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Abstract Gamma-Ray Bursts (GRBs) have been tra-
ditionally divided into two categories: “short” and
“long” with durations less than and greater than two
seconds, respectively. However, there is a lot of liter-
ature (with conflicting results) regarding the existence
of a third intermediate class. To investigate this is-
sue, we carry out a two-dimensional classification using
the GRB hardness and duration, and also incorporat-
ing the uncertainties in both the variables, by using an
extension of Gaussian Mixture Model called Extreme
Deconvolution (XDGMM). We carry out this analy-
sis on datasets from two detectors, viz. BATSE and
Fermi-GBM. We consider the duration and hardness
features in log-scale for each of these datasets and de-
termine the best-fit parameters using XDGMM. This is
followed by information theoretic criterion-based tests
(AIC and BIC) to determine the optimum number of
classes. For BATSE, we find that both AIC and BIC
show preference for two components with close to deci-
sive and decisive significance, respectively. For Fermi-
GBM, AIC shows preference for three components with
decisive significance, whereas BIC does not find any sig-
nificant difference between two and three components.
Our analysis codes have been made publicly available.

Aishwarya Bhave

Soham Kulkarni

Shantanu Desai

P.K. Srijith

1Department of Information Technology, NIT Raipur,

Chhatisgarh-492010, India

2Department of Physics, University of Florida, Gainsville, FL

32611, USA

3Department of Physics, IIT Hyderabad, Kandi, Telangana-

502285, India

4Department of Computer Science and Engineering, IIT Hyder-

abad, Kandi, Telangana-502285, India

Keywords GRB Classification; Bayesian Information
Criterion; Akaike Information Criterion

1 Introduction

Gamma-ray bursts (GRBs) are short-duration energetic
cosmic explosions with prompt emission between keV-
GeV energies, which are being continuously detected at
the rate of about one per day (Kumar & Zhang 2015;
Zhang et al. 2016a; Schady 2017). They are located at
cosmological distances, although a distinct signature of
cosmological time dilation in the GRB light curves re-
mains elusive (Singh & Desai 2022). The first convinc-
ing case for bifurcating the GRB population into two
categories was made from an analysis of the BATSE
data (Kouveliotou et al. 1993), and led to establish-
ing the conventional classification of GRBs into short
(T90 < 2 s) and long (T90 > 2 s) classes, where T90
is the time which encompasses 90% of the burst’s flu-
ence, and is usually used as a proxy for the duration
of a GRB. Note however that this boundary between
short and long GRBs is known to be detector depen-
dent (Bromberg et al. 2013; Tarnopolski 2015b). Short
GRBs are usually associated with binary neutron star
(or other compact object) mergers (Nakar 2007) and
long GRBs with core collapse supernovae (Woosley &
Bloom 2006). However, there are known exceptions
to the above general picture (Zhang et al. 2009; Perna
et al. 2018; Amati 2021; Ahumada et al. 2021).

Despite the conventional wisdom of only two dis-
tinct GRB classes, multiple groups have argued over the
years for the existence of an intermediate class of GRBs
in between the short and long bursts, using T90 as
the criterion for classification. The first such claim for
an intermediate-duration GRB class, with T90 in the
range between 2 and 10 seconds in the BATSE dataset
was put forward by Horváth (1998) and Mukherjee
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et al. (1998), and subsequently confirmed by the anal-

ysis of the complete BATSE dataset (Horváth 2002;

Chattopadhyay et al. 2007a; Tóth et al. 2019).

However, this has been disputed by Zitouni et al.

(2015), who found that two lognormal distributions fit
the BATSE T90 data much better compared to three

components. Evidence for a third lognormal compo-

nent was also found in the BAT data of Neil Gehrels

SWIFT Observatory (Swift, hereafter) (Horváth et al.

