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Abstract

In this work we characterize (U,N)-impli-
cations obtained from disjunctive uninorms
U and continuous negations N .
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1 Introduction

(U,N)-implications are some generalizations of (S, N)-
implications, where the t-conorm S is replaced by
a uninorm U . Recently, some characterizations of
(S, N)-implications were given by the authors in [2]. In
this work, along similar lines, we investigate and char-
acterize (U,N)-implications obtained from continuous
negations N .

After introducing the necessary preliminaries on the
basic fuzzy logic operators, we list out some of the
most desirable - but relevant to this work - proper-
ties of fuzzy implications and investigate their inter-
dependencies. Following this we discuss the class of
(U,N)-operators and the properties they satisfy. Fi-
nally, based on the above analysis, we derive a charac-
terization for (U,N)-implications generated from con-
tinuous negations.

2 Basic Fuzzy Logic Operators

To make this work self-contained, we briefly mention
some of the concepts and results employed in the rest
of the work.

Definition 1 (see [4, 7]). A decreasing function
N : [0, 1] → [0, 1] is called a fuzzy negation if N(0) = 1
and N(1) = 0. A fuzzy negation N is called

(i) strict if it is both strictly decreasing and continu-
ous;

(ii) strong if it is an involution, i.e., N(N(x)) = x
for all x ∈ [0, 1].

It is well-known that if [a, b] and [c, d] are two closed
subintervals of [−∞,+∞] and f : [a, b] → [c, d] is
a monotone function, then the set of discontinuous
points of f is a countable subset of [a, b] (see [9]). In
this case we will use the pseudo-inverse f (−1) : [c, d] →
[a, b] of a decreasing and non-constant function f de-
fined by (see [7, Sect. 3.1])

f (−1)(y) = sup{x ∈ [a, b] | f(x) > y}, y ∈ [c, d].

Lemma 1 ([2], Proposition 28). If N is a continu-
ous fuzzy negation, then the function N : [0, 1] → [0, 1]
defined by

N(x) =

{

N (−1)(x), if x ∈ (0, 1]

1, if x = 0
(1)

is a strictly decreasing fuzzy negation. Moreover

N
(−1) = N, (2)

N ◦ N = id[0,1], (3)

N ◦ N |Ran(N) = idRan(N). (4)

Definition 2 (see [5]). An associative, commutative,
increasing operation U : [0, 1]2 → [0, 1] is called a uni-
norm, if there exists an e ∈ [0, 1] (called the the neutral
element) such that

U(e, x) = x, x ∈ [0, 1].

Remark 1. (i) If e = 0, then U is a t-conorm and
if e = 1, then U is a t-norm.

(ii) It can be easily showed, that the element e corre-
sponding to a uninorm U is unique.

(iii) For any uninorm U we have U(0, 1) ∈ {0, 1}.

(iv) A uninorm U such that U(0, 1) = 0 is called a
conjunctive uninorm and if U(0, 1) = 1 it is called
a disjunctive uninorm.



Examples of fuzzy negations, uninorms as well as the
different classes of uninorms (the classes Umin, Umax,
representable uninorms, idempotent uninorms) can
be found in recent literature (see [4, Chap. 1], [7,
Sect. 10.2], [3, 5]).

3 Fuzzy Implication Operators

3.1 Definition and Properties

In this work the following equivalent definition pro-
posed by Fodor and Roubens [4] is used.

Definition 3. A function I : [0, 1]2 → [0, 1] is called a
fuzzy implication operator, or a fuzzy implication, if it
satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the following
conditions:

if x1 ≤ x2, then I(x1, y) ≥ I(x2, y), (I1)

if y1 ≤ y2, then I(x, y1) ≤ I(x, y2), (I2)

I(0, 0) = 1, (I3)

I(1, 1) = 1, (I4)

I(1, 0) = 0. (I5)

The set of all fuzzy implications will be denoted by FI.

Remark 2. Directly from Definition 3 we see that
each fuzzy implication I satisfies the following left and
right boundary condition, respectively:

I(0, y) = 1, y ∈ [0, 1], (LB)

I(x, 1) = 1, x ∈ [0, 1]. (RB)

Therefore, I satisfies also the normality condition:

I(0, 1) = 1. (NC)

Definition 4. Let I be a fuzzy implication. If for some
α ∈ [0, 1) we have I(1, α) = 0, then the function Nα

I

given by

Nα
I (x) = I(x, α), x ∈ [0, 1]

is called the natural negation of I with respect to α.

