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We discover a deep connection between parity-time (PT) symmetric optical systems and quantum
transport in one-dimensional fermionic chains in a two-terminal open system setting. The spectrum
of one dimensional tight-binding chain with periodic on-site potential can be obtained by casting
the problem in terms of 2× 2 transfer matrices. We find that these non-Hermitian matrices have a
symmetry exactly analogous to the PT-symmetry of balanced-gain-loss optical systems, and hence
show analogous transitions across exceptional points. We show that the exceptional points of the
transfer matrix of a unit cell correspond to the band edges of the spectrum. When connected to two
zero temperature baths at two ends, this consequently leads to subdiffusive scaling of conductance
with system size, with an exponent 2, if the chemical potential of the baths are equal to the band
edges. We further demonstrate the existence of a dissipative quantum phase transition as the
chemical potential is tuned across any band edge. Remarkably, this feature is analogous to transition
across a mobility edge in quasiperiodic systems. This behavior is universal, irrespective of the details
of the periodic potential and the number of bands of the underlying lattice. It, however, has no
analog in absence of the baths.

Introduction and overview of results — It is fascinating
how fundamental mathematical concepts aid in our un-
derstanding of physical phenomena across all scales. This
often allows us to find deep connections between seem-
ingly completely disparate physical situations. Here, we
show how a property termed pseudo-Hermiticity of non-
Hermitian matrices reveal a unique connection between
balanced-gain-loss optical systems and quantum trans-
port in fermionic chains.
The dynamics of two coupled optical cavities, one

with gain the other with loss, such that the gain and
loss are perfectly balanced, is most commonly envisioned
as being governed by the so-called 2 × 2 parity-time
symmetric (PT) non-Hermitian ‘Hamiltonian’ HPT =
ω0I2 + iγσz + gσx [1–3]. Here σx,y,z are the Pauli ma-
trices, and I2 is the 2 × 2 identity matrix. This 2 × 2
non-Hermitian matrix has the pseudo-Hermiticity prop-
erty associated with the antilinear operator σxK, i.e,
(σxK)HPT (σxK)

−1
= HPT, where σx describes the par-

ity operator and K describes the time-reversal (complex
conjugation) operator. Whenever a matrix has such
an pseudo-Hermiticity, its eigenvalues are either purely
real or occur in complex conjugate pairs [4–6]. When
the eigenvalues are real, the eigenvectors are also si-
multaneous eigenvectors of the symmetry operator σxK
with eigenvalue 1. This is termed PT-symmetric regime.
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When the eigenvalues are complex, the eigenvectors of
HPT are no longer simultaneous eigenvectors of the sym-
metry operator. This is termed PT-broken regime. Tran-
sition between these two regimes occurs at γ = g which is
the exceptional point (EP), where there is a single eigen-
value ω0 and the matrix is not diagonalizable. The dy-
namics drastically changes on transition across the EP,
leading to interesting applications and exotic physics in
both classical and quantum regimes [1–3, 7–9]. This is
the most paradigmatic example of symmetries of non-
Hermitian matrices governing physical systems [9–31].

In this work, we explore the effects of a similar transi-
tion occurring in a different kind of non-Hermitian matrix
that appears in scattering theory: the transfer matrix.
Unlike mostly studied non-Hermitian matrices, trans-
fer matrices do not directly govern the dynamics of the
system. They instead play a fundamental role in de-
termining the spectrum of the Hamiltonian of the sys-
tem. The band-structure of nearest neighbour fermionic
chains with periodic on-site potentials can be obtained
by casting the problem in terms of 2× 2 transfer matri-
ces [32–34]. We note that each such transfer matrix can
be transformed to the form of HPT via a unitary trans-
formation U. Consequently, the transfer matrices have
an pseudo-Hermiticity, associated with the antilinear op-
erator S = UσxKU

†. So, similar to HPT, they show
transitions across EPs from S-symmetric to S-symmetry-
broken regimes.

We find that the EPs of the transfer matrix of a unit
cell of the system correspond to the band edges. When
the system is connected to two zero temperature baths
at two ends (see Fig. 1), this, in turn, leads to a sub-
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diffusive scaling of conductance with system size if the
chemical potential µ is equal to any band edge. The sub-
diffusive scaling exponent is universal, irrespective of any
further details of the periodic on-site potential. If µ is
outside any system band, the eigenvalues of the trans-
fer matrix are real (S-symmetric regime), which leads to
lack of transport beyond a well-defined length scale. If µ
is inside any system band, the eigenvalues of the transfer
matrix are complex (S-symmetry-broken regime), which
leads to ballistic transport. Thus, a transition across
EP occurs in the transfer matrix when the chemical po-
tential is tuned across a band edge. Correspondingly,
there occurs a non-analytic change in the zero tempera-
ture steady state transport properties of the open system,
thereby causing a dissipative quantum phase transition.
Our results can be summarized in Fig. 1. This transition
occurring in the behaviour of conductance as a function
of µ at every band edge is reminiscent of localization-
delocalization transitions across a mobility edge occur-
ring in certain one dimensional quasiperiodic systems (for
example, [35–40]). We discuss the similarities and the
differences between them.
Tight-binding chain and transfer matrices — We con-

sider a fermionic nearest neighbour tight-binding chain
of N sites with a periodic potential,

