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Abstract

This paper deals with the Schrödinger equation i∂su(z, t; s) − Lu(z, t; s) = 0, where L is the sub-
Laplacian on the Heisenberg group. Assume that the initial data f satisfies | f (z, t)| . qα(z, t), where
qs is the heat kernel associated to L. If in addition |u(z, t; s0)| . qβ(z, t), for some s0 ∈ R \ {0}, then we
prove that u(z, t; s) = 0 for all s ∈ R whenever αβ < s2

0. This result holds true in the more general context
of H-type groups. We also prove an analogous result for the Grushin operator on Rn+1.
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1. Introduction

Consider the solution u(x, s) of the Schrödinger equation


i∂su(x, s) = ∆u(x, s), (x, s) ∈ Rn × R

u(x, 0) = f (x).
(1.1)

In [2] Chanillo has shown that if the initial condition f has certain Gaussian decay
then the solution u(x, s) at a later time cannot have an arbitrary Gaussian decay. This
is reminiscent of the Euclidean Hardy theorem, which states that a function f and
its Fourier transform f̂ cannot have arbitrary Gaussian decay. More precisely, if the
definition of the Fourier transform is taken as

f̂ (ξ) = (2π)−n/2

∫

Rn

f (x)e−ix·ξ dx,

then the conditions
| f (x)| . e−α|x|

2

, | f̂ (ξ)| . e−β|ξ|
2

The work of the last two authors is supported by a J. C. Bose Fellowship from DST, India.
c© 2013 Australian Mathematical Publishing Association Inc. 1446-7887/2013 $16.00

297

95 (2013), 297–314

(Received 4 June 2011; accepted 19 May 2013; first published online 7 August 2013)

https://doi.org/10.1017/S1446788713000311 Published online by Cambridge University Press



298 S. Ben Said, S. Thangavelu and V. N. Dogga [2]

can be satisfied for a nontrivial f only if αβ ≤ 1/4. This can be viewed as an uncertainty
principle for the Fourier transform. The notation X . Y is (and will be) used to indicate
that X ≤CY with a positive constant C independent of significant quantities.

Since the solution of the aforementioned Schrödinger equation can be expressed
in terms of the Fourier transform of f , by a straightforward application of Hardy’s
theorem, Chanillo obtained the following uniqueness theorem for solutions of the
Schrödinger equation.

T 1.1 (see [2]). Let u(x, s) be the solution of the Schrödinger equation (1.1),

where f is assumed to satisfy the estimate | f (x)| . e−α|x|
2

for some positive constant

α. If at a later time s = s0 the solution satisfies |u(x, s0)| . e−β|x|
2

for some positive

constant β, then f = 0 whenever αβ < s2
0.

Hardy’s theorem as stated above goes back to the work of Hardy in 1933 and
later similar results for the Fourier transforms on Lie groups have been established,
see [17]. However, until the work of Chanillo, Hardy-type theorems were considered
only in the context of heat equations, and his work triggered a lot of attention on
Schrödinger evolutions. Chanillo himself treated the Schrödinger equation on complex
Lie groups where the initial condition was assumed to be K-biinvariant [2]. However,
if we use Radon transform, the problem can be reduced to the Euclidean case and
his result holds without any restriction either on the group or on the initial condition.
Recently, somewhat more precise results of this kind have been proved by Pasquale
and Sundari [12] in the context of symmetric spaces.

Similar uniqueness results for other Schrödinger evolutions and for the Korteweg-
de Vries equation have received a good deal of attention in recent years (see, for
instance, [4, 5, 8, 10, 15, 19]). These authors have developed powerful PDE techniques
to deal with uniqueness results. Completing a full circle, in a recent work Cowling
et al. [3] have used a uniqueness theorem for the Schrödinger equation to give a ‘real
variable proof’ of Hardy’s theorem. See also the works [6, 7], where the authors deal
with equations with nonconstant lower order terms and/or nonlinear equations.

In this paper we are interested in proving an analogue of Chanillo’s theorem for
H-type groups. Let G be such a group and denote by LG the corresponding sub-
Laplacian. We consider the following initial value problem for the Schrödinger
equation associated with LG :


i∂su(g, s) − LGu(g, s) = 0, g ∈G, s ∈ R

u(g, 0) = f (g),
(1.2)

where f is assumed to be in L2(G). Our goal is to find sufficient conditions on the
behavior of the solution u at two different times s = 0 and s = s0 which guarantee that
u ≡ 0 is the unique solution to (1.2).

We write the elements of G as g = (v, t), where t comes from the center of G. We
denote by hα(v, t) the heat kernel associated to the sub-Laplacian LG. We prove the
following theorem.
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T 1.2. Let u(v, t; s) be the solution of the Schrödinger equation (1.2). Assume

that | f (v, t)| . hα(v, t) for some α > 0. Further, suppose that there exists s0 ∈ R \ {0}
such that |u(v, t; s0)| . hβ(v, t) for some β > 0. If αβ < s2

0 then u(v, t; s) = 0 for all

(v, t) ∈G and for all s ∈ R.

Our approach uses Hardy’s theorem for the Hankel transform obtained in [18].
The theorem says that a function and its Hankel transform both cannot have arbitrary
Gaussian decay at infinity unless the function is identically zero. It is interesting to
note that our method does not use Hardy’s theorem for the Heisenberg group proved
in [17].