It should be noted that for any I ∈ FI we have (I5),
so for α = 0 we have the natural negation NI = N0

I of
I. Also α should be less than 1, since I(1, 1) = 1.

In the following we list out some of the desirable prop-
erties of fuzzy implications:

Definition 5. Let I be a fuzzy implication and N a
fuzzy negation.

(i) I is said to have the exchange principle, if

I(x, I(y, z)) = I(y, I(x, z)), (EP)

for all x, y, z ∈ [0, 1],

(ii) I is said to satisfy the law of left contraposition
with respect to N if, for any x, y ∈ [0, 1],

I(N(x), y) = I(N(y), x). (L-CP)

(iii) I is said to satisfy the law of right contraposition
with respect to N , if, for any x, y ∈ [0, 1],

I(x, N(y)) = I(y, N(x)). (R-CP)

(iv) I is said to satisfy the law of contraposition with
respect to N , if, for any x, y ∈ [0, 1],

I(x, y) = I(N(y), N(x)). (CP)

Lemma 2 ([2], Lemma 17). Let I : [0, 1]2 → [0, 1] be
any function and N a continuous fuzzy negation.

(i) If I satisfies (I1) and R-CP(N), then I satisfies
(I2).

(ii) If I satisfies (I2) and R-CP(N), then I satisfies
(I1).

Lemma 3. Let I : [0, 1]2 → [0, 1] and Nα
I be a fuzzy

negation for an arbitrary but fixed α ∈ [0, 1).

(i) If I satisfies (I2), then I satisfies (I5).

(ii) Let I have (I2) and (EP). Then I satisfies (I3)
if and only if I satisfies (I4).

(iii) If I satisfies (EP), then I satisfies R-CP(Nα
I ),

Proof. (i) Since Nα
I is a fuzzy negation and I satisfies

(I2) we get I(1, 0) ≤ I(1, α) = Nα
I (1) = 0.

(ii) Let I have (I2) and (EP). If I satisfies (I4),
then since Nα

I (0) = 1 we have 1 = I(1, 1) =
I(1, Nα

I (0)) = I(1, I(0, α)) = I(0, I(1, α)) =
I(0, Nα

I (1)) = I(0, 0) = 1, i.e., I satisfies (I3).
The reverse implication can be shown similarly.

(iii) Since I satisfies (EP), we have I(x, Nα
I (y)) =

I(x, I(y, α)) = I(y, I(x, α)) = I(y, Nα
I (x)), i.e.,

I has R-CP(Nα
I ).

Lemma 4. Let I be any fuzzy implication and Nα
I be

a continuous fuzzy negation for an arbitrary but fixed
α ∈ [0, 1). If N is a strictly decreasing fuzzy negation
such that Nα

I ◦ N = id[0,1] and I satisfies (EP), then
I satisfies L-CP(N).

Proof. By our assumptions we get

I(N(x), y) = I(N(x), Nα
I ◦ N(y))

= I(N(x), I(N(y), α))

= I(N(y), I(N(x), α))

= I(N(y), Nα
I ◦ N(x))

= I(N(y), x),

for any x, y ∈ [0, 1]



Remark 3. Under the assumptions of Lemma 4, we
have:

(i) If Nα
I is a strict negation, then I satisfies L-

CP((Nα
I )−1).

(ii) If Nα
I is a strong negation, then I satisfies

CP(Nα
I ).

3.2 (S, N)-Implications and their

characterization

In this section, we give a brief introduction to one
of the families of fuzzy implications that is very well
studied in the fuzzy literature.

Definition 6 (cf. [1, 4, 10]). A function I : [0, 1]2 →
[0, 1] is called an (S, N)-implication, if there exist a
t-conorm S and a fuzzy negation N such that

I(x, y) = S(N(x), y), x, y ∈ [0, 1]. (5)

If N is a strong negation, then I is called a strong
implication (shortly S-implication).

The following characterizations of (S, N)-implications
are from [2], which is an extension of a result in [10]:

Theorem 1 ([2]). For a function I : [0, 1]2 → [0, 1]
the following are equivalent:

(i) I is an (S, N)-implication generated from some t-
conorm S and N is a continuous (strict, strong)
fuzzy negation.

(ii) I satisfies (I1), (EP), the function NI is a con-
tinuous (strict, strong) fuzzy negation.

Moreover, the representation of (S, N)-implication is
unique in this case.

In Theorem 1, the property (I1) can be substituted by
(I2). Moreover, axioms in above theorem are indepen-
dent from each other.