ĤS =

N
∑

ℓ=1

εℓĉ
†
ℓ ĉℓ +

N−1
∑

ℓ=1

(ĉ†ℓ ĉℓ+1 + ĉ†ℓ+1ĉℓ), (1)

where ĉℓ is the fermionic annihilation operator at site ℓ of
the chain, and εℓ is a periodic on-site potential satisfying
εℓ+q = εℓ. Here q is the length of the unit cell and the
hopping parameter is set to 1, which is therefore the unit
of energy. We consider N to be an integer multiple of q.
The periodic on-site potential with unit cell of length q
causes the spectrum of the system to be separated into q
bands. In the thermodynamic limit, using Bloch’s theo-
rem, the energy dispersion of the bands can be obtained
via solving the following equation for ε [32–34],

Tr (Tq(ε)) = 2 cos k, (2)

where, k is the wave-vector, −π ≤ k ≤ π, and Tq(ε) is
given by [41]

Tq(ε) =

q
∏

ℓ=1

T
(ℓ)(ε), T(ℓ)(ε) =

ε− εℓ
2

(I2 + σz)− iσy.

(3)
Here, T(ℓ)(ε) is the transfer matrix for site ℓ, whereas
Tq(ε) is the transfer matrix for a single unit cell of the
lattice.
Pseudo-Hermiticity of transfer matrices — We carry

out the following unitary transformation on the trans-
fer matrix for site ℓ, U†

T
(ℓ)(ε)U = ε−εℓ

2 (I2 + σx)− iσz,
where U is the 2 × 2 unitary matrix that diagonalizes
σy. The elements of U are U11 = 1/

√
2, U12 = 1/

√
2,

U21 = i/
√
2, U22 = −i/

√
2. After the unitary trans-

formation, T
(ℓ)(ε) is of the exact same form as HPT,

FIG. 1. The top panel shows a schematic of a fermionic near-
est neighbour hopping chain, with a periodic on-site potential
coupled at two ends to two zero temperature baths at slightly
different chemical potentials, µ and µ − δµ. The table sum-
marizes our main result. Here Tq(µ) is the transfer matrix of
a unit cell, λ± are its eigenvalues, G(µ) is the conductance in
the two-terminal setting.

and therefore commutes with σxK. This, in turn means,
ST(ℓ)(ε)S−1 = T

(ℓ)(ε), with S = UσxKU
†. Thus, trans-

fer matrix for each site has the same pseudo-Hermiticity.
Consequently, the transfer matrix of the unit cell, Tq(ε),
which is obtained by multiplying transfer matrices for
each site, also has the pseudo-Hermiticity associated with
S.
The existence of the pseudo-Hermiticity guarantees

that every transfer matrix has (a) a S-symmetric regime
where eigenvalues are real, and eigenvectors are simulta-
neous eigenvectors of S, (b) a S-symmetry broken regime
where the eigenvalues are complex conjugate pairs and
eigenvectors are not simultaneous eigenvectors of S. The
transition between these two regimes occur via the EP. In
the following, we consider the EPs of the transfer matrix
of a unit cell Tq(ε).
Band edges as EPs of transfer matrix of unit cell —

The band edges of the system correspond to k = 0,±π.
So, from Eq.(2), we see that the band edges ε = εb of the
system can be obtained via solution of

[

Tr (Tq(εb))

2

]2

− 1 = 0. (4)

Next we note that the determinant of T(ℓ)(ε), and hence
the determinant of Tq(ε) is 1. Using this, we can

write the eigenvalues of Tq(ε) as λ± =
Tr(Tq(ε))