The (2n + 1)-dimensional Heisenberg group, denoted by Hn, is the most well-
known example of an H-type group. In Section 3 we prove Theorem 1.2 for the case
G = Hn. Once the theorem is proved for Hn it is not difficult to extend the proof for
an arbitrary H-type group. This class of groups was introduced by Kaplan in [9] and
the list of H-type groups includes the so-called Heisenberg groups and their analogues
built-up with quaternions or octonions in place of complex numbers, as well as many
other groups.

We also prove an analogue of the above theorem for the Grushin operator G =
−∆Rn − |x|2∂2

t on Rn+1. The behavior of this operator is very similar to that of the sub-
Laplacian LHn as can be easily seen by comparing the explicit expression for the latter
with the above when n is even. The spectral decomposition of G is explicitly known
and we also have a good knowledge of the associated heat kernel. Let κs(x, y, t − t′)
denote the heat kernel so that

u(x, t; s) :=

∫

Rn+1

κs(x, y, t − t′) f (y, t′) dy dt′, (x, t) ∈ Rn+1, s ∈ R

solves the heat equation associated to the Grushin operator G. The following is the
analogue of Theorem 1.2 for the Grushin operator.

T 1.3. Let u(x, t; s) be the solution of the Schrödinger equation associated to

the Grushin operator G = −∆Rn − |x|2∂2
t , with initial condition f ∈ L2(Rn+1). Suppose

that

| f (x, t)| . κα(x, 0, t)

|u(x, t; s0)| . κβ(x, 0, t),

for some α, β > 0 and for a fixed s0 ∈ R \ {0}. Then u(x, t; s) = 0 on Rn+1 × R whenever

αβ < s2
0.

We indicate a proof of this theorem in Section 5. As we mentioned above, the proof
of the main Theorem 1.2 for the case G = Hn uses an analogue of Hardy’s theorem for
the Hankel transform. An important role is played by a Hecke–Bochner type formula
for the special Hermite projections in reducing the problem to the Euclidean setup.
The proof can also be carried out for Grushin operators, which are very similar to
the sub-Laplacians, thanks to an analogue of the Hecke–Bochner formula for Hermite
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projection operators. In the last section we briefly indicate how other versions of our
main result can be proved for the Heisenberg group Hn.

Note added in proof. After this paper has been submitted for publication, a related
preprint was produced by Ludwig and Müller [11], where the authors generalize our
main result to every step two nilpotent Lie group.

2. Background

The (2n + 1)-dimensional Heisenberg group, denoted by Hn, is Cn × R equipped
with the group law

(z, t)(w, s) = (z + w, t + s + 1
2 Im(z · w̄)).

Under this multiplication Hn becomes a nilpotent unimodular Lie group, the Haar
measure being the Lebesgue measure dz dt on Cn × R. The corresponding Lie algebra
is generated by the vector fields

X j :=
∂

∂x j

+
1

2
y j

∂

∂t
, Y j :=

∂

∂y j

−
1

2
x j

∂

∂t
,

for j = 1, 2, . . . , n, and by T :=
∂

∂t
. The sub-Laplacian

LHn := −
n∑

j=1

X2
j + Y2

j

can be written as

LHn = −∆R2n −
1

4
|z|2

∂2

∂t2
+

n∑

j=1

(
x j

∂

∂y j

− y j

∂

∂x j

)
∂

∂t
.

Henceforth we will denote the sub-LaplacianLHn byL. This second-order differential
operator L is hypoelliptic, self-adjoint and nonnegative. It generates a semigroup with
kernel qs(z, t), called the heat kernel. In particular, qs(z, t) is nonnegative and has the
property

qr2 s(z, t) = r−2(n+1)qs(r
−1z, r−2t), ∀r , 0.

Moreover, ∫

R

eiλtqs(z, t) dt = (4π)−n
(

λ

sinh λs

)n
e−

1
4 λ(coth sλ)|z|2 (2.1)

(see [17]). Henceforth, for f ∈ L1(Hn) and λ ∈ R, we will write

f λ(z) :=

∫

R

eiλt f (z, t) dt (2.2)

to denote the inverse Fourier transform of f (z, t) in the t-variable.
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Let f and g be two functions on Hn. The convolution of f with g is defined by

( f ∗ g)(z, t) =

∫

Hn

f ((z, t)(−w, s))g(w, s) dw ds.

An easy calculation shows that

( f ∗ g)λ(z) =

∫

Cn

f λ(z − w)gλ(w)ei(λ/2)Im(z·w̄) dw.

The integral on the right-hand side is called the λ-twisted convolution of f λ with gλ,
and will be denoted by f λ ∗λ gλ.

Now we pin down some properties of the heat kernel qs(z, t).

F 2.1. The heat kernel satisfies the semigroup property qα ∗ qβ(z, t) = qα+β(z, t).

The following is a slight modification of [17, Proposition 2.8.2].

F 2.2. The heat kernel qs(z, t) satisfies the following estimate

qs(z, t) . s−n−1e−(π/2)(|t|/s)e−(1/4)(|z|2/s), s > 0. (2.3)

Indeed, by [17, (2.8.9) and (2.8.10)],

q1(z, t) . e−(π/2)|t|e−(1/4)|z|2 .