4 (U,N)-Operators

A natural generalization of (S, N)-implications in the
uninorm framework is to consider a uninorm in the
place of a t-conorm.

4.1 Definition and Some Properties

Definition 7. A function I : [0, 1]2 → [0, 1] is called
a (U,N)-operator, if there exist a uninorm U and a
fuzzy negation N such that

IU,N (x, y) = U(N(x), y), x, y ∈ [0, 1]. (6)

If a (U,N)-operator is generated from U and N , then
we will often denote this by IU,N .

Proposition 1. If IU,N is a (U,N)-operator based on
some uninorm U and some fuzzy negation N , then

(i) IU,N satisfies (I1), (I2), (I5), (NC) and (EP),

(ii) Ne
IU,N

= N and IU,N satisfies R-CP(N),

(iii) if N is strict, then IU,N satisfies L-CP(N−1),

(iv) if N is strong, then IU,N satisfies CP(N).

Proof. (i) By the monotonicity of U and N we get
that IU,N satisfies (I1) and (I2). Moreover, it can
be easily verified that IU,N satisfies (I5) and (NC).
Finally, from the associativity and the commuta-
tivity of U we have also (EP).

(ii) For any x ∈ [0, 1] we have

Ne
IU,N

(x) = IU,N (x, e) = U(N(x), e) = N(x).

Next, since IU,N satisfies (EP), from Lemma 3 (iii)
with α = e we have that IU,N satisfies R-CP(N).

(iii) If N is a strict negation, then because of Remark 3
(i) we can deduce, that IU,N satisfies L-CP(N−1).

(iv) If N is a strong negation, then because of Re-
mark 3 (ii) we can deduce, that IU,N satisfies
CP(N).

If e = 0, then U is a t-conorm and IU,N , as an (S, N)-
implications, is always a fuzzy implication. If e = 1,
then U is a t-norm and IU,N is not a fuzzy implication,
since (I3) is violated. If e ∈ (0, 1), then not for ev-
ery uninorm U the (U,N)-operator is a fuzzy implica-
tion. Next results characterize these (U,N)-operators,
which satisfy (I3) and (I4).

Theorem 2. Let U be a uninorm with the neutral
element e ∈ (0, 1). Then the following statements are
equivalent:

(i) The function IU,N as defined in (6) is a fuzzy im-
plication.

(ii) U is a disjunctive uninorm, i.e, U(0, 1) = 1.

Proof. Let U be a uninorm with the neutral element
e ∈ (0, 1).
(i) =⇒ (ii) If IU,N as defined in (6) is a fuzzy impli-
cation, then from (I3) we have U(0, 1) = U(1, 0) =
IU,N (0, 0) = 1.
(ii) =⇒ (i) Assume that U(0, 1) = 1. From Proposi-
tion 1 it is enough to show only (I3) and (I4):

IU,N (0, 0) = U(N(0), 0) = U(1, 0) = U(0, 1) = 1,

IU,N (1, 1) = U(N(1), 1) = U(0, 1) = 1.



Following the terminology used by Mas et al. [8] for
QL-implications, only if the (U,N)-operator IU,N is a
fuzzy implication we use the term (U,N)-implication.

Lemma 5. Let IU,N be a (U,N)-implication obtained
from a uninorm U with e ∈ (0, 1) as its neutral element
and continuous negation N . Let α ∈ (0, 1) be an arbi-
trary but fixed number. Then the following statements
are equivalent:

(i) Nα
IU,N

= N ;

(ii) α = e.

Proof. Let e ∈ (0, 1) be the neutral element of U and
α ∈ (0, 1) be an arbitrary but fixed number.
(i) =⇒ (ii) If α = e, then Nα

IU,N
(x) = IU,N (x, α) =

IU,N (x, e) = U(N(x), e) = N(x) for all x ∈ [0, 1], i.e.,
Nα

IU,N
= N .

(ii) =⇒ (i) On the other hand, if Nα
IU,N

= N , then

since N is continuous there exists an e′ such that e =
N(e′) and Nα

IU,N
(e′) = IU,N (e′, α) = U(N(e′), α) =

N(e′) = e. But U(N(e′), α) = U(e, α) = α, because e
is the neutral element of U . Hence α = e.

4.2 Characterizations of (U,N)-Implications

We start our presentation with following result.