2 ±
√

[

Tr(Tq(ε))
2

]2

− 1. From Eq. (4) we immediately see that

at every band edge, there is a single eigenvalue, either
both 1 or both −1. Thus, every band edge corresponds
to an EP of Tq(ε). As we discuss below, this leads to
universal anomalous transport behavior at every band
edge.
Quantum transport and transfer matrices — We con-

nect the site 1 and the site N of the lattice chain to
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fermionic baths, which are modelled by an infinite num-
ber of fermionic modes. The associated bath spectral
functions being J1(ω), JN (ω). At initial time, the baths
are considered to be at their respective thermal states
with inverse temperature β → ∞, and chemical poten-
tials µ and µ − δµ, while the system can reside at some
arbitrary initial state (see Fig. 1). We are interested in
the linear response regime where δµ is small. As long as
the bath spectral functions are continuous and the band
of the bath encompass all the bands of the system, in
the long time limit, the system reaches a unique non-
equilibrium steady state (NESS) [42].
Using non-equilibrium Green’s functions (NEGF) and

the nearest neighbour nature of the system, at NESS, the
zero temperature conductance can be written as [41–44],

G(µ) = J1(µ)JN (µ)

2π |∆1,N (µ)|2
, (5)

where ∆1,N (µ) is the determinant of the inverse of the
NEGF. Nearest neighbour hoppings make inverse of the
NEGF tridiagonal, as a result, ∆1,N (µ) can be obtained
from the following relation involving the transfer matrix
[41–43]

(

∆1,N (µ)
∆2,N (µ)

)

=

(

1 −Σ11(µ)
0 1

)

[Tq(µ)]
n

(

1
ΣNN (µ)

)

, (6)

where n = N/q is an integer, Σℓℓ(ω) =
∫

dω′

2π
Jℓ(ω

′)
ω−ω′

−
iJℓ(ω)

2 , with ℓ = 1, N , and ∆2,N (µ) is the determinant of
inverse of the NEGF in absence of the first site. We im-
mediately see from Eqs.(5) and (6) that the system-size
scaling of conductance is completely independent of the
type of bath spectral functions and is entirely governed
by the nature of the transfer matrix Tq(µ).

The system-size scaling of conductance specifies the
nature of transport. In normal conductors, resistance,
(i.e, inverse of conductance) is proportional to length,
such that resistivity is a well-defined property of the con-
ductor. So, the behaviour is G(µ) ∼ N−1 in normal dif-
fusive transport. Departure from this behavior means
resistivity is no longer a well-defined property of the ma-
terial but depends on the system length. This specifies
other types of transport. For ballistic transport, conduc-
tance in independent of system length, G(µ) ∼ N0. If
G(µ) ∼ N−δ, δ 6= 0, 1, transport is said to be anoma-
lous. For 0 < δ < 1, transport is called superdiffusive,
while for δ > 1 transport is called subdiffusive. Apart
from these behaviors, conductance can decay exponen-
tially with system length, G(µ) ∼ e−N/ξ, which shows
that there is lack of transport beyond a length scale ξ.
This behavior is seen in localized systems in presence
of disordered or quasiperiodic potentials, with ξ being
the localization length. We remark that, for anomalous
transport, this classification of transport behavior does
not necessarily correspond to classification of transport
via spread of density correlations in an isolated system,
and may lead to different results [45, 46].
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FIG. 2. (a) Real and imaginary parts of eigenvalues of Tq(µ),
given in Eq.(3), are plotted as a function of µ for a two-band
case, i.e, q = 2 (εl = ±0.5). The vertical lines correspond to
band edges [solution to Eq. (4)]. The transition across EP at
each band edge is clear. (b) The zero temperature conduc-
tance G(µ) vs µ is shown for three different system sizes. The
non-analytic change in system-size scaling at every band edge
is clear. (c) The universal subdiffusive scaling, G(µ) ∼ N−2

is shown for µ at two chosen band edges, pointed out in panel
(b). (d) The exponential decay of G(µ) with N is shown for
µ slightly outside the chosen band. The exponents in the fits
are obtained from the formula for localization length. (e) The
G(µ) ∼ N0 behavior is shown for µ slightly inside the chosen
band. All energies are in units of system hopping strength.

Universal subdiffusive scaling and dissipative quantum

phase transition at every band edge— The most remark-
able result that directly follows from all of the above dis-
cussion pertains to the case where µ is equal to a band
edge εb of the system (i.e., |Tr (Tq(µ)) | = 2). As already
noted before, the band edges of the system correspond to
the EPs of the transfer matrix of a unit cell, both eigen-
values being 1. Consequently, Tq(µ) cannot be diagonal-
ized, but can be taken to the Jordan normal form via a
similarity transform,RTq(µ)R

−1 = I2+(σx+iσy)/2. Us-
ing properties of Pauli matrices, one then has at µ = εb,

[Tq(µ)]
n
= R

−1
[

I2 + n
σx+iσy

2

]

R. Note that we do not

need the explicit form of R to obtain this result. Using
this in Eq.(6), gives ∆1,N ∼ N for N ≫ 1, and hence,
from Eq.(5), we immediately find G(µ) ∼ N−2. Thus
remarkably, because transfer matrix of a unit cell has
exceptional points at every band edge, there is a univer-
sal subdiffusive scaling of conductance with system size,
with a scaling exponent 2.

