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Abstract

A pressure-driven two-layer channel flow of a Newtonian fluid with constant viscosity (top 

layer) and a fluid with a time-dependent viscosity (bottom layer) is numerically investi-

gated. The bottom layer goes through an ageing process in which its viscosity increases 

due to the formation of internal structure, which is represented by a Coussot-type relation-

ship. The resultant flow dynamics is the consequence of the competition between structura-

tion and de-structuration, as characterised by the dimensionless timescale for structuration 

(�) and the dimensionless material property (�) of the bottom fluid. The development of 

Kelvin-Helmholtz type instabilities (roll-up structures) observed in the Newtonian constant 

viscosity case was found to be suppressed as the viscosity of the bottom layer increased 

over time. It is found that, for the set of parameters considered in the present study, the 

bottom layer almost behaves like a Newtonian fluid with constant viscosity for 𝜏 > 10 and 

𝛽 > 1 . It is also shown that decreasing the value of the Froude number stabilises the inter-

facial instabilities. The wavelength of the interfacial wave increases as the capillary num-

ber increases.

Keywords Viscosity-stratified flow · Time-dependent viscosity · Instability · Direct 

numerical simulation · Diffuse-interface method

1 Introduction

Fluids with time-dependent viscosity are encountered in many processes in hydraulic engi-

neering (e.g. dredging, hyperconcentrated flow, erosion resistance [1, 2]), mining engineer-

ing (drilling muds; [3]), civil engineering (cement and grouts; [4]), coating technology 

[5], and chemical engineering [6, 7]. These fluids are classified into two types based on 

whether their viscosities increase (rheopectic) or decrease (thixotropic) with time. The lit-

erature associated with time-dependent fluids and their applications is extensively reviewed 

in Ref. [8, 9].
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A few researchers have also modelled clay and mud in riverbeds as time-dependent 

fluids [10, 11]. The mud accumulated in the riverbed acts as a distinct phase, with 

clean water flowing over it. The muddy phase ages, which may be caused by a ‘jam-

ming’ transition [12] of the particulate phase confined within the deposit, resulting 

in structure-building in the muddy phase (referred to here as ‘structuration’). For this 

layer to flow, this structure must be broken (referred to here as ‘de-structuration’). 

Thus, it is possible to model the transition from a liquid-like to a solid-like behaviour 

using a time-dependent rheological model [13, 14]. In the present work, a characteris-

tic problem of this kind, i.e. a pressure-driven two-layer channel flow of a Newtonian 

fluid with constant viscosity and fluid with a time-dependent viscosity (using a Cous-

sot-type model) is studied. The development and suppression of interfacial instabil-

ity have been examined for a wide range of dimensionless parameters associated with 

this problem. Of course, the continuous deposition of the particulate phase has been 

neglected in the present study. Moreover, the applicability of a Coussot-type model to 

represent the mud dynamics must be experimentally validated.

Earlier, several researchers have examined the instability in two-layer channel flow 

involving Newtonian and non-Newtonian fluids because of their importance to practi-

cal applications, such as crude oil transportation in pipelines and liquid mixing using 

centreline injectors, upstream of static mixers, the removal of highly viscous or elas-

toviscoplastic material adhering to pipes by using fast-flowing water streams, to name a 

few [9, 15]. For instance, by considering Newtonian fluids, several authors investigated 

the effect of the ratios of viscosity, density, and thickness of the fluid layers on the 

instability developed at the interface by conducting linear stability analyses [16–19], 

experiments [20], and numerical simulations [21–23]. By conducting a linear stability 

analysis for a two-layer channel flow of two Bingham fluids, Frigaard et al. [24] found 

that the presence of an unyielded region (above critical yield stress) suppresses the 

interfacial instability. Subsequently, Frigaard and co-workers [25–28] investigated the 

development of the Kelvin-Helmholtz (KH) and Rayleigh–Taylor (RT) instabilities in 

a variety of situations involving miscible systems, non-Newtonian fluids, and displace-