Now (2.3) follows from the fact that qs(z, t) = s−n−1q1(s−1/2z, s−1t) for all s > 0.
For α ∈ Nn

0 and z ∈ Cn, a monomial in the variables z1, . . . , zn is a product zα =
z
α1

1 · · · z
αn
n . The number |α| is called the total degree of zα. Let P be the set of

all polynomials of the form P(z) =
∑
|α|+|β|≤m aα,βzαz̄β. For each pair of nonnegative

integers (p, q), we define Pp,q to be the subspace of P consisting of all polynomials of
the form P(z) =

∑
|α|=p

∑
|β|=q aα,βzαz̄β.

LetHp,q := {P ∈ Pp,q | ∆P = 0},where ∆ denotes the Laplacian on Cn. The elements
of Hp,q are called bigraded solid harmonics of degree (p, q). We will denote by Sp,q

the space of all restrictions of bigraded solid harmonics of degree (p, q) to the sphere
S 2n−1. By [17], the space L2(S 2n−1) is the orthogonal direct sum of the spaces Sp,q,

with p, q ≥ 0. We choose an orthonormal basis {Y j
p,q | 1 ≤ j ≤ d(p, q)} for Sp,q. Then

by standard arguments it follows that every continuous function ψ on Cn can be
expanded as

ψ(rω) =
∑

p,q≥0

d(p,q)∑

j=1

C
j
p,q(ψ)(r)Y j

p,q(ω), r > 0, ω ∈ S 2n−1,

where

C
j
p,q(ψ)(r) :=

∫

S 2n−1

ψ(rω)Y j
p,q(ω) dσ(ω). (2.4)
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For k ∈ N, we write L
(n−1)
k

for the Laguerre polynomial defined by

L
(n−1)
k

(t) =
k∑

j=0

(−1) jΓ(n + k)

(k − j)!Γ(n + j)
t j.

For λ ∈ R∗, define the Laguerre function ϕ(n−1)
k,λ

by

ϕ
(n−1)
k,λ

(z) = e−(|λ|/4)|z|2 L
(n−1)
k

(
|λ|

2
|z|2
)
, (2.5)

for z ∈ Cn. Suppose that ψ is a radial function in L1(Cn). Then the function F defined
by F(|z|) = ψ(z) is in L1(R+, r2n−1 dr). For the following Hecke–Bochner formula we
refer to [17, Theorem 2.6.1].

T 2.3. Consider ψ(z) = P(z)F(|z|), where P ∈ Hp,q and F ∈ L1(R+, r2n−1 dr).
Then for λ ∈ R∗,

ψ ∗λ ϕ
(n−1)
k,λ

(z) = (2π)−n|λ|p+qP(z)
{
F ∗λ ϕ

(n+p+q−1)
k−p,λ

}
(z),

where the convolution on the right-hand side is taken on Cn+p+q treating the radial

functions F and ϕ
(n+p+q−1)
k−p,λ

as functions on Cn+p+q. More explicitly,

F ∗λ ϕ
(n+p+q−1)
k−p,λ

(z)

=
(2π)n+p+q|λ|(n+p+q)/22−(n+p+q)+1Γ(k − p + 1)

Γ(k + n + q)
ϕ

(n+p+q−1)
k−p,λ

(z)

×

(∫ ∞

0
g(s)L(n+p+q−1)

k−p

(
|λ|

2
s2
)
e−(|λ|/4)s2

s2(n+p+q)−1 ds

)
.

(2.6)

To end this section, let us recall Hardy’s uncertainty principle for the Hankel
transform. For ν > −1/2 and for a Schwartz function F on R+, the Hankel transform
of order ν is defined by

HνF(s) = 2−ν
∫ ∞

0
F(r) ν(rs)r2ν+1 dr, (2.7)

where ν(w) is the normalized Bessel function of order ν defined by

ν(w) =
∞∑

k=0

(−1)k
(

w
2

)2k

k!Γ(ν + k + 1)
. (2.8)

T 2.4 [18, Hardy’s theorem]. Let F be a measurable function on R+ such that

F(r) = O(e−αr2

), HνF(s) = O(e−βs2

),

for some positive α and β. Then F = 0 whenever αβ > 1/4 and F(r) =Ce−αr2
whenever

αβ = 1/4.
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3. Schrödinger equation on Hn
× R

Let us consider the Schrödinger equation on Hn × R


i∂su(z, t; s) =Lu(z, t; s), (z, t) ∈ Hn, s ∈ R

u(z, t; 0) = f (z, t).
(3.1)

As the closure ofL on C∞c (Hn) is a self-adjoint operator, −iL generates a unitary semi-
group e−isL on L2(Hn), and the solution of the above Schrödinger equation is given by

u(z, t; s) = e−isL f (z, t).

T 3.1. Let u(z, t; s) be the solution to the Schrödinger equation (3.1). Suppose

that

| f (z, t)| . qα(z, t), (3.1a)

|u(z, t; s0)| . qβ(z, t), (3.1b)

for some α, β > 0 and for a fixed s0 ∈ R
∗. Then u(z, t; s) = 0 on Hn × R whenever

αβ < s2
0.

The remaining part of this section is devoted to the proof of the above statement.
The heat kernel qs(z, t) has an analytic continuation in s as long as the real part of

s is positive. However, due to the zeros of the sine function, it follows from formula
(2.1) for qλs (z) that the kernel qis(z, t) does not exist. Hence the solution u(z, t; s) does
not have an integral representation. To counter this difficulty we will consider the
following regularized problem on Hn × R:


i∂suǫ(z, t; s) =Luǫ(z, t; s), ǫ > 0

uǫ(z, t; 0) = fǫ(z, t),

where fǫ(z, t) := e−ǫL f (z, t). The solution uǫ on Hn × R is given by

uǫ(z, t; s) = e−isL fǫ(z, t) = f ∗ qζ(z, t),

with ζ = ǫ + is and

qζ(z, t) :=
1

(8π2)n

∫

R

e−iλt
(

λ

sinh λζ

)n
e−

1
4 λ(coth ζλ)|z|2 dλ.