2008; Zhang & Choi 2008; Huja et al. 2009; Horváth

et al. 2010; Horváth & Tóth 2016; Zitouni et al. 2015;

Tarnopolski 2016b; von Kienlin et al. 2014). However,

these results have been disputed by other authors, who

found that the T90 distribution prefers two compo-

nents (Zhang et al. 2016b; Tarnopolski 2019b). Kulka-

rni & Desai (2017) carried out a unified classification

of the T90 distributions for the GRB datasets from

BATSE, Fermi, Swift, and Beppo-Sax, and found that

among these, only for Swift GRBs in the observed frame

is the evidence for three classes marginally significant at

about 2.4σ. However, when the same analysis is done

for the Swift GRBs in the intrinsic GRB frame, two

components are preferred. For all other datasets, evi-

dence for three components is either very marginal or

disfavored. Some other works have pointed out that the

third component could be an artifact of the skewness

in the distribution of long GRBs. If the data is mod-
elled using skewed distributions, only two distributions
are sufficient (Tarnopolski 2016a; Kwong & Nadarajah

2018; Tarnopolski 2019b,a).

Extension of studies on GRB classification using

both duration and hardness, as well as in dimensions
greater than two have also not reached a common con-

sensus. Horváth et al. (2006) and Chattopadhyay et al.

(2007a) argued for three components in the BATSE

GRB data using two-dimensional clustering in T90-

hardness and T90-fluence planes respectively. Chat-

topadhyay & Maitra (2017, 2018) have argued for five

components in the BATSE data by using multiple clus-
tering techniques on six different variables. For Swift

data, Veres et al. (2010) showed using multiple cluster-

ing techniques that three components are favored in the

two dimensional log(T90) -log (hardness) plane, and

the intermediate class has overlap with X-ray flashes.

However, these results are in conflict with more recent

analysis by Yang et al. (2016), who showed by applying

two dimensional Gaussian Mixture Models (GMM) on

T90 and hardness ratio on Swift GRBs, that the data

favor only two components instead of three. Most re-

cently, Tarnopolski (2022) showed by applying graph

theory techniques to GRB hardness and duration, that

the data is consistent with two groups, although a third

group cannot be ruled out. Using linear discriminant

analysis, Zhang et al. (2022) showed that a linear com-

bination of the duration, fluence, and peak flux is a

better discriminant between long and short bursts for

Fermi-GBM data. They also showed that long GRBs

could also be further sub-divided into long-bright GRBs

and long-faint GRBs (Zhang et al. 2022). A recent sum-

mary of all results on GRB classification can be found

in Tarnopolski (2019c). Most recently, Swift GRBs

have also been classified into categories based entirely

on prompt light curves (Jespersen et al. 2020).

To resolve this imbroglio, we use two-dimensional

clustering in the hardness vs T90 plane to find out the
optimum number of GRB classes. One difference com-
pared to all previous works on GRB classification is that

we incorporate the uncertainties in the GRB hardness

and T90, while doing the classification. We apply an

extension of the GMM, which incorporates the uncer-

tainties in the data (Bovy et al. 2011). We then uni-
formly apply this method to the latest available GRB

data from BATSE and Fermi-GBM detectors, based on

the observed T90 and hardness along with their associ-

ated uncertainties.

For model comparison, we use two widely used in-
formation theoretic criteria, viz. Akaike Information

Criterion (AIC) and Bayesian Information Criterion
(BIC). Both of these information-criterion based model
comparison techniques have been applied to a variety of

problems in astrophysics and particle physics, including

in the classification of GRBs (Shi et al. 2012; Desai &

Liu 2016; Desai 2016; Kulkarni & Desai 2017; Ganguly
& Desai 2017; Kulkarni & Desai 2018; Krishak & De-

sai 2019; Krishak et al. 2020; Krishak & Desai 2020a,b)
and references therein.

The outline of this paper is as follows. The datasets

used for our analysis are described in Sect 2. The analy-

sis methodology and model comparison techniques are

outlined in Sect. 3. We then present our results for

the various GRB datasets in Sect. 4, including a very

brief comparison with previous results. We conclude in
Sect. 5.