ment flow of one fluid by another. In a three-layer configuration and the displacement 

flow of a highly viscous fluid by a less viscous fluid, Sahu and co-workers [29, 30] 

demonstrated the KH and RT instabilities for a range of viscosity and density ratios by 

performing numerical simulations of the Navier-Stokes and continuity equations. By 

conducting a linear stability analysis, they [31, 32] also studied the onset of interfacial 

instability in a pressure-driven two-layer channel flow, wherein a Newtonian fluid layer 

overlies a layer of a Herschel–Bulkley fluid. They found the destabilising influence of 

increasing the yield stress and shear-thickening tendency when the flow is completely 

yielded. Focusing on asphaltene deposition and its removal in crude distillation units, 

Sileri et al. [33] modelled the dynamics using a Coussot-type thixotropic rheological 

model and studied the interfacial waves by conducting a thin-film analysis in the limit 

of small viscosity ratios.

As the above-mentioned brief review indicates, despite a large number of studies on 

two-fluid flows involving Newtonian and non-Newtonian fluids, very few studies have 

examined the effect of time-dependent rheology on interfacial instability, which is the 

focus of the present work. The rest of this paper is organised as follows. Details of the 

governing equations, numerical method, and validation are provided in Sect.  2. The 

results are presented in Sect. 3 and concluding remarks are provided in Sect. 4.
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2  Formulation

A pressure-driven two-layer channel flow is investigated via direct numerical simulations. 

The bottom and top layers are designated by fluid ‘1’ and fluid ‘2’ with dynamic viscosity 

and density (�1, �1) and (�2, �2) , respectively. The viscosity of the bottom layer changes 

with time, while the top layer is a Newtonian fluid with constant viscosity. Both the flu-

ids are assumed to be immiscible and incompressible. A rectangular coordinate system 

(x, y, z) is used to analyse the flow, wherein x and y and z denote the streamwise, span-

wise, and wall-normal directions, respectively, as indicated in Fig.  1. The flow is in the 

positive x direction and the acceleration due to gravity (g) acts in the negative z direction. 

The height, width and length of the computational domain are H, W and L, respectively. 

The bottom and top channel walls (rigid and impermeable) are located at z = 0 and z = H , 

respectively. Initially (at the time, t = 0 ), the interface separating the immiscible fluids is at 

a mean height of z = h
0
 . A sinusoidal perturbation of amplitude of the smallest grid size is 

imposed at the interfacial height separating the fluids (see, Fig. 1). It has been checked that 

the results presented in this study are unaffected by the change in amplitude of this small 

perturbation.

The following Coussot-type model is adopted to describe the rheological property of 

fluid ‘1’ [13, 14],

where, �
0
 denotes the reference viscosity, �

d
 is the so-called structure parameter, �

d
 is a 

function of material characteristics, n is a fluid parameter, �
d
 represents a characteristic 

time of “restructuration’ , and 𝛾̇
d
 is the second invariant of the strain rate tensor of the age-

ing layer (fluid ‘1’),which is given by 𝛾̇d =
[

EijEij − (Ekk)
2
]1∕2

 . Here, Eij =
1

2

(

�ui

�xj

+
�uj

�xi

)

 , 

and subscript d is used to represent the dimensional variables.

The flow dynamics is governed by the continuity and Navier-Stokes equations for each 

layer. The height of the channel (H), average velocity (V), viscosity (�
2
) and density (�

2
) 

of the top fluid are used as scales to render the governing equations dimensionless. The 

dimensionless governing equations are given by

(1)�1 =�0

(

1 + �n

d

)

,

(2)
d𝜆

d

dt
=

1

𝜏
d

− 𝛽
d
𝜆

d
|𝛾̇|

d
,

Fig. 1  Schematic diagram of the 

pressure-driven two-layer chan-

nel flow of fluid ‘1’ (a fluid with 

time-dependent viscosity) and 

fluid ‘2 (a Newtonian fluid with 

constant viscosity). Here, H, W 

and L represent the height, width 

and length of the computational 

domain. Initially, the interface 

separates the fluids at a mean 

height of z = h
0
 with a sinusoidal 

perturbation of amplitude of the 

smallest grid size
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where u, v, w are the velocity components in the x, y and z directions, respectively, p rep-

resents the pressure field, t denotes time and k̂ denotes the unit vector in the z direction. 