Observe that the kernel qζ(z, t) is well defined.

L 3.2. Under the assumptions (3.1a) and (3.1b),

| fǫ(z, t)| . qα+ǫ(z, t), (3.2a)

|uǫ(z, t; s0)| . qβ+ǫ(z, t). (3.2b)
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P. For the first estimate,

| fǫ(z, t)| = |e−ǫL f (z, t)| = | f ∗ qǫ(z, t)|

. qα+ǫ(z, t).

Above we have used Fact 2.1 and that qs is nonnegative. Similarly,

|uǫ(z, t; s0)| = |u(·, · ; s0) ∗ qǫ(z, t)|

. qβ+ǫ(z, t). �

Recall that for λ ∈ R, the notation f λ(z) stands for the inverse Fourier transform of
f (z, t) in the t-variable. In view of the hypothesis (3.1a) on f and the estimate (2.3)
on the heat kernel, one can see that the function λ 7→ f λ(z) extends to a holomorphic
function of λ on the strip |Im(λ)| < π/2α. Thus the following statement holds.

L 3.3. Under the hypothesis (3.1a) on f , the inverse Fourier transform f λ(z)
of f (z, t) in the t-variable extends to a holomorphic function of λ in a tubular

neighborhood in C of the real line.

We point out that the above lemma also holds for the function λ 7→ f λǫ .

S. To prove Theorem 3.1 it is enough to show that f = 0 on Hn whenever
αβ < s2

0. Note that, by Lemma 3.3, showing that f λ = 0 on Cn for 0 < λ < δ, for some
δ > 0, will force f λ = 0 on Cn for all λ ∈ R, and therefore f = 0 on Hn. Further, since
f λǫ = f λ ∗λ qλǫ , then proving that f λ = 0 on Cn for 0 < λ < δ is equivalent to showing the
same for f λǫ . Now, to prove that f λǫ (z) = 0 for 0 < λ < δ, for some δ > 0, it is enough to
prove that the spherical harmonic coefficients

C
j
p,q( f λǫ )(r) =

∫

S 2n−1

f λǫ (rω)Y j
p,q(ω) dσ(ω)

vanish for 0 < λ < δ, for all p, q ≥ 0 and for all 1 ≤ j ≤ d(p, q). In conclusion, the proof
of Theorem 3.1 reduces to prove that if αβ < s2

0 then C
j
p,q( f λǫ ) = 0 on R+ for 0 < λ < δ,

for all p, q ≥ 0 and for all 1 ≤ j ≤ d(p, q).

The following theorem will be of crucial importance to us.

T 3.4. Let us fix p0, q0 ≥ 0 and 1 ≤ j0 ≤ d(p0, q0). For all r > 0, there exists a

constant cλ which depends only on λ such that
∫

S 2n−1

uλǫ (rω; s0)Y j0
p0,q0

(ω) dσ(ω) = cλ rp0+q0 ei(λ/4)r2 cotg(λs0)

×Hn+p0+q0−1

(
ei(λ/4)(·)2 cotg(λs0)C̃

j0
p0,q0

( f λǫ )
)(

λr

2 sin(λs0)

)
,

where uλǫ (z; s0) denotes the inverse Fourier transform of uǫ(z, t; s0) in the t-variable,

Hν denotes the Hankel transform of order ν (see (2.7)), and C̃
j0
p0,q0

( f λǫ )(t) :=

t−(p0+q0)C
j0
p0,q0

( f λǫ )(t).
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P. In what follows cλ will stand for constants depending only on λ and will vary
from one line to another. Using Fact 2.2 we can rewrite uλǫ (z; s0) as

uλǫ (z; s0) = f λǫ ∗λ qλis0
(z),

where

qλis0
(z) = (4π)−n

(
λ

i sin λs0

)n
e(i/4)λ(cotg λs0)|z|2 ,

which exits for all but countably many values of λ. Thus

∫

S 2n−1

uλǫ (rω; s0)Y j0
p0,q0

(ω) dσ(ω)

=

∫

S 2n−1

[∫

Cn

f λǫ (rω − w)qλis0
(w)ei(λ/2)Im(rω·w̄) dw

]
Y

j0
p0,q0

(ω) dσ(ω)

=

∫

S 2n−1

[∫

Cn

f λǫ (w)qλis0
(rω − w)e−i(λ/2)Im(rω·w̄) dw

]
Y

j0
p0,q0

(ω) dσ(ω).