2 Datasets

Herein, we consider the GRB datasets available from

BATSE (Paciesas et al. 1999) and Fermi-GBM (Narayana

Bhat et al. 2016; von Kienlin et al. 2020). Among these,
Fermi detector is still online and detecting on the order

of about one new GRB per day. We did not consider

other catalogs such as those from Beppo-Sax and INTE-

GRAL, since they either contained a very small sample

of GRBs or did not have any publicly available data

for the hardness of the observed bursts. We did not
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consider the bursts from RHESSI, as it has no onboard

GRB triggering mechanism. Although there have been

many previous works which used the Swift GRB cat-

alog for classification (Horváth et al. 2008; Horváth

& Tóth 2016; Zhang et al. 2016b; Kulkarni & Desai
2017), we note that Swift is much more sensitive in the

softer bands, meaning that the short GRBs are under-

abundant in the sample, which affects the fits (Band

2006). The selection effects for Swift are therefore diffi-

cult to account for (Coward et al. 2013). Therefore, we

do not use the data from Swift for our analysis. Before
describing each of these datasets, we first explain how
the hardness variable was estimated.

2.1 Hardness Definition

Spectral hardness (also referred to as hardness ratio)

(Hobs, hereafter) of a GRB is defined as the ratio be-
tween the GRB fluences in different energy bands. For

BATSE, we use Hobs as the ratio between the 50− 100

keV and the 20 − 50 keV bands. The BATSE cata-

log provides errors for the fluence in both these bands.

From this, one can estimate the error in log(Hobs) from

error propagation. For Fermi-GBM, we consider the

ratio of the fluences in 50-300 keV and 10-50 keV to

calculate the hardness. We have obtained the errors in

hardness and T90 from the latest Fermi-GBM catalog
(Narayana-Bhat, private communication, 2020).

Note that many previous works have used BATSE

fluences in the 100-300 and 50-100 keV bands for the

hardness ratio (Mukherjee et al. 1998; Horváth et al.

2006; Chattopadhyay et al. 2007a; Tarnopolski 2019c;

Tóth et al. 2019). Here, instead we used the fluences

in the 20-50 keV energy range in the denominator of
the hardness ratio, in order to have overlap in a similar
energy range as Fermi-GBM (10-50 keV). Although, we

are not analyzing Swift data in this work, clustering

studies based on hardness with Swift have also used a

similar energy band (25-50 keV) (Zhang et al. 2016b).
Therefore, choosing the BATSE fluence in the 20-50

keV range easily allows us to compare with the results

from other detectors and also complement the above

studies which have used the fluences in 100-300 keV

energy range.

2.2 BATSE dataset

The current BATSE GRB (Paciesas et al. 1999) catalog

contains 2041 GRBs detected between 1991 and 2000

with duration information and a total of 2035 events

with flux and fluence information. Among these, 1973

GRBs contained both duration and fluence information,

of which we omitted 39 GRBs for which the fluences in

either the 20-50 keV or in the 50-100 keV were less than
or equal to zero. Therefore, we are left with 1934 GRBs
for our classification purposes. The average fractional
error in T90 is 18%, whereas the average fractional error
for the fluence in the 50-100 keV and 20-50 keV energy
bands is equal to 12% and 17%, respectively.The aver-
age and median fractional error in the hardness ratio is
36% and 10%, respectively.

2.3 Fermi-GBM dataset

As of June 2020, Fermi-GBM released their fourth cat-
alog containing 2356 GRBs (Gruber et al. 2014; von
Kienlin et al. 2014; Narayana Bhat et al. 2016; von
Kienlin et al. 2020). Among these, T90, hardness ratio
(as defined above), along with their associated uncer-
tainties are available for 2330 GRBs. Of these, we used
2329 GRBs for analysis, since one GRB had negative
value for the hardness and hence could not be used for
the analysis. The hardness ratio was calculated using
the ratio of the background subtracted flux spectrum
(using photon counts) in 50-300 keV to that in 10-50
keV, and averaging over the detectors. More details on
this catalog can be found in von Kienlin et al. (2020).
The average fractional error in T90 and hardness ra-
tio is equal to 10% and 18%, respectively. The median
fractional error in the hardness ratio is equal to 3%.