Proposition 2. Let I be a fuzzy implication and N
any fuzzy negation. Let us define a binary operation
UI on [0, 1] as follows:

UI,N (x, y) = I(N(x), y), x, y ∈ [0, 1]. (7)

Then for all x, y ∈ [0, 1], we have

(i) UI,N (x, 1) = UI(1, x) = 1, in particular
UI,N (0, 1) = 1,

(ii) UI,N is increasing in both the variables,

(iii) UI,N is commutative if and only if I has L-CP(N).

In addition, if I has L-CP(N), then

(iv) UI,N is associative if and only if I satisfies the
exchange property (EP).

(v) an arbitrary α ∈ (0, 1) is the neutral element of
UI,N if and only if Nα

I ◦ N = id[0,1].

Proof. (i) UI,N (x, 1) = I(N(x), 1) = 1, by the
boundary condition (RB) on I. Also, UI(1, x) =
I(N(1), x) = I(0, x) = 1 again by (LB) of I.

(ii) That UI,N is increasing in both the variables is a
direct consequence of the monotonicity of I and
N .

(iii) If UI,N is commutative, then I(N(x), y) =
UI,N (x, y) = UI,N (y, x) = I(N(y), x), i.e., I sat-
isfies L-CP(N). The reverse implication can be
obtained by retracing the above steps.

(iv) If I satisfies (EP), then

UI,N (x, UI(y, z)) = I(N(x), I(N(y), z))

= I(N(x), I(N(z), y))

= I(N(z), I(N(x), y))

= I(N [I(N(x), y)], z)

= I(N [UI(x, y)], z)

= UI(UI(x, y), z).

On the other hand, if UI,N is associative, then

I(x, I(y, z)) = UI,N (N(x), UI,N (N(y), z))

= UI,N (UI,N (N(x), N(y)), z))

= UI,N (UI,N (N(y), N(x)), z))

= UI,N (N(y), UI,N (N(x), z))

= I(y, I(x, z)).

(v) Let α ∈ (0, 1) be arbitrary fixed. If α is the neu-
tral element of UI,N , then, for any x ∈ [0, 1], we
have x = UI,N (x, α) = I(N(x), α) = Nα

I (N(x)).
Conversely, if Nα

I ◦ N = id[0,1], then, for any
x ∈ [0, 1] we get UI,N (α, x) = UI,N (x, α) =
I(N(x), α) = Nα

I (N(x)) = x and α is the neu-
tral element of UI,N .

If Nα
I is a continuous fuzzy negation for an arbitrary

but fixed α ∈ (0, 1), then by Lemma 1 and previous
results we can consider the modified pseudo-inverse
N

α
I given by

N
α
I (x) =

{

(Nα
I )

(−1)
(x), if x ∈ (0, 1]

1, if x = 0
(8)

as the potential candidate for the fuzzy negation N in
(7). Hence from Lemma 4 with N = N

α
I we obtain the

following result.

Corollary 1 (cf. [2], Corollary 29). If a fuzzy impli-
cation I satisfies (EP) and Nα

I , the natural negation
of I with respect to an arbitrary but fixed α ∈ (0, 1),
is a continuous fuzzy negation, then I satisfies (L-CP)
with N

α
I from (8).

Hence, if a fuzzy implication I satisfies (EP) and Nα
I

is a continuous fuzzy negation for some α ∈ (0, 1), then
we conclude, that the formula (7) can be considered
for the modified pseudo-inverse of the natural negation
of I.



Corollary 2. If I ∈ FI satisfies (EP) and Nα
I is a

continuous fuzzy negation with respect to an arbitrary
but fixed α ∈ (0, 1), then the function UI defined by

UI(x, y) = I(Nα
I (x), y), x, y ∈ [0, 1] (9)

is a disjunctive uninorm with neutral element α, where
NI is as defined in (8).

Theorem 3. For a function I : [0, 1]2 → [0, 1] the fol-
lowing statements are equivalent:

(i) I is an (U,N)-operator generated from some dis-
junctive uninorm U with neutral element e ∈
(0, 1) and some continuous fuzzy negation N .

(ii) I is an (U,N)-implication generated from some
uninorm U with neutral element e ∈ (0, 1) and
some continuous fuzzy negation N .

(iii) I satisfies (I1), (I3), (EP) and the function Ne
I is

a continuous negation for some e ∈ (0, 1).

Moreover, the representation (6) of (U,N)-implication
is unique in this case.

Proof. That (i) is equivalent to (ii) follows immedi-
ately from Theorem 2.