Here, Re ≡ �
2
VH∕�

2
 , Ca ≡ �

2
V∕� , Fr ≡ V∕

√

gH are the Reynolds, capillary and Froude 

numbers, respectively, wherein � represents the surface tension acting at the interface sepa-

rating the fluids. In order to capture the interface between the fluids, the diffuse-interface 

method [34] is used. This is employed by solving the Cahn-Hilliard equation, which is 

given by

where C is the volume fraction of the fluid ‘1’, such that C = 0 and 1 for fluid 2 and 

fluid ‘1’, respectively. Pe ≡ HV∕(M
c
�

c
) , wherein M

c
 and �

c
 are the characteristic values 

of mobility and chemical potential, � ( ≡ �
−1
��Ψ�(C) − ���∇2

C ), respectively. � is the 

measure of interface thickness, Ψ(C) =
1

4
C

2(1 − C)2 is the bulk energy density, and � is a 

constant.

The dimensionless viscosity and density are given by

where �
r
= �

0
∕�

2
 and �

r
= �

1
∕�

2
 are the viscosity and density ratios, respectively. The 

dimensionless from of Eq. (2) is given by

where � is the dimensionless number associated with material property, � represents the 

dimensionless characteristic time of ‘restructuration’, and 𝛾̇
d
 is the dimensionless second 

invariant of the strain rate tensor of the ageing layer (fluid ‘1’). In all the numerical simula-

tions, the dimensionless pressure-gradient is kept at a constant value of -1. In all simula-

tions performed in this study, initially, a fully developed condition for the flow is imposed, 

with the viscosity of the bottom layer set to �
r
 , and � is determined using this flow field. 

No-slip and no-penetration boundary conditions are used at the top and bottom walls and 

periodic boundary conditions are used in the rest of the boundaries.

2.1  Numerical method

The above-mentioned governing equations are solved in a coupled manner in the finite-

volume framework using a staggered grid discretisation. The detailed description of the 

numerical method can be found in Ref. [34]. The Navier-Stoke solver used in the present 

study has been validated extensively and used in our previous studies [29, 30, 35]. Thus, 

here the numerical method is discussed briefly below only for the sake of completeness.

(3)∇ ⋅ � = 0,

(4)𝜌

[

𝜕�

𝜕t
+ � ⋅ ∇�

]

= −∇p +
1

Re
∇ ⋅

[

𝜇(∇� + ∇�T )
]

+
𝜙∇C

ReCa
−

𝜌

Fr2
k̂,

(5)
�C

�t
+ � ⋅ ∇C =

1

Pe
∇ ⋅ (M∇�),

(6)� =�
r
(1 + �n)C + (1 − C),

(7)� =�
r
C + (1 − C),

(8)
d𝜆

dt
=

1

𝜏
− 𝛽𝜆|𝛾̇|,
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In the staggered grid discretisation, the scalar variables (e.g., the pressure and volume frac-

tion of fluid ‘1’) and the velocity components are defined at the center and at the cell faces, 

respectively. The discretised Cahn-Hilliard equation is given by

where

Here, a
1
 and a

2
 are constants associated with the approximate/optimal values related to the 

nonlinear mobility, Δt = t
N+1 − t

N and the superscript N represents the time step. Note that 

the advective term, i.e. the non-linear term in Eq. (5) is discretise using a weighted essen-

tially non-oscillatory (WENO) scheme, and a central difference scheme is used to discre-

tise the diffusive terms on the right-hand-side of Eqs. (4)-(5). Second-order accuracy in the 

temporal discretisation is obtained by employing the Adams–Bashforth and Crank–Nicol-

son methods for the advective and second-order dissipation terms in Eq. (4), respectively. 

