -26.9 e18.6

Hn=2 -26.3 e19.6 -23.9 e21.6

Hnull -45.9 - -45.5 -

Table 5 Log Evidence values computed using PWISE and
nestle package and Bayes factor for hypothesis n=1 and
n=2 LIV, when compared to the null hypothesis are shown.

cluster using simulations done in (Becker & Kravtsov,
2011), who used mock galaxy clusters from cosmological
simulations to study the bias and scatter in mass mea-
surements of clusters. These simulations were created us-
ing an Adaptive Refinement Tree (Kravtsov et al., 1997)
based on the cosmological parameters from WMAP7
analysis (Komatsu et al., 2011). More details on these
simulations and the identification of galaxy cluster halos
can be found in (Becker & Kravtsov, 2011). A corre-
sponding cookbook for computing the cluster masses
using MCMC has also been made available here, wherein
more details of the equations used can be found, and
which we use for reconstructing the mass and concen-
tration parameter. We have used a Gaussian likelihood
and uniform priors for the concentration and logarithm
of the mass.

For this example, we have used used pymc3 to run
ADVI and emcee to run MCMC experiments. MCMC
took about 313 minutes of clock time running in multi-
threaded mode on 25 cores (corresponding to a total
CPU time of 25×313 minutes or about 5 days), whereas
ADVI took only 40 minutes running on a single core.
We also note that for this dataset we were unable to run
MCMC using PyMC3, as it ran out of memory because
of the large datasize. The credible intervals for the pa-
rameters for both MCMC and ADVI can be found in
Fig. 3. The credible intervals using both the techniques
are in agreement with each other.

7 CONCLUSIONS

In this work, we have introduced variational inference,
and outlined how it can be used for Bayesian and fre-
quentist parameter estimation by maximizing the pos-
terior/frequentist likelihood. We have also explained
how this method can be used to compute the Bayesian
evidence (or marginal likelihood), which is needed for
Bayesian model comparison. Variational inference has
a strong theoretical foundation and with the rise of
probabilistic programming frameworks such as PyMC3,
and the development of generic Variational Inference
methods such as Automatic Differentiable Variational
Inference (ADVI), it presents a viable alternative to
sampling based approaches such as MCMC. We have
also introduced a approximation to evidence, called
posterior weighted importance sampling for evidence
(PWISE) which is used as a proxy for Bayesian evidence
(or Marginal likelihood).

ADVI is a ‘black-box’ approach which automates the
manual steps required for traditional VI using variable
transformation and automatic differentiation techniques.
As a proof of principle, we apply ADVI to five problems
in astrophysics and gravitation from literature involving
parameter estimation or model comparison. These in-
clude assessment of significance of annual modulation in
COSINE-100 determination of orbital parameters from
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exoplanet radial velocity data, tests of periodicities in the
measurements of G, looking for a turnover in spectral lag
data from GRB 160625B, and determination of galaxy
cluster mass using synthetic weak lensing observations.

The results obtained for both the parameter esti-
mation problem problem were in agreement with the
MCMC results. For model comparison, both the methods
point to the same qualitative conclusion using Jeffreys
scale. Furthermore, in many cases, we obtained signif-
icant speedup when compared with MCMC methods.
This is especially important when dealing with large
datasets and highly complex models as the time re-
quired for MCMC approach grows exponentially. On the
other hand, variational inference reduces the problem
to an optimization problem, which performs very well
in these conditions, and hence the computational cost
does not scale with data size. The Markov Chains guar-
antee producing (asymptotically) exact samples from
the target density, but they do not scale very well with
large datasets. Variational inference therefore provides
a viable alternative to MCMC sampling by being signif-
icantly faster and given the proper choice of variational
distribution, only sacrificing slightly in accuracy. The
variational inference algorithm is sensitive to the choice
of priors and they can be treated like another hyperpa-
rameter.

These five examples of parameter estimation/model
comparison from different domains of astrophysics pro-
vide proof of principles demonstration of application
of variational inference to astrophysical problems, for
which MCMC and nested sampling techniques were pre-
viously used. The codes for all the examples given here is
available at https://github.com/geetakrishna1994/

varational-inference.
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9 APPENDIX

We derive the ELBO equation for the cosine-100
problem wrt one parameter ’C’. The variational
distribution is isometric Gaussian distribution and
uniform priors on all the parameters. The likeli-
hood is Gaussian with a mean given by Eq. (15).

ELBO = Eq(C,p0,p1,A,ω,t0)[log p(D|C, p0, p1, A, ω, t0)] − KL(q(C, p0, p1, A, ω, t0)||p(C, p0, p1, A, ω, t0))

= Eq(p0,p1,A,ω,t0)

[

Eq(C)

[

log p(D|C, p0, p1, A, ω, t0)] + log
p(C)

q(C)

]]

− KL
(

q(p0, p1, A, ω, t0)||p(p0, p1, A, ω, t0)
)

Gaussian likelihood :

log p(D|C, p0, p1, A, ω, t0) = log B −
∑

i

(

(

ri −
(

C + p0 exp ( − ln 2·ti
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2σ2
i

)
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∑
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)

,

where B is a normalizing constant for the Gaussian distribution and Ti = p0 exp ( − ln 2·ti

p1

) + A cos ω(ti − t0).

Prior on C:

log p(C) = − log(Cmax − Cmin)

Variational Distribution of C (Gaussian):

log q(C) = − log
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We can evaluate the expectation of the above term wrt q(C).
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ELBO = Eq(p0,p1,A,ω,t0)
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Figure 1. Left: Radial velocity as a function of time for a star in a binary system. The orange line is the best fit obtained using ADVI
and the green line is obtained from NUTS MCMC. Right: 68%, 90% and 95% credible intervals of parameters obtained using ADVI.
The corresponding plots for the same data using MCMC can be found in Fig. 8 of (Sharma, 2017).

Figure 2. Left: ADVI based marginalized credible intervals of the linear (n = 1) LIV fit for the spectral lag energy data. Right: ADVI
based Marginalized parameter constraints of the linear (n = 2) LIV fit for the spectral lag energy data. Both the plots were generated
using the corner.py module (Foreman-Mackey, 2016). The corresponding parameter constraints obtained using MCMC can be found in
Figs. 3 and 4 from (Wei et al., 2017), and they agree with these contours.
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Figure 3. Left : Credible intervals for parameter estimates using ADVI. Right: Credible intervals for parameter estimates using emcee

MCMC sampler. The credible intervals were plotted using Corner python module. Note that M200 is expressed in terms of M⊙.