3 Methodology

Extreme Deconvolution (XDGMM, hereafter) is an ex-
tension of GMM (Kuhn & Feigelson 2017), which takes
into account the uncertainty in the observed data (Bovy
et al. 2011; Ivezić et al. 2014; Holoien et al. 2017). It has
been used for a variety of applications in astrophysics
such as velocity distribution from Hipparcos data (Bovy
et al. 2011), classification of pulsars (Reddy Ch. & De-
sai 2022), the three-dimensional motions of the stars in
Sagittarius streams (Koposov et al. 2013), classification
of neutron star masses (Keitel 2019), detection of dark
matter subhalo candidates (Coronado-Blázquez et al.
2019). We provide a brief description of the XDGMM
method using the same notation as Reddy Ch. & Desai
(2022).

We assume that the noisy dataset xi is related to the
true values vi as follows (Bovy et al. 2011; Ivezić et al.
2014):

xi = Rivi + ǫi, (1)

where Ri is the rotation matrix used to transform the
correct values to the observed noisy dataset. Similar to
ordinary GMM, we assume that the probability density
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of the true values v can be written as a mixture of K

Gaussians given by

p(vi) =
K
∑

j=1

αjN (vi|µj ,Σj) (2)

where µj and Σj denote the means and variances of
each of the Gaussian distribution, whereas αj denotes

the weight of each Gaussian subject to
K
∑

j=1

αj = 1. Note

that xi and vi could be multi-dimensional vectors, and
for our example, denote the 2-D dataset comprising of

the natural logarithms of T90 and Hobs. We consider

the noise ǫi (in Eq. 1) to be a Gaussian random variable

with zero mean and variance equal to Si. The likelihood

of the model parameters (θ ≡ {α, µ, Σ, Ri, Si}) for each
noisy data point (xi) can then be written as (Bovy et al.

2011):

p(xi|θ) =
K
∑

j=1

αjN (xi|Riµj , RiΣjR
T
i + Si) (3)

The last step in XDGMM is to maximize the likeli-

hood of the dataset with respect to the model param-
eters. This can be done (as in GMM) by adding the

individual log-likelihood functions:

argmax
θ

L =

N
∑

i=1

ln(p(xi|θ)), (4)

where N is the total number of datapoints. This ob-

jective function is maximized using an extension of

the Expectation-maximization algorithm (Bovy et al.

2011). Similar to GMM, XDGMM returns a likelihood,

which can then be utilized for model comparison.

3.1 Fitting method

We now apply XDGMM to the GRB dataset using the

log (T90) and logHobs as inputs, where log refers to nat-

ural log. We use the XDGMM implementation in the

astroML module (Ivezić et al. 2014). We stack the log

(T90) and log(Hobs). Their uncertainties constitute the

diagonal elements of their respective covariance matri-
ces, with non-diagonal elements kept at zero, since the
errors between different GRBs are independent. The

stacked covariance matrices are fed to the XDGMM al-

gorithm, whose output consists of the weights, means,

and covariances for the input number of clusters

XDGMM by itself does not determine the optimum

number of GRBs, which is an input parameter to the

algorithm. For finding the optimum number of com-

ponents, we apply XDGMM by varying the number of

GRB components, and then use model selection tech-
niques, as discussed in the next section to determine
the optimum number of clusters.

The comparison of models based on the difference
in likelihood after finding the best-fit parameters for
each model is not the optimum way to find the cor-
rect number of components, even though this has been
used in the GRB classification literature (Horváth et al.
2006, 2010). For mixture models, minus twice log of
difference in likelihood does not asymptote to the usual
χ2 distribution (Ghosh & Sen 1984; Kuhn & Feigelson
2017). Only when the variances are equal does this
statistic follow the χ2 distribution (Kuhn & Feigelson
2017).