The discretised form of Eq. (4) is given by

where �∗ is the intermediate velocity, and H and L denote the discrete convection and dif-

fusion operators, respectively. The intermediate velocity �∗ is then corrected to (N + 1)
th 

time level.

The pressure distribution is obtained from the continuity equation at time step N + 1 using

A computation domain of size (L × W × H) = (5 × 1 × 1) is used and a grid refinement 

test has been conducted in Fig. 2. This figure shows the variations of the average viscos-

ity ( 𝜇̄ = ∫ L

0
∫ W

0
𝜇dxdy∕WL ) of the fluids in the wall-normal direction (z) at a typical time 

instant, t = 4 obtained using three different grids. It can be observed in Fig.  2 that the 

results obtained using 201 × 41 × 81 and 201 × 41 × 81 grids are practically indistinguish-

able. A similar behaviour is also observed for other sets of parameters considered in the 

present study. In view of this, the intermediate grid (with 201, 41, and 81 cells in the axial 

(x), spanwise (y) and wall-normal (z), directions, respectively) is used to generate the rest 

of the results presented in Sect. 3.

(9)

3

2
C

N+1 − 2C
N +

1

2
C

N−1

Δt
=

(

a1∇
2
C

N+1 − a2∇
4
C

N+1
)

Pe
+
[

2A
(

C
N

, �
N
)

− A
(

C
N−1

, �
N−1

)]

,

(10)A(C, �) =

[

∇ ⋅ (M∇Φ) −
(

a1∇
2
C

N+1 − a2∇
4
C

N+1
)]

Pe
− ∇ ⋅ (�C).

(11)

�
∗ − �

N

Δt
=

1

pN+1∕2

{

−
[

3

2
H(�N −

1

2
H(�N−1)

]

+
1

2Re

[

L(�∗,�
N+1) + L(�N

,�
N)
]

}

,

(12)
�

N+1 − �
∗

Δt
= ∇pN+1∕2

.

(13)∇ ⋅

(

∇pN+1∕2
)

=
∇ ⋅ �

∗

Δt
.



268 Environmental Fluid Mechanics (2022) 22:263–274

1 3

3  Results and discussion

The effects of viscosity and density ratios, Reynolds number, and thickness of the bot-

tom layer have been well studied for Newtonian fluids with constant viscosity, and the 

behaviour is found to be similar in the current configuration as well. Therefore, the val-

ues of these dimensionless numbers have been kept constant in the present study. As 

the main focus of the present work is to investigate the flow dynamics that occur due to 

the competition between the structuration and de-structuration in the bottom layer (fluid 

‘1’) with time-dependent viscosity, the presentation begins by analysing the effects of 

the dimensionless characteristic timescale of restructuration ( � ). In Fig. 3, the spatio-

temporal evolutions of the volume fraction (C) field are plotted for different values of 

� and compared with the Newtonian fluid with constant viscosity case (panel a). The 

rest of the dimensionless parameters are Re = 1000 , Ca = 1 , Fr = 1 , h
0
= 0.5 , �

r
= 10 , 

�
r
= 10 , � = 0.01 and n = 2 . The parameters considered in the present study are similar 

to that of Ref. [6, 33].

It can be seen in Fig. 3a that, when both layers have constant viscosities ( � = 0 , � = 0 

and � = ∞ ), the interface becomes unstable, and sawtooth-type structures develop at 

the interface (see, t = 2 and 3). As time progresses, these patterns become more pro-

nounced, resulting in KH instabilities (roll-up structures). A closer look also reveals 

that the wavelength of the interfacial waves increases in a non-uniform manner in the 

streamwise direction (see, t = 4 ) before becoming almost constant at later times (see, 

t = 6 ). The development of interfacial instability in the two-layer flow of Newtonian 

fluids of constant viscosities was also studied by Valluri et al. [21].