(ii) =⇒ (iii) Assume, that I is an (U,N)-implication
based on a uninorm U with neutral element e ∈ (0, 1)
and a continuous negation N . Since every (U,N)-
implication is a fuzzy implication, I satisfies (I1) and
(I3). Moreover, by Proposition 1 it satisfies (EP) and
Ne

I = N . In particular Ne
I is continuous.

(iii) =⇒ (ii) Firstly see, that from Lemma 3 (iii) it
follows that I satisfies (R-CP) with respect to the con-
tinuous Ne

I . Next, Lemma 2 (i) implies that I satisfies
(I2). Once again from Lemma 3 (i) and (ii) we have
that I satisfies (I3), (I4) and (I5), and hence I ∈ FI.
Further, by virtue of Lemmas 1 and 4 the implication
I satisfies L-CP(Ne

I). Because of Corollary 2 the func-
tion UI defined by (9) is a disjunctive uninorm with
the neutral element e.
We will show that IUI ,Ne

I
= I. Fix arbitrarily x, y ∈

[0, 1]. If x ∈ Ran(Ne
I), then by (4) we have

IUI ,Ne
I
(x, y) = UI(N

e
I (x), y)

= I(Ne
I ◦ Ne

I (x), y) = I(x, y).

If x /∈ Ran(Ne
I), then from the continuity of Ne

I there
exists x0 ∈ Ran(Ne

I) such that Ne
I (x) = Ne

I (x0).
Firstly see, that I(x, y) = I(x0, y) for all y ∈ [0, 1]. In-
deed, let us fix arbitrarily y ∈ [0, 1]. From the continu-
ity of Ne

I there exists y′ ∈ [0, 1] such that Ne
I (y′) = y,

so

I(x, y) = I(x,Ne
I (y′)) = I(y′, Ne

I (x))

= I(y′, Ne
I (x0)) = I(x0, N

e
I (y′)) = I(x0, y).

From the above fact we get

IUI ,Ne
I
(x, y) = UI(N

e
I (x), y)

= UI(N
e
I (x0), y) = I(x0, y) = I(x, y),

so I is an (U,N)-implication.
Finally, assume that there exist two continuous fuzzy
negations N1, N2 and two uninorms U1, U2 with neu-
tral elements e, e′ ∈ (0, 1), respectively, such that
I(x, y) = U1(N1(x), y) = U2(N2(x), y) for all x, y ∈
[0, 1]. Fix arbitrarily x0, y0 ∈ [0, 1]. Firstly observe
that from Proposition 1 we get N1 = N2 = Ne

I =

Ne′

I . By virtue of Lemma 5 we get, that e′ = e.
Now, since Ne

I is a continuous negation there exists
x1 ∈ [0, 1] such that Ne

I (x1) = x0. Thus U1(x0, y0) =
U1(N

e
I (x1), y0) = U2(N

e
I (x1), y0) = U2(x0, y0), i.e.,

U1 = U2. Hence N and U are uniquely determined.
In fact U = UI defined by (9).

In above theorem the property (I1) can be substituted
by (I2) and the property (I3) can be substituted by
I4. Moreover, the above axioms are independent from
each other.

Now, the following result easily follows:

Theorem 4. For a function I : [0, 1]2 → [0, 1] the fol-
lowing statements are equivalent:

(i) I is an (U,N)-implication generated from some
disjunctive uninorm U with neutral element e ∈
(0, 1) and some strict (strong) fuzzy negation N .

(ii) I satisfies (I1), (I3), (EP) and the function Ne
I is

a strict (strong) negation.

Once again, the representations of the (U,N)-
implications described above are unique and the pre-
sented axioms are independent from each other. It
is interesting, that using similar methods as in this
section we are able to obtain the following characteri-
zation of (U,N)-operators.

Theorem 5. For a function I : [0, 1]2 → [0, 1] the fol-
lowing statements are equivalent:

(i) I is an (U,N)-operator generated from some uni-
norm U with neutral element e ∈ (0, 1) and some
continuous fuzzy negation N .

(ii) I satisfies (I1), (EP) and the function Ne
I is a

continuous negation for some e ∈ (0, 1).

5 Some Concluding Remarks

In this work, we characterize (U,N)-implications ob-
tained from disjunctive uninorms U and continuous
negations N . Toward this end, we have investigated



some desirable algebraic properties of fuzzy implica-
tion operators and obtained some characterization re-
sults. It should be noted, that (U,N)-implications are
closely related with e-implications investigated in [6],
whose representation is still unknown.
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