If µ is within the bands of the chain, then using Eq.(2)
it can be shown that the eigenvalues of Tq(µ) are λ± =
e±ik. This corresponds to the S-symmetry-broken regime
of Tq(µ). The [Tq(µ)]

n
therefore yields an oscillatory



4

behavior of ∆1,N with N . Thus, within the bands of the
chain, G(µ) does not show any scaling with N , implying
ballistic behavior.

On the other hand, when µ is outside the band
edges of the chain, there is no solution for Eq.(2) un-
less k is purely imaginary (κ ≡ ik). Consequently,
the eigenvalues of Tq(µ) are real, and therefore cor-
responds to the S-symmetric regime. The eigenval-
ues can be written as λ± = e±κ, where Tr (Tq(µ)) =
2 coshκ. Since one of the eigenvalues of Tq(µ) is guar-
anteed to have magnitude greater than 1, ∆1,N di-
verges exponentially with system size. Consequently,
G(µ) ∼ e−N/ξ, which shows lack of transport beyond a
length scale ξ. The expression for ξ can be obtained

as, ξ−1 = 2
q log

[

∣

∣

∣

Tr(Tq(µ))
2

∣

∣

∣+

√

[

Tr(Tq(µ))
2

]2

− 1

]

, for

|Tr (Tq(µ)) | > 2. This behavior is exactly analogous
to that observed in a localized disordered or quasiperi-
odic system, with ξ playing the role of the localization
length. In disordered or quasiperiodic systems, the finite-
ness of the so-called Lyapunov exponent associated with
the transfer matrix is taken as the signature of localiza-
tion [32, 39, 40, 47, 48]. For our set-up, this quantity is
given by ℓ(µ) = limn→∞

1
n log (||[Tq(µ)]

n||), where ||A||
is the norm of the matrix A. Since one of the eigenvalues
of [Tq(µ)]

n
diverge exponentially with n, the Lyapunov

exponent is indeed finite for µ outside the system bands,
and is proportional to ξ−1.

Our main results are given in the table in Fig. 1. In
the entire discussion above, the nature of the periodic
on-site potential εℓ, and its period q, which controls the
number of bands, is completely arbitrary. This behavior
is therefore completely independent of these details. As
an example, we demonstrate the two-band case in Fig. 2
(see [41] for some other examples).

The NESS of the chain thus changes non-analytically
as a function of µ at every band edge at zero temperature.
This behavior is seen in the large system-size limit, and
is completely independent of the nature of bath spectral
functions, as well as the strength of system-bath cou-
plings, as long as the steady state is unique. Therefore
at every band edge there occurs a dissipative quantum
phase transition as a function of µ, which, in our set-up,
is not a Hamiltonian parameter but a thermodynamic
parameter of the baths. This is unlike most other exam-
ples of dissipative phase transitions (for example, [49–
63]) where a Hamiltonian parameter is changed. Like
standard quantum phase transitions, this phase transi-
tion occurs strictly at zero temperature, while at finite,
but low temperatures, it can be shown to manifest as a
finite size crossover [41].

Although the transition is independent of the strength
of system-bath couplings, the presence of the baths is cru-
cial. This is rooted in the fact that the mechanism for
NESS transport relies not only on the chain energy states
but also on the energy states available in the baths. The
current-current correlations (or the associated density-

density correlations) computed in absence of the baths,
as often done in the Green-Kubo formalism, will neither
show any subdiffusive behavior for µ at band edges, nor
show the existence of a well-defined localization length
for µ outside system bands. In absence of the baths, in
either case, no transport is possible because all bands are
either completely full or completely empty. In presence
of the baths, even if there is no single particle energy
eigenstate for the chain at a chosen value of µ, due to
quantum nature of the particles, a small but finite proba-
bility exists for few particles to tunnel into and out of the
chain, thereby making transport possible. This, in turn,
leads to the exotic dissipative phase transition at every
band edge. Therefore the non-analytic change in conduc-
tance at every band-edge has no obvious analog either in
isolated quantum systems or in classical stochastic open
systems.