Furthermore, even though the value of the likelihood
increases, the addition of extra free parameters leads to
increased model complexity and is generally undesired.
Therefore, the additional free parameters need to be pe-
nalized or taken into account so as to avoid overfitting.
To address these issues, a number of both frequentist
and Bayesian model-comparison techniques have been
used over the past decade to determine the best model
which fits the observational data (Liddle 2004, 2007;
Lyons 2016; Kerscher & Weller 2019; Krishak & De-
sai 2020b). Here, we use information criteria based
tests such as AIC and BIC for model comparison, since
these are straightforward to compute from the likeli-
hoods (which are returned as one of the outputs from
XDGMM). AIC/BIC have also been previously used for
GRB classification by a number of authors (Mukher-
jee et al. 1998; Tarnopolski 2016a,b; Yang et al. 2016;
Kulkarni & Desai 2017; Tarnopolski 2019b; Zhang et al.
2022). More information about AIC and BIC and its
application to astrophysical problems can be found in
Liddle (2004, 2007); Sharma (2017); Krishak & Desai
(2020b).

3.2 AIC

The AIC is used for model comparison, when we need
to penalize for any additional free parameters to avoid
overfitting. A preferred model in this test is the one
with the smaller value of AIC between the two hypoth-
esis. The AIC is given by,

AIC = 2p− 2 lnL. (5)

where p is the number of free parameters in the model
and L is the likelihood. The second term favors models
with high value of likelihood, while the first term pe-
nalizes models which uses large number of parameters.
Models with large number of parameters might have
a high likelihood but will over fit on the data. The
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absolute value of AIC is usually not of interest. The

goodness of fit between two hypothesis (A) and (B) is

described by the difference of the AIC values and is

given by,

∆AIC = AICA −AICB , (6)

where AICA - AICB correspond to the AIC values for
the hypothesis A and B. Burnham & Anderson (2004)

have provided qualitative strength of evidence rules to

assess the significance of a model based on the ∆AIC

values between the two models. ∆ AIC< 2 corresponds

to substantial support, those with 4 ≤ ∆AIC≤ 7 have

considerably less support, and those with ∆AIC have

virtually no support. Therefore, ∆AIC> 10 is consid-

ered as decisive evidence against the model with higher

AIC (Liddle 2007; Krishak & Desai 2020b).
1

3.3 BIC

The BIC is also used for penalizing the use of extra

parameters. As in the case of AIC, the model with

the smaller value of BIC is the preferred model. The

penalty in the BIC test is harsher than that in the case

of AIC and is given by,

BIC = p lnN − 2 lnL. (7)

The first term in Eq. 7 acts as a very harsh measure

needed for the BIC test. The goodness of fit used for
hypothesis testing between two models A and B is given

by,

∆BIC = BICA −BICB . (8)

Similar to AIC, the model with lower value of BIC is fa-

vored. To assess the significance of a model, strength of

evidence rules have also been proposed based on ∆BIC

using Jeffreys scale (Kass & Raftery 1995; Liddle 2007).

∆ BIC > 5 is considered as strong evidence and ∆ BIC

> 10 is considered as decisive evidence in favor of the

model with the smaller BIC value.

1To avoid any ambiguity in our representation of our results, we

have consistently kept the 3-Gaussian model as the null hypoth-

esis, which simplifies the analysis and makes a positive value of

∆AIC, favor the 3-Gaussian and a negative value favors the 2-

Gaussian.