We now expand f λǫ in terms of bigraded spherical harmonics as

f λǫ (tη) =
∑

p,q≥0

d(p,q)∑

j=1

C
j
p,q( f λǫ )(t)Y j

p,q(η),

where C
j
p,q( f λǫ ) is as in (2.4). Further, by [17, (2.8.7)],

qλis0
(rω − tη) = (2π)−n|λ|n

∞∑

k=0

e−i(2k+n)|λ|s0ϕ
(n−1)
k,λ

(rω − tη),

where ϕ(n−1)
k,λ

is the Laguerre function given by (2.5). Now the Hecke–Bochner formula
for the λ-twisted convolution (see Theorem 2.3) implies

∫ ∞

0

∫

S 2n−1

C
j
p,q( f λǫ )(t)Y j

p,q(η)ϕ(n−1)
k,λ

(rω − tη)e−i(λ/2)rtIm(ω·η̄)t2n−1 dt dσ(η)

=

∫ ∞

0

∫

S 2n−1

C̃
j
p,q( f λǫ )(t)P j

p,q(tη)ϕ(n−1)
k,λ

(rω − tη)e−i(λ/2)rtIm(ω·η̄)t2n−1 dt dσ(η)

=

[
C̃

j
p,q( f λǫ ) P

j
p,q

]
∗−λ ϕ

(n−1)
k,λ

(rω)

= (2π)−n|λ|p+qP
j
p,q(rω)

[
C̃

j
p,q( f λǫ ) ∗−λ ϕ

(n+p+q−1)
k−p,λ

]
(rω),

where the convolution on the right-hand side is on Cn+p+q. Here P
j
p,q(rω) :=

rp+qY
j
p,q(ω) and C̃

j
p,q( f )(t) := t−(p+q)C

j
p,q( f )(t). Above we have used the fact
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that ϕ(n−1)
k,λ
= ϕ

(n−1)
k,−λ

. Using the orthogonality of the basis {Y j
p,q : 1 ≤ j ≤ d(p, q)},

∫

S 2n−1

[∫

Cn

f λǫ (w)qλis0
(rω − w)e−i(λ/2)Im(rω·w̄) dw

]
Y

j0
p0,q0

(ω) dσ(ω)

= cλr
p0+q0

∑

k≥p0

e−i(2k+n)|λ|s0C̃
j0
p0,q0

( f λǫ ) ∗−λ ϕ
(m0)
k−p0,λ

(rω)

= cλr
p0+q0

∞∑

k=0

e−i(2k+n+2p0)|λ|s0C̃
j0
p0,q0

( f λǫ ) ∗−λ ϕ
(m0)
k,λ

(rω),

where
m0 := n + p0 + q0 − 1.

On the other hand, by (2.6),

C̃
j0
p0,q0

( f λǫ ) ∗−λ ϕ
(m0)
k,λ

(rω) = cλ
Γ(k + 1)

Γ(k + m0 + 1)
ϕ

(m0)
k,λ

(rω)

×

(∫ ∞

0
C̃

j0
p0,q0

( f λǫ )(t)ϕ(m0)
k,λ

(t)t2m0+1 dt

)
.

Hence
∫

S 2n−1

uλǫ (rω; s0)Y j0
p0,q0

(ω) dσ(ω)

= cλr
p0+q0

∞∑

k=0

Γ(k + 1)

Γ(k + m0 + 1)
e−i(2k+n+2p0)|λ|s0 e−(|λ|/4)r2

× L
(m0)
k

(
|λ|

2
r2
)(∫ ∞

0
C̃

j0
p0,q0

( f λǫ )(t)ϕ(m0)
k,λ

(t)t2m0+1 dt

)

= cλr
p0+q0

∫ ∞

0
C̃

j0
p0,q0

( f λǫ )(t)Kλ(r, t; s0)t2m0+1 dt

with

Kλ(r, t; s0) := e−(|λ|/4)(r2+t2)
∞∑

k=0

Γ(k + 1)

Γ(k + m0 + 1)

× e−i(2k+n+2p0)|λ|s0 L
(m0)
k

(
|λ|

2
r2
)
L

(m0)
k

(
|λ|

2
t2
)
.

Now we can use the following Hille-Hardy identity (see, for instance, [16])

∞∑

k=0

Γ(k + 1)

Γ(k + ν + 1)
L

(ν)
k

(x)L(ν)
k

(y)wk =
e−(w/(1−w))(x+y)

(1 − w)(ν+1)
ν

(2(−xyw)1/2

1 − w

)
,

where ν is the normalized Bessel function (2.8). Thus we may rewrite the kernel Kλ

as

Kλ(r, t; s0) =
ei|λ|s0(q0−p0)

(2i sin(|λ|s0))m0+1
ei(λ/4)(r2+t2) cotg(λs0) m0

(
λ

2

rt

sin(λs0)

)
.
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Thus we arrive at
∫

S 2n−1

uλǫ (rω; s0)Y j0
p0,q0

(ω) dσ(ω)

= cλr
p0+q0

∫ ∞

0
ei(λ/4)(r2+t2) cotg(λs0)C̃

j0
p0,q0

( f λǫ )(t) m0

(
λ

2

rt

sin(λs0)

)
t2m0+1 dt

= cλr
p0+q0 ei(λ/4)r2 cotg(λs0)

Hm0

(
ei(λ/4)(·)2 cotg(λs0)C̃

j0
p0,q0

( f λǫ )
)(

λr

2 sin(λs0)

)
.

Hence Theorem 3.4 is proven. �

Now we are ready to complete the proof of Theorem 3.1.
The estimate (3.2a) on fǫ(z, t) together with Fact 2.1 lead us to

| f λǫ (z)| . e−(1/4)|z|2/(α+ǫ).

Thus, the spherical harmonic coefficient C̃
j0
p0,q0

( f λǫ ) satisfies

|C̃
j0
p0,q0

( f λǫ )(t)| . t−(p0+q0)e−(1/4)t2/(α+ǫ).