Figure 3b and c show the temporal evolutions of the volume fraction (C) field for � = 5 

and 1, respectively. The first and second terms in Eq. (8), namely 1∕� and 𝛽𝜆|𝛾̇| , respec-

tively, represent the formation and destruction of internal structures in the bottom layer, 

respectively. Thus, decreasing � while keeping the rest of the parameters constant increases 

the viscosity of this layer, thereby suppressing the interfacial instability. It can be seen in 

Fig. 3b that although interfacial instabilities appear for � = 5 at later times, their amplitude 

is significantly lower than that observed in the Newtonian constant viscosity case (Fig. 3a). 

For � = 1 (Fig. 3c) the flow is completely stable and the interface remains flat even at later 

times. In Fig. 4, the iso-surface of C = 0.5 (that represents the interface separating the lay-

ers) at t = 6 clearly depicts the interfacial dynamics for different values of �.

Fig. 2  Variation of 

the average viscosity 

( 𝜇̄ = ∫ L

0
∫ W

0
𝜇dxdy∕WL ) of the 

fluids in the wall-normal direc-

tion (z) at t = 4 obtained using 

three different grids. The values 

of the rest of the dimension-

less parameters are Re = 1000 , 

Ca = 1 , Fr = 1 , h
0
= 0.5 , 

�
r
= 10 , �

r
= 10 , � = 5 , � = 0.01 

and n = 2
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Fig. 3  Spatio-temporal evolutions of the volume fraction (C) field for different values of � . Panel (a) corre-

sponds to the case when both the fluids have constant viscosities. In panel (b), � = 5 and in panel (c), � = 1 . 

The values of the rest of the dimensionless parameters are Re = 1000 , Ca = 1 , Fr = 1 , h
0
= 0.5 , �

r
= 10 , 

�
r
= 10 , � = 0.01 and n = 2

Fig. 4  Iso-surface of C = 0.5 representing the interface separating the fluids at t = 6 . The rest of the dimen-

sionless parameters are the same as those used to generate Fig. 3
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In order to understand the flow behaviour discussed above, the evolution of the layer-

wise average viscosity ( 𝜇̄ = ∫ L

0
∫ W

0
𝜇dxdy∕WL ) profile for � = 5 and � = 1 is examined 

in Fig.  5a and b, respectively. In all the simulations, the initial viscosity ratio, �
r
 is 

10, which implies that the bottom layer is ten times more viscous than the top layer at 

t = 0 . It can be seen in Fig. 5a and b that for both the values of � the viscosity of the 

bottom layer increases with time due to the dominant structuration phenomenon over 

the de-structuration phenomenon in fluid ‘1’, for the set of parameters considered. As a 

result, the bottom layer changes from a fluid to a solid-like state. As expected, it can be 

observed that decreasing the value of � increases the rate of increase in the viscosity of 

the bottom layer.

Figure 6 depicts the variation of the maximum average viscosity ( 𝜇̄
max

 ) of the bot-

tom layer versus � at two typical instants, namely t = 3 and 6. Three observations can be 

made from this result. (i) Decreasing the value of � monotonically increases the viscos-

ity of the bottom layer, (ii) the viscosity of the bottom layer increases as time progresses 

for all finite values of � , which in turn suppresses the development of interfacial insta-

bility. and (iii) for the set of parameters considered, the flow dynamics approximate the 

Newtonian constant viscosity case for 𝜏 > 10 , as 𝜇̄
max

 approaches the initial value of �
r
 

(=10 in this case) for � = 10.

(b)(a)
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Fig. 5  Variation of the average viscosity ( 𝜇̄ = ∫ L

0
∫ W

0
𝜇dxdy∕WL ) of the fluids in the wall-normal direction 

at different instants for (a) � = 5 and (b) � = 1 . The rest of the dimensionless parameters are the same as 

those used to generate Fig. 3

Fig. 6  Variation of the maximum 

average viscosity ( 𝜇̄
max

 ) of the 

bottom layer versus � . The rest of 

the dimensionless parameters are 

the same as those used to gener-

ate Fig. 3
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Next, the effect of � , which is responsible for de-structuration, on the flow dynamics is 

investigated. The variations of the maximum average viscosity ( 𝜇̄
max

 ) of the bottom layer 

versus � at different instants are plotted for � = 10 and � = 1 in Fig. 7a and b, respectively. 