4 Results

We apply the techniques discussed in the previous sec-

tions to the GRB datasets from BATSE and Fermi-

GBM. We find the mean value of log (T90) and

log(Hobs) and its standard deviation for each GRB

class, by varying the total number of components from

one to five, followed by maximizing the likelihood us-

ing XDGMM for each of the hypothesis. This choice

for the number of GRB components is large enough,

as it allows to easily discern the minimum value of

AIC/BIC and also allows us to cross-check the results

of some works, which have found upto 5 GRB com-

ponents (Chattopadhyay & Maitra 2017, 2018). Using

these best-fit parameters, we then implement the infor-

mation criterion based model-comparison techniques to

determine the optimum number of components

4.1 BATSE

A complete summary of the results on applications of

XDGMM to the BATSE GRB dataset, including the

best-fit parameters and their covariance matrices are

shown in Table 1. While fitting for two components,

we find that 808 and 1126 GRBs belong to the short
and long category respectively. When we fit for three

components we find a total of 689, 762, and 483 GRBs
in the short, intermediate, and long categories respec-
tively. The AIC and BIC plots as a function of the
number of components can be found in Fig. 1. Here,

both AIC and BIC prefer two components. The ∆BIC

value crosses the threshold of 10, needed for decisive ev-

idence. The ∆AIC value is also close to 10. Therefore,

both AIC and BIC results using XDGMM are broadly
in agreement and favor two GRB categories. The 1σ

ellipses for two and three components can be found in

Fig. 2 and Fig. 3, respectively.

There is more than 20 years of literature on classifi-

cation of BATSE GRBs. However, the results from dif-
ferent works are not in accord with each other, with dis-

parate statistical techniques often leading to opposite

conclusions. So, we only compare our results to a few

selected papers, where both T90 and hardness (or other

fluence related parameters) are used for classification.

Results of classification of BATSE GRBs using only

T90 are summarized in Kulkarni & Desai (2017). The

first cogent case for three GRB classes in BATSE data

using spectral information, was made by Chattopad-

hyay et al. (2007b), who used two multivariate cluster-

ing methods using K-means partitioning and Dirich-

let mixture modeling using fluence vs T90 to argue for

three components. However, no estimate of the signif-

icance was made. Around the same time, an analysis
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similar to this using GMM in the log (T90)- log( Hobs)

plane was done by Horváth et al. (2006), who found

that three components were favored using frequentist

model comparison by evaluating chi-square probability

with the addition of the third component. They also

found an anti-correlation between the duration and the

hardness. Most recently, Tarnopolski (2019c) caried

out multi-variate modelling of BATSE data using sym-

metric as well as skewed distributions. He showed that

the T90 distribution is consistent with two components.

In two dimensional space, almost all the distributions

are consistent with two components, except when flux

was used for classification in which case, the distribu-

tion was well-fitted by three-component Gaussian or t-

distributions. A comprehensive summary of their clas-

sification results in higher-dimensional spaces can be

found in Table 1 of Tarnopolski (2019c). This work ar-

gued that it is not possible to unequivocally prove the
existence of a third GRB component, since the third
component could be a spurious artifact caused by the

finite size of the sample and due to a particular realiza-

tion of the random sample that could bias the results.

The results from our analysis, which incorporates the

errors in T90 and Hobs support two classes.

4.2 Fermi-GBM

A complete summary of the results on applications of

XDGMM for Fermi-GBM data, including the best-fit

parameters and their covariance matrices are shown in

Table 2. For two components, we find that 360 and

1969 GRBs belong to the short and long categories, re-
spectively. For a three component model, we obtain

990, 268, and 1071 GRBs in short, intermediate and
long GRB categories respectively. The AIC and BIC
plots as a function of the number of GRB components
can be found in Fig. 4. The minimum value of AIC

is obtained for three components, whereas for BIC the

minimum value is obtained for two components. The

∆ AIC values between two and three components is

greater than 10, thus pointing to decisive significance

in favor of three components. We note that the AIC

values for four and five components are also smaller

compared to that for two components by more than 10,

which implies that four and five components are de-

cisively favored compared to two. However, they are

greater than the AIC value for three components by

more than 10, implying that AIC shows decisive signif-

icance for three components as compared to any other

number of components. However, the ∆BIC value be-

tween the two and three components is less than three,

indicating that the difference is negligible and corre-

sponds to “not worth a mention” according to Jeffreys’

Fig. 1 AIC and BIC values as a function of the num-
ber of Gaussian components for BATSE data after two-
dimensional clustering. Both AIC and BIC favor two com-
ponents with near decisive or decisive significance, respec-
tively.