On the other hand, by means of Theorem 3.4 and the estimate (3.2b) on uǫ(z, t; s0), we
deduce that
∣∣∣∣∣Hn+p0+q0−1

(
ei(λ/4)(·)2 cotg(λs0)C̃

j0
p0,q0

( f λǫ )
)(

λr

2 sin(λs0)

)∣∣∣∣∣ ≤ cλr
−(p0+q0)e−(1/4)r2/(β+ǫ).

That is,

|Hn+p0+q0−1(ei(λ/4)(·)2 cotg(λs0)C̃
j0
p0,q0

( f λǫ ))(r)| ≤ cλr
−(p0+q0)e−(1/4)(2 sin(λs0)/λs0)2r2 s2

0/(β+ǫ).

Given α, β > 0 such that αβ < s2
0 we can choose ǫ > 0 in such a way that (α + ǫ)

(β + ǫ) < s2
0. We can also choose δ > 0 small enough so that for 0 < λ < δ we have

(α + ǫ)(β + ǫ) < s2
0(sin(λs0)/λs0)2. This inequality can be written as

1

4(α + ǫ)

s2
0

4(β + ǫ)

(2 sin(λs0)

λs0

)2
>

1

4
.

Therefore, by Hardy’s theorem for the Hankel transform (see Theorem 2.4), we
deduce that for 0 < λ < δ we have C̃

j0
p0,q0

( f λǫ ) = 0, for all p0, q0 ≥ 0 and for all 1 ≤ j0 ≤

d(p0, q0). That is, f λǫ = 0 on Cn for 0 < λ < δ. By the remark stated after Lemma 3.3,
we deduce that f λǫ = 0 for all λ ∈ C, and thus fǫ = 0 on Hn. That is, f = 0 on Hn. This
finishes the proof Theorem 3.1.

4. Proof of Theorem 1.2

Let g be a two step nilpotent Lie algebra over R with an inner product 〈·, ·〉. The
corresponding simply connected Lie group is denoted by G. Let z be the center of
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g and v the orthogonal complement of z in g. The Lie algebra g is called an H-type
algebra if for every v ∈ v, the map adv : v→ z is a surjective isometry when restricted
to the orthogonal complement of its kernel.

For the H-type algebra g = v ⊕ z, let dim(v) = 2n and dim(z) = k. The class of groups
of H-type includes the Heisenberg group Hn when k = 1. Let η be a unit element in z
and denote its orthogonal complement in z by η⊥. The quotient algebra g/η⊥ is a Lie
algebra with Lie bracket [X, Y]η = 〈[X, Y], η〉.

The quotient g/η⊥ is an H-type algebra with inner product 〈·, ·〉η given by
〈(v1, t1), (v2, t2)〉η = 〈v1, v2〉 + t1t2, where v1, v2 ∈ v, t1, t2 ∈ R, and 〈v1, v2〉 is the inner
product in g. Here (v, t) stands for the coset of v + tη in g/η⊥. Moreover, if we denote
by Gη the simply connected Lie group with Lie algebra g/η⊥, then by [14], the Lie
group Gη is isomorphic to the Heisenberg group Hn = Cn × R. We refer to [1] for more
details on the theory of H-type groups.

We fix an orthonormal basis X1, . . . , X2n for v, and define the sub-Laplacian by

LG = −

2n∑

j=1

X2
j .

It is known that LG generates a semigroup which is given by convolution with the heat
kernel for G. As in the case of the Heisenberg group, the kernel is explicitly known
and is given by

hs(v, t) =
2

(4π)n+k/2

∫ ∞

0
k/2−1(λ|t|)

(
λ

sinh(sλ)

)n
e−

1
4 λ(coth sλ)|v|λk−1 dλ,

for (v, t) ∈G and s > 0. Here ν denotes the normalized Bessel function (2.8). This
formula has been proved in [13], where the author also obtains the integral expression
for the analytic continuation, hζ , of the heat kernel hs as long as Rel(ζ) > 0.

Now we consider the solution of the Schrödinger equation on G × R


i∂su(v, t; s) =LGu(v, t; s), (v, t) ∈G, s ∈ R

u(v, t; 0) = f (v, t),

which is given by u(v, t; s) = e−isLG f (v, t). When we replace the initial condition f by
e−ǫLG f , for some ǫ > 0, then the solution is given by

uǫ(v, t; s) = f ∗ hζ(v, t) with ζ = ǫ + is.

We claim that the uniqueness Theorem 3.1 for the Schrödinger equation on Hn × R

holds true in the more general setting G × R. The rest of this section is devoted to the
proof of Theorem 1.2.

For a suitable function f on G we define its partial Radon transform Rη f (v, t) on
Gη by

Rη f (v, t) =

∫

η⊥
f (v, tη + ν) dν,
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where dν is the Lebesgue measure on η⊥. Since Gη can be identified with the
Heisenberg groupHn,we can think ofRη f as a function onHn.With this identification,
it has been proved in [13] that Rηhs(v, t) = qs(v, t), for s > 0, where qs(v, t) is the heat
kernel from Section 2. The latter identity between the heat kernels holds true even
when s is complex with Rel(s) > 0.

In view of the assumptions on f (v, t) and u(v, t; s0), it follows that Rη f (v, t) and
Rηu(v, t; s0) satisfy

|Rη f (v, t)| . qα(v, t),

|Rηu(v, t; s0)| . qβ(v, t).