Similarities and differences between band-edges and

mobility-edges — The sharp transition as a function of µ
from a regime with a well-defined localization length to a
regime of ballistic transport via a ‘critical point’ showing
sub-diffusive scaling is akin to localization-delocalization
transitions as a function of energy seen in some quasiperi-
odic systems (for example, [35–40, 64]). The energy
where this transition happens is called the mobility-edge.
In this sense, in a two-terminal set-up, every band-edge
behaves like a mobility-edge. A mobility edge in a two-
terminal set-up acts as an energy filter for quantum trans-
port. This property can find potential applications in
devising efficient autonomous thermal machines [65, 66].
Since every band-edge has the same effect, band-edges
can also be potentially utilized for the same purpose.

Despite the analogy between our setup and quasiperi-
odic systems, there are stark differences. Unlike our
setup, for the quasiperiodic systems with mobility edge,
the transition in conductance scaling with system size in
presence of baths can be linked to a transition in nature
of single-particle eigenstates of the system in absence of
the baths (see, for example, [35–40, 64]). This is very dif-
ferent from the transition observed in our set-up which
is rooted in transition across EP of the transfer matrix
of a unit cell. Note that, while a unit cell is well-defined
for a periodic on-site potential, for quasiperiodic on-site
potential, a unit cell does not exist.

Conclusions and outlook—

We have shown how non-Hermitian transitions in the
transfer matrix of Hermitian Hamiltonians affect the na-
ture of quantum transport (see Fig. 1). In doing so, we
have united two seemingly disparate concepts: (i) the
symmetries and transitions in non-Hermitian matrices
studied in non-Hermitian optics, and (ii) band-structure
and quantum transport in fermionic systems studied in
condensed matter and statistical physics. We find that
this connection offers an extremely simple way to under-
stand several non-trivial features of mobility edges, local-
ization length and anomalous transport in a two-terminal
open system setting, without considering disordered or
quasiperiodic potentials. We discover a completely differ-
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ent way subdiffusive scaling of conductance, with a uni-
versal exponent, can originate: from exceptional points
of transfer matrices. We remark that, explaining the ori-
gin of sub-diffusive scaling exponents is often a difficult
problem [64, 67, 68].

Our results pave the way for understanding band-
structure and quantum transport in more exotic cases,
such as higher dimensional short-ranged systems, in
terms of the non-Hermitian properties of their associ-
ated transfer matrices [33, 34]. But, the transfer ma-
trix picture presented here does not hold in presence
of long-range hopping. However, interestingly, the sub-
diffusive behavior G(µ) ∼ N−2 at band edges, was also re-
cently numerically seen in presence of long-range, power-
law-decaying, hopping [69]. This points to the super-
universality of this behavior at band edges, a deeper un-
derstanding of which requires further work. Another in-
teresting but challenging question is whether the analogy
between mobility edges and band edges holds in presence
of many-body interactions. Generalization to bosonic
transport also remain to be explored. Investigations in
these directions will be carried out in future works.
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APPENDIX

ZERO TEMPERATURE CONDUCTANCE FROM

NEGF

As mentioned the main text, we connect the first site
of the system and the last site of the system to two

fermionic baths, which are modelled by an infinite num-
ber of fermionic modes. The full Hamiltonian of the set-
up is Ĥ = ĤS +

∑

ℓ=1,N ĤSBℓ
+

∑

ℓ=1,N ĤBℓ
, where

ĤSBℓ
=

∞
∑

r=1

κrℓĉ
†
ℓB̂rℓ + κ∗rℓB̂

†
rℓĉℓ, ĤBℓ

=

∞
∑

r=1

ΩrℓB̂
†
rℓB̂rℓ.

(7)

Here, B̂rℓ is the fermionic annihilation operator of the
rth mode of the bath attached at ℓth site of the system,
Ωrℓ is the energy of the same, and κrℓ is the complex
coupling between that mode and the system. The bath
spectral functions are defined as

Jℓ(ω) = 2π

∞
∑

r=1

|κrℓ|2δ(ω − Ωrℓ). (8)

As mentioned in the main text, if the bath spectral func-
tions are continuous and the band of the bath encompass
the all the bands of the system, in the long time limit,
the system reaches a unique NESS.
The NESS can be described in terms of the non-

equilibrium Green’s function (NEGF). The NEGF of the
set-up is the N × N matrix given by G = M

−1(ω),
M(ω) = ωI − H − Σ(ω). Here, I is the N dimensional
identity and H the single-particle Hamiltonian which in
our case is a tridiagonal matrix with the diagonal ele-
ments being the on-site potential, and the off-diagonal
elements being the hopping strength. The Σ(ω) is the
N × N diagonal self-energy matrix due to the presence
of the baths with non-zero elements given by

Σℓℓ(ω) =

∫

dω′

2π

Jℓ(ω
′)

ω − ω′
− i

Jℓ(ω)