Fig. 2 Scatter plot of logHobs vs log (T90) (expressed in
seconds) for BATSE data. The ellipses indicate the 1σ con-
tours for two components, using our XDGMM based anal-
ysis and are centered on the best-fit parameters obtained
from Table 1.



7

Table 1 Results from model comparison for BATSE GRBs. The first column contains the total number of GRB classes.
The two component array (log T90, logHobs) in the second column denotes the best-fit values for the mean value of the
logarithm of T90 (in seconds) and the logarithm of Hobs. The 2 × 2 matrix in the third column indicates the covariance
matrix Σ returned by XDGMM. The fourth column (ni) denotes the total number of GRBs. These columns have been
shown separately for two and three classes of GRBs. The next set of columns show the AIC and BIC values for each GRB
category. The last two columns indicate the ∆AIC, and ∆BIC between the three component and two-component model,
which are used for model comparison. In this table, the preferred value for every test is highlighted in bold. We note that
∆AIC = AIC (2 components) - AIC (3 components) and same for ∆BIC. Therefore, if ∆AIC or ∆BIC> 0, then two GRB
classes are preferred and vice-versa. We note that AIC and BIC prefer two components with near decisive and decisive
significance, respectively.

k µ Σ ni AIC BIC ∆(AIC) ∆(BIC)

2
(3.08,0.22)

(

0.8078 0.0026

0.0026 0.1565

)

1126
36643.6 36704.9

-9.5 -42.9(-0.29,0.52)

(

1.6557 −0.1494

−0.1494 0.4862

)

808

3

(2.12,0.20)

(

1.0358 0.0936

0.0936 0.3560

)

762

36653.1 36747.7

(-0.54,0.61)

(

1.3979 −0.0453

−0.0453 0.3925

)

689

(3.40,0.21)

(

0.5599 −0.0021

−0.0021 0.1134

)

483

Fig. 3 Scatter plot of log(Hobs) ratio vs log (T90) (ex-
pressed in seconds) for BATSE data. The ellipses indicate
the 1σ contours from our XDGMM based analysis assuming
three components and centered on the best-fit parameters
obtained from Table 1.

scale. Note however that as discussed in Tarnopol-

ski (2019c) and Tarnopolski (2019b), AIC is liberal in
overfitting with a higher chance of accepting compli-

cated models having redundant components, than nec-

essary. Therefore, BIC results are more trustworthy in

case of a discrepancy between the two. The 1σ ellipses

for the two components are shown in Fig. 5. The cor-
responding plot for three components can be found in

Fig. 6.
Similar to BATSE, there is a vast amount of liter-

ature on the classification of Fermi-GBM GRBs, with

no common consensus among the different works. We

summarize the results from some of these works and

then compare with our results. A summary of previ-

ous results on the classification of Fermi-GBM using

durations can be found in Kulkarni & Desai (2017);

Zitouni et al. (2018). All previous classification stud-

ies with Fermi GRBs show a preference for two GRBs.

While this work was in progress, a short GRB de-

tected by Fermi-GBM (GRB170817A) (Goldstein et al.

2017) was seen in gravitational waves (GW170817) (Ab-

bott et al. 2017) creating a watershed event in the
history of astronomy, and thereby opening the era

of multi-messenger astronomy and providing a whole

bunch of information from Astrophysics to fundamental

Physics (Margutti & Chornock 2021; Boran et al. 2018).