Moreover, using the fact that under the Radon transform Rη, the sub-Laplacian LG

goes into the sub-Laplacian LHn (see [14]), it follows that Rηu solves the Schrödinger
equation on Hn × R with initial data Rη f (v, t). Hence we can appeal to Theorem 3.1
to conclude that Rηu(v, t; s) = 0 for all s ∈ R and for all η ∈ z whenever αβ < s2

0. Now
the injectivity of the Radon transform implies that if αβ < s2

0, then u(v, t; s) = 0 for all
(v, t) ∈G and s ∈ R. This establishes Theorem 1.2.

5. The Grushin operator

The spectral decomposition of the Grushin operator G = −∆Rn − |x|2∂2
t is given by

G f (x, t) = (2π)−1

∫ ∞

−∞

e−iλt
( ∞∑

k=0

(2k + n)|λ|Pk(λ) f λ(x)
)

dλ,

where Pk(λ) are the spectral projections of the scaled Hermite operator H(λ) :=
−∆Rn + λ2|x|2 so that

H(λ) =
∞∑

k=0

(2k + n)|λ|Pk(λ),

and f λ is as in (2.2). The heat kernel associated to G is given by

κs(x, y, t) = (2π)−1

∫ ∞

−∞

Γλ(x, y, s)e−itλ dλ,

where Γλ(x, y, s) is the well-known heat kernel associated to the Hermite operator H(λ)
(see, for instance, [16]):

Γλ(x, y, s) = cn

(
λ

sinh 2λs

)n/2
e−(|x|2+|y|2)(λ/2) coth 2λs+(2/ sinh 2λs)x·y.

The solution of the heat equation associated to G is given by

e−sG f (x, t) =

∫

Rn+1

κs(x, y, t − t′) f (y, t′) dy dt′.
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Note that, due to the zeros of the hyperbolic sine function appearing in the
expression of Γλ(x, y, s), the kernel κs(x, y, t) cannot be analytically continued for
purely imaginary values of s. However, as in the case of the sub-Laplacian LG, the
kernel κǫ+is(x, y, t) is well defined for all ǫ > 0 and the function

uǫ(x, t; s) :=

∫

Rn+1

κǫ+is(x, y, t − t′) f (y, t′) dy dt′

solves the Schrödinger equation


i∂suǫ(x, t; s) − Guǫ(x, t; s) = 0, (x, t) ∈ Rn+1, s ∈ R

uǫ(x, t; 0) = e−ǫG f (x, t) =: fǫ(x, t).

The heat kernel κs(x, y, t) satisfies the semigroup property
∫

Rn+1

κα(x, z, t − t′)κβ(z, y, t′) dz dt′ = κα+β(x, y, t).

Therefore, when f and u are as in Theorem 1.3 then we have the estimates

| fǫ(x, t)| . κα+ǫ(x, 0, t), |uǫ(x, t; s0)| . κβ+ǫ(x, 0, t).

Hence we will be working with fǫ and uǫ instead of f and u.
Following the same strategy used in the proof of Theorem 3.1, we reduce the proof

of Theorem 1.3 to Hardy’s theorem for the Hankel transform. To do that we need the
Hecke–Bochner formula for the Hermite projection operators Pk(λ). For each integer
p, we define Pp to be the space of all polynomials on Rn of the form

∑
|α|=p aαxα.

Let Hp := {P ∈ Pp : ∆P = 0}, where ∆ denotes the Laplacian on Rn. The elements of
Hp are called solid harmonics of degree p. We will denote by Sp the space of all
restrictions of solid harmonics of degree p to the sphere S n−1. Then it is well known
that the space L2(S n−1) is the orthogonal direct sum of the spaces Sp, with p ≥ 0. We

choose an orthonormal basis {Y j
p | 1 ≤ j ≤ d(p)} for Sp.

T 5.1. Let p0 ≥ 0 and 1 ≤ j0 ≤ d(p0) be fixed integers. Then

∫

S n−1

uλǫ (rω; s0)Y j0
p0

(ω) dσ(ω) = cλe
−i(λ/2) coth 2λs0r2

×H(n/2)+p0−1

(
e−i(λ/2) coth 2λ(·)2

C
j0
p0

( f λǫ )
)(

λr

sinh 2λs0

)
,

where uλǫ (x; s0) is the inverse Fourier transform of uǫ(x, t; s0) with respect to t, C
j0
p0

( f λǫ )

denotes the spherical harmonic coefficient of f λǫ with respect to Y
j0
p0
, and cλ is a

constant which depends only on λ.

In order to prove the above theorem we make use of the following Hecke–Bochner
formula for the Hermite projection operators, see [16].
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T 5.2. Let ψ(x) = F(|x|)P(x), where P is a solid harmonic of degree m. Then

for |w| < 1,

∞∑

k=0

Pk(λ)ψ(x)wk

= 2i−((n/2)+m−1)(1 − w2)−1w−((n/2)−1)r−((n/2)+m−1)

×

(∫ ∞

0
F(s)e−(|λ|/2)((1+w2)/(1−w2))s2

J(n/2)+m−1

( 2iw|λ|

1 − w2
rs

)
s(n/2)+m ds

)

× e−(|λ|/2)((1+w2)/(1−w2))r2

P(x),

where r = |x| and Jα is the Bessel function of order α > −1.