2
, (9)

where ℓ corresponds to sites where the baths are at-
tached.
The conductance at NESS can be obtained in terms of

the NEGF as

G(µ) =
∫

dω

2π
T1N (ω)

[

−∂n(ω)
∂ω

]

, (10)

with n(ω) = [eβ(ω−µ) + 1]−1 being the Fermi distri-
bution, and the transmission function between site 1
and N being T1N (ω) = J1(ω)JN (ω)|G1N (ω)|2, where
G1N (ω) is the (1st,Nth) element of the NEGF. Since
G(ω) is the inverse of a tridiagonal matrix with the
off-diagonal elements equal to 1, we have |G1N (ω)|2 =

|∆1,N (ω)|−2
, ∆1,N (ω) = det [M(ω)] . We are interested

in the zero temperature case, β → ∞. In this case, the
conductance is given by

G(µ) = T1N (µ)

2π
=

J1(µ)JN (µ)

2π |∆1,N (µ)|2
. (11)

It is important to note that this result crucially de-
pends on the zero temperature nature of Fermi distri-
bution functions, and that the transition at every band-
edge happens in T1N (µ). Thus, neither for classical sys-
tems (for example at high temperature limit), nor for
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bosonic baths the transition in conductance described in
the main text is possible to observe. However, T1N (ω) ∝
|G1N (ω)|2, and the NEGF is independent of the Fermi
distribution of the baths. The NEGF will thus be same
for bosonic baths, and also in the high temperature limit.
If an observable which is proportional to |G1N (ω)|2 can
be found under such situations, a similar transition can
be seen. But that observable will be different from con-
ductance.

TRANSFER MATRIX FROM DISCRETE

SCHRÖDINGER EQUATION

In our context for nearest neighbour hopping model,
the transfer matrix connects the amplitude of single
particle wave-function between two consecutive sites.
The discrete Schrödinger equation for nearest neighbour
tight-binding model Hψ = ωψ reads as,

ωψℓ = εℓψℓ + ψℓ+1 + ψℓ−1 (12)

Here εℓ is the on-site potential energy for ℓth site , nearest
neighbour hopping strength is 1 and ψℓ is the amplitude
of wave-function at ℓth site. We can again rewrite Eq. 12,

ψℓ+1 = (ω − εℓ)ψℓ − ψℓ−1 (13)

Now, using Eq. 13, we can write how the amplitude of
wave-function at (ℓ+1) and ℓ th sites are connected with

ℓ and (ℓ− 1)th site.

(

ψℓ+1

ψℓ

)

=

(

ω − εℓ −1
1 0

)(

ψℓ

ψℓ−1

)

(14)

= T
(ℓ)(ω)

(

ψℓ

ψℓ−1

)

.

Here T(ℓ)(ω) is the connecting matrix or the transfer ma-
trix for the ℓth site. By knowing this, we could construct
the transfer matrix of the unit cell as

Tq(ω) =

q
∏

ℓ=1

T
(ℓ)(ω), T(ℓ)(ω) =

ω − εℓ
2

(I2 + σz)− iσy.

(15)
where q is the periodicity of the lattice.

TRANSFER MATRIX APPROACH TO

CALCULATE THE DETERMINANT OF

TRI-DIAGONAL MATRICES

In this section, we provide the derivation for Eq. (6)
of the main text. Recall that, the zero temperature con-
ductance in Eq. (5) of the main text, is related to the
determinant of the inverse of NEGF and is given by

∆1,N (ω) = det
[

M(ω)
]

. (16)

Here M(ω) is a tri-diagonal matrix and ∆i,N (ω) is the
determinant of sub-matrix M(ω) starting with the ith
row and column and ending with Nth row and column.
For a tight-binding model with on-site potential energy
εi for ith site, M(ω) has the form,

M(ω) =

















ω −Σ11 − ε1 −1 0 0 0 . . .
−1 ω − ε2 −1 0 0 . . .
0 −1 ω −1 0 . . .
...

...
...

...
...

...
0 0 0 −1 ω −1
0 0 0 0 −1 ω −ΣNN − εN

















, (17)

where for brevity, we have suppresed the frequency de- pendence of the self-energies. To calculate the determi-
nant of M(ω), the iterative equations are,

∆1,N (ω) = (ω −Σ11 − ε1)∆2,N (ω)−∆3,N (ω) (18)

∆i,N (ω) = (ω − εi)∆i+1,N (ω)−∆i+2,N (ω), 2 ≤ i ≤ N − 2

∆N−1,N (ω) = (ω − εN−1)∆N,N (ω)− 1

∆N,N = ω −ΣNN − εN
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Using these Eq. 18, we can write,

(

∆1,N

∆2,N

)

=

(

ω −Σ11 − ε1 −1
1 0

)(

∆2,N

∆3,N

)

(19)

=

(

ω −Σ11 − ε1 −1
1 0

)(

ω − ε2 −1
1 0

)(

ω − ε3 −1
1 0

)

. . .