Subsequently, when a clustering analysis of the GRBs
from the Fermi-GBM catalog was done using multi-

dimensional clustering followed by model selection us-
ing BIC, the optimum number of clusters detected was
equal to three (Horváth et al. 2018). They have also
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argued that GRB170817A belongs to an intermediate

class and not a short hard burst. A follow-up cluster

analysis was carried out by Horváth et al. (2019) using

16 Fermi-GBM observables, who showed using Prin-

cipal Component Analysis that the data is consistent

with three GRB classes. However, the third class is dif-

ferent from the intermediate class. They argue that this

could be caused due to the model-dependent spectral

fitting parameters provided by Fermi-GBM. Tarnopol-

ski (2019b) carried out a 2-d classification using hard-

ness and duration, and showed that the duration–
hardness ratio plane is best represented by a mixture
of two skewed Student t distributions. Tarnopolski

(2022) showed using graph theory that the Fermi-GBM

dataset is consistent with both two and three classes.

Most recently, Zhang et al. (2022) showed using lin-

ear discriminant analysis that a linear combination of

the duration, fluence, and peak flux is a better dis-

criminant between long and short bursts for Fermi-

GBM data. They also showed that long GRBs could

also be divided into long-bright GRBs and long-faint

GRBs (Zhang et al. 2022).

Our analysis indicates that AIC decisively prefers

three components, whereas for BIC the difference be-

tween the values for two and three components is neg-

ligible.

5 Conclusions

The main goal of this work was to find the optimum

number of GRB components by carrying out a two-

dimensional clustering in the T90 vs hardness plane,

along with incorporating the errors in T90 and hard-
ness in the aforementioned analysis. Although there are
a plethora of works over a time span of more than two

decades, which have done a multidimensional classifica-

tion using multiple GRB observables, none of them have

incorporated the uncertainties in the analysis. This

is the first work on GRB classification which has in-

cluded the aforementioned uncertainties. For our anal-

ysis, we used an extension of the GMM based classifi-

cation which incorporates the uncertainties, referred to

as XDGMM (Bovy et al. 2011). We used the data from

two space-based detectors, BATSE and Fermi-GBM for
our analysis.

We then used two information criterion based sta-

tistical tests to ascertain the optimum number of GRB
classes in both the datasets. These tests include AIC
and BIC model comparison tests. The statistical sig-

nificance from the information criterion based tests was

obtained qualitatively using empirical strength of evi-

dence rules (Shi et al. 2012; Krishak & Desai 2020b).

Fig. 4 AIC and BIC values as a function of the num-
ber of Gaussian components for Fermi-GBM data after two-
dimensional clustering. The minimum value of BIC is ob-
tained for two components. However the difference com-
pared to the same for three components is negligible. For
AIC, the minimum value is obtained for three components
and the difference with respect to two components points to
decisive significance in favor of the three component model.

Fig. 5 Scatter plot of log(Hobs) ratio vs log (T90) (ex-
pressed in seconds) for Fermi-GBM data. The ellipses in-
dicate the 1σ contours from our XDGMM based analysis
assuming two components, using the best-fit results tabu-
lated in Table 2.
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Table 2 Model comparison parameters for Fermi-GBM GRBs. The explanation of all the columns is same as in Table 1.
We find that both AIC prefers three components with decisive significance, whereas BIC prefers two components albeit with
marginal difference with respect to the three component model. The AIC value for four and five components is equal to
12952 and 12954 respectively, indicating that four/five classes are favored compared to two, but disfavored when compared
to three.

k µ Σ ni AIC BIC ∆(AIC) ∆(BIC)

2
(3.27,-0.46)

(

1.11 −0.04

−0.04 0.28

)

1969
12973.5 13036.8

32.3 -2.2(-0.09,0.34)

(

0.97 −0.19

−0.19 0.23

)

360

3

(3.71,-0.46)

(

0.6334 −0.1730

−0.1730 0.1744

)

1071

12941 13039

(-0.43,0.44)

(

0.6334 −0.1730

−0.1730 0.1744

)

990

(2.59,-0.41)

(

1.2993 −0.1167

−0.1167 0.4048

)

268

Table 3 