Again two observations are evident. For a fixed set of other parameters, (i) decreasing the 

value of � makes the bottom layer more viscous and (ii) 𝜇̄
max

 tends towards plateau for 

� = 1 and 𝛽 < 0.01 indicating that the viscosity variation is significant only in the inter-

mediate range of � . To summarise, decreasing the values of � and � stabilises the flow by 

increasing the viscosity of the bottom layer.

Finally, a parametric study is conducted to examine the influence of Froude number 

(Fr) and the capillary number (Ca). Increasing the value of the Froude number, which is 

defined as the ratio of inertia to gravity, indicates an increase in inertia over gravity, with 

Fr → ∞ representing the case with negligible gravity effect. In the present study, the bot-

tom layer is ten times denser than the top layer, culminating in a stable stratified configura-

tion in terms of density. Figure 8 depicts the spatio-temporal evolution of the iso-surface 

of C = 0.5 for different values of Fr. It can be seen in Fig. 8 that, as expected, decreasing 

the Froude number, i.e. increasing the influence of gravity (or decreasing the inertia effect), 

stabilises the interfacial instability. Similarly, a low capillary number indicates that the sur-

face tension force has prevailed over the viscous force or inertia force for a fixed value of 

Re. The surface tension is a dominant mechanism in interfacial flows. It can be seen in 

Fig. 9 that increasing Ca increases the wavelength of the interfacial wave. A similar result 

was reported by Redapangu et al. [23] via linear stability analysis in the case of Newtonian 

fluids with constant viscosity.

4  Conclusions

A pressure-driven two-layer channel flow of a Newtonian fluid with constant viscos-

ity (top layer) and a fluid with a time-dependent viscosity (bottom layer) is numerically 

studied using a diffuse-interface method in the finite-volume formulation. Both the fluids 

are assumed to be immiscible and incompressible. The flow dynamics is governed by the 

Navier-Stokes and continuity equations coupled with the Cahn-Hilliard equation for track-

ing the interface. The time-dependent rheology of the bottom layer is modelled by solving 

(b)(a)
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Fig. 7  Variation of the maximum average viscosity ( 𝜇̄
max

 ) of the bottom layer versus � for (a) � = 10 and 

(b) � = 1 . The values of the rest of the dimensionless parameters are Re = 1000 , Ca = 1 , Fr = 1 , h
0
= 0.5 , 

�
r
= 10 , �

r
= 10 and n = 2
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an extra equation for the structuration and de-structuration of the internal structures in the 

continuum framework [13, 14]. The development of the Kelvin-Helmholtz type instabili-

ties (roll-up pattern) observed in the Newtonian constant viscosity case was suppressed by 

decreasing the dimensionless characteristic timescale of re-structuration (�) and decreasing 

the value of the dimensionless material property of the bottom fluid ( � ) as a consequence 

of the increase in the viscosity of the bottom layer. It is also observed that for the set of 

parameters considered in the present study, the bottom layer almost behaves like a con-

stant viscosity fluid for 𝜏 > 10 and 𝛽 > 1 . Decreasing the value of the Froude number, i.e. 

decreasing inertia over gravity force, stabilises the interface. The wavelength of the interfa-

cial wave is found to increase as the capillary number (the ratio of viscous force to surface 

tension force) increases. Despite its fundamental nature, the present study is useful in com-

prehending the various flows that occur in natural phenomena and industrial applications.

Fig. 8  Spatio-temporal evolution of the iso-surface of C = 0.5 representing the interface separating the flu-

ids for (a) Fr → ∞ (neglegible gravity), (b) Fr = 2 and (c) Fr = 1 . The rest of the dimensionless parameters 

are Re = 1000 , Ca = 1 , h
0
= 0.5 , �

r
= 10 , �

r
= 10 , � = 1 , � = 0.01 and n = 2
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