Theorem 5.1 is proved using the above formula as in the case of the sub-Laplacian
LHn . We omit the details. Once Theorem 5.1 is proved, the uniqueness theorem for
the Grushin operator follows immediately from Hardy’s Theorem 2.4 for the Hankel
transform.

6. Some concluding remarks

It would be interesting to see if Theorem 3.1 is sharp. Though we believe it is sharp,
we are not able to prove it. The main reason for the difficulty lies in the fact that the
heat kernel qs(z, t) on Hn does not have Gaussian decay in the central variable. For the
same reason the equality case of Hardy’s theorem for the group Fourier transform on
the Heisenberg group is still an open problem. However, if we assume conditions on
f λ and uλ instead of on f and u we can prove the following result.

T 6.1. Let u(z, t; s) be the solution to the Schrödinger equation for the sub-

Laplacian L on Hn with initial condition f . Fix λ , 0 and suppose that

| f λ(z)| . qλα(z), |uλ(z; s0)| . qλβ(z),

for some α, β > 0 and for a fixed s0 ∈ R
∗. Then there exists a constant cλ which depends

only on λ such that

f λ(z) = cλq
λ
α(z)e−i(λ/4)|z|2 cotg(λs0)

whenever tanh(αλ) tanh(βλ) = sin2(λs0).

To prove this theorem, we can proceed as in the proof of Theorem 3.1. We end up
with the estimates

|Hm0 (ei(λ/4)(·)2 cotg(λs0)C̃
j0
p0,q0

( f λ))(r)| ≤ cλr
−(p0+q0)e−(λ/4) coth(λβ)(2 sin(λs0)/λs0)2r2

,

with m0 := n + p0 + q0 − 1, and

|C̃
j0
p0,q0

( f λ)(r)| ≤ cλe
−(λ/4) coth(λα)r2

.
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We can now appeal to the equality case of Hardy’s theorem for the Hankel transform
(Theorem 2.4) to conclude that there exists a constant cλ(p0, q0, j0) such that

C
j0
p0,q0

( f λ)(r) = cλ(p0, q0, j0)rp0+q0 e−(λ/4) coth(λα)r2

e−i(λ/4)r2 cotg(λs0).

But this is not compatible with the hypothesis on f λ unless cλ(p0, q0, j0) = 0 for all
(p0, q0) , (0, 0). Hence f λ is radial and equals cλq

λ
α(z)e−i(λ/4)|z|2 cotg(λs0). This proves

Theorem 6.1.
The above result can be viewed as a uniqueness theorem for solutions of the

Schrödinger equation associated to the twisted Laplacian Lλ defined via the identity
LHn (eiλt f (z)) = eiλtLλ f (z). Indeed, qλα(z) is the heat kernel associated to this operator.
We refer to [17, (2.3.7)] for the explicit expression of Lλ. We can also consider
Theorem 6.1 as an analogue of Hardy’s theorem for fractional powers of the symplectic
Fourier transform. In fact, the unitary operator einse−isL1 with s = π/2 is just
the symplectic Fourier transform. Thus, the above theorem for s0 = π/2 follows
immediately from Hardy’s theorem for the Euclidean Fourier transform, whereas for
other values of s0 we require a long-winding proof.

For the sake of completeness we state another result which can be considered as a
theorem for the fractional Fourier transform as well as a theorem for solutions of the
Schrödinger equation associated to the Hermite operator H = −∆ + |x|2 on Rn. This
elliptic operator generates the Hermite semigroup, whose kernel is known explicitly.
We also know that e(i/4)nπe−(i/4)πH is the Fourier transform on Rn.

T 6.2. Let u(x, s) = e−isH f (x) be the solution to the Schrödinger equation

i∂su(x, s) − Hu(x, s) = 0, u(x, 0) = f (x).

Suppose that

| f (x)| = O(e−α|x|
2

), |u(x, s0)| = O(e−β|x|
2

)

for some α, β > 0. Then u ≡ 0 on Rn × R whenever αβ sin2(2s0) > 1
4 .

The theorem follows from the Euclidean Hardy’s theorem for Rn once we realize
u as the Fourier transform of a function. But this is easy to check in view of the
Mehler’s formula for the Hermite functions (see [17]). Indeed, in view of this formula,
the kernel of e−isH is given by

Kr(x, y) = π−n/2(1 − r2)−n/2e−(1/2)((1+r2)/(1−r2))(|x|2+|y|2)+(2r/(1−r2))x·y,

where r = e−2is. Therefore, the solution u(x, s) can be written as

u(x, s) = e−isH f (x) = cn,s e(i/2)|x|2 cot(2s) ĝs

( 1

sin(2s)
y

)
,

where gs(x) := e(i/2)|x|2 cot(2s) f (x) and ‘̂ ’ stands for the Euclidean Fourier transform
on Rn. The assumptions on f and u translate into

|gs0 (x)| . e−α|x|
2

, |ĝs0 (y)| . e−β|y|
2 sin2(2s0),

and hence Theorem 6.2 follows from the Euclidean Hardy’s theorem.
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We conclude this paper with one more remark. If we use other uncertainty
principles such as Beurling’s theorem or Benedick’s theorem in place of Hardy’s
theorem we can obtain different versions of uniqueness theorems for the solutions
of Schrödinger equations. For example, after this paper has been submitted for
publication, in [12] the authors have proved a uniqueness theorem (for symmetric
spaces) under a condition of Beurling type on f and u. We restrain from stating such
results as the proofs do not involve any new ideas.
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