(

ω − εN−1 −1
1 0

)(

∆N,N

1

)

=

(

ω −Σ11 − ε1 −1
1 0

)(

ω − ε2 −1
1 0

)(

ω − ε3 −1
1 0

)

. . .

(

ω − εN−1 −1
1 0

)(

ω −ΣNN − εN −1
1 0

)(

1
0

)

=

(

ω −Σ11 − ε1 −1
1 0

)(

ω − ε1 −1
1 0

)−1 (
ω − ε1 −1

1 0

)

. . .

(

ω − εN −1
1 0

)(

ω − εN −1
1 0

)−1 (
ω −ΣNN − εN

1

)

=

(

1 −Σ11

0 1

)

[Tq(ω)]
n

(

1
ΣNN

)

.

FIG. 3. (a) Real and imaginary parts of eigenvalues of
Tq(µ),are plotted as a function of µ for a three-band case, i.e,
q = 3 (εl = ±0.5, 0). The vertical lines correspond to band
edges. The transition across EP at each band edge is clear.
(b) The zero temperature conductance G(µ) vs µ is shown
for three different system sizes. The non-analytic change in
system-size scaling at every band edge is clear. (c) The uni-
versal subdiffusive scaling, G(µ) ∼ N−2 is shown for µ at two
chosen band edges, pointed out in panel (b). (d) The expo-
nential decay of G(µ) with N is shown for µ slightly outside
the chosen band. (e) The G(µ) ∼ N0 behavior is shown for
µ slightly inside the chosen band. All energies are in units of
system hopping strength.

With periodic on-site potential εℓ = εℓ+q, Tq(ω) is the
transfer matrix for the unit cell and n = N/q is the num-
ber of unit cells.

TRANSFORMATION TO JORDAN NORMAL

FORM AT EVERY BAND-EDGE

Even if a matrix is not diagonalizable, it can always be
taken to the Jordan normal form via a similarity trans-
form. Any 2 × 2 matrix which is not proportional to
identity becomes non-diagonalizable if its characteristic
polynomial has a single solution, so that there is only one
eigenvalue, say λ. In such cases, the Jordan normal form
is

(

λ 1
0 λ

)

. (20)

Every band-edge µ = εb, corresponds to an exceptional
point of the transfer matrix of a unit cell, with only one
eigenvalue λ = 1. So, Tq(µ = εb) is not diagonaliz-
able. Correspondingly, we can transform it into the Jor-
dan normal form and write,

R(µ)Tq(µ)R
−1(µ) =

(

1 1
0 1

)

= I2 +
σx + iσy

2
(21)

⇒ Tq(µ) = R
−1(µ)

[

I2 +
σx + iσy

2

]

R(µ),

where σx,y are the corresponding Pauli matrices. Con-
ductance is governed by the nth power of Tq(µ),

[Tq(µ)]
n
= R

−1(µ)

[

I2 +
σx + iσy

2

]n

R(µ). (22)

Noting that

[

σx + iσy
2

]n

= 0, ∀ n > 1, (23)

and performing a binomial expansion, we see that

[Tq(µ)]
n
= R

−1(µ)

[

I2 + n
σx + iσy

2

]

R(µ). (24)

This shows that at every band edge, [Tq(µ)]
n ∼ n. We

do not need the explicit form of R(µ) for this result.
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In fact, writing down the equations for determining the
elements of R(µ), one finds that the elements are not
uniquely determined. We show this next explicitly for
the one-band case, where the on-site potential εℓ = 0.

At the band-edge of the one-band model (µ = ±2),

the transfer matrix has the form Tq(µ = 2) =

(

2 −1
1 0

)

or Tq(µ=−2) =

(

−2 −1
1 0

)

. As these matrices are not

diagonalizable with a transformation, we can take it to

the Jordan-normal form. Thus, R−1(2)

(

1 1
0 1

)

R(2) =
(

2 −1
1 0

)

and R
−1(−2)

(

1 1
0 1

)

R(−2) =

(

−2 −1
1 0

)

.

Let us now calculate R(2). Let us consider, R(2) =
(

a b
c d

)

. Now, to know the values of a, b, c and d, we

have 4 equations,

1

ad− bc

(

d −b
−c a

)(

1 1
0 1

)(

a b
c d

)

=

(

2 −1
1 0

)

(25)

=⇒ 1

ad− bc

(

ad+ cd− bc d2

−c2 −bc− cd+ ad

)

=

(

2 −1
1 0

)

.

Fixing ad − bc = 1, c = ±i and d = ±i. If we choose,
d = −i and c = i, we will get a relation between a and b
and the relation is a+ b = i. We can consider any choice
of a and b which satisfies this equation. Lets say, we

consider a = i and b = 0, then R(2) =

(

i 0
i −i

)

. Thus,

R(2) is not unique. Regardless, the fact that it is possible
to find R(2) is enough to show [Tq(2)]

n ∼ n, which in
turn guarantees a sub-diffusive scaling of conductance.

SUBDIFFUSIVE BEHAVIOUR AT BAND EDGES

FOR THREE BAND MODEL

The non-analytic change in conductance and the sub-
diffusive scaling of conductance occurs at every band-
edge, irrespective of the nature and period of the on-site
potential. Here we explicitly show the same for a three-
band model, i.e, where the period of the potential is three
sites.
Let’s say, εa, εb and εc are the on-site potential which

is repeating. Thus, the transfer matrix for the unit cell
is,

Tq(ω) =

(

ω − εa −1
1 0

)(

ω − εb −1
1 0

)(

ω − εc −1
1 0

)

.

(26)
Now, Tr[Tq(ω)] = ±2, will give the 6 band edges of
the system. Now, if we choose εa = −0.5, εb = 0.0
and εc = 0.5, then the band edges occur at ±2.05505,
±1.31491 and ±0.740139. At this band-edges, Tq(ω) also
has exceptional point. In Fig. 3, we have shown the sub-
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FIG. 4. Here, we have plotted the finite temperature conduc-
tance for (a) one-band model and (b) two-band model lattice
system respectively for system size N = 40. We can clearly
see that the non-analytic changes at the band-edges of the
conductance get smoothed at finite temperature.

diffusive behaviour due to exceptional points when the
chemical potential of bath µ exactly at the band edges.

CONDUCTANCE AT FINITE TEMPERATURE

The non-analytic change in conductance at every band-
edge corresponds to a dissipative quantum phase transi-
tion. Like standard quantum phase transitions, this is
a strictly zero temperature phenomenon. From Eq.(10),
we see that at finite temperature there will be contri-
butions over the entire range of frequencies. Since for
ω within the system bands T1N (ω) ∼ N0, while outside
system bands and at band-edges it decays with N , for
large enough N , eventually conductance will show bal-
listic scaling G(µ) ∼ N0. However, at finite but low

temperatures, −∂n(ω)
∂ω is highly peaked at µ. So, at finite

but low temperatures, we expect the transition to survive
up to a finite size. Thus, like standard quantum phase
transitions, at finite but low temperatures, there will be
a finite-size crossover, which will be lost on further in-
creasing temperature. In Fig. 4 we show conductance as
a function of µ at various temperatures for one-band and
two-band models, for a system of N = 40. We clearly see
the expected behavior.

BEYOND LINEAR RESPONSE RESULTS

In this section, we show the effect of exceptional points
of transfer matrix beyond linear response. The average
charge current in the steady state flowing out of the N
th site from 1 st site is given by the Landauer-Büttiker
formula,

I =

∫

dω

2π
T1N (n1(ω)− n2(ω)) (27)
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FIG. 5. The plot shows how the beyond linear response cur-
rent I shows a transition when the chemical potential of right
bath µR crosses the lower band edge, with µL being kept be-
low the lower band-edge. (a) In the first plot, both the baths
are kept at zero temperature and we have shown the crossing
for different system sizes. (b) In the second plot, for a fixed
system size N = 60, we have shown the crossing for different
temperatures. Both of these plots are for single-band model.

Here, n1(ω) = [eβ(ω−µL) + 1]−1 and n2(ω) = [eβ(ω−µR) +
1]−1. In the zero temperature limit, Eq. 27, reads as,

I =

µR
∫

µL

dω

2π
T1N (n1(ω)− n2(ω)). (28)

In Fig. 5(a), keeping the temperatures of both the baths
zero, and fixing the chemical potential of left bath at
µL = −3.0, we are changing the chemical potential of
the right bath µR for the single band model. With in-
creasing µR, we can see a clear transition from exponen-
tially decaying regime to ballistic regime. The transition
occurs when the chemical potential of right bath is ex-
actly at the lower band edge µR = −2.0. As we have
kept chemical potential of one of the baths outside the
lower band-edge, we only see the transition around the
lower band edge. With finite identical temperature of
baths, the sharp transition at lower band-edge gets mod-
ified and transition point around the lower band-edge
gets smoothed. We have shown this in Fig. 5(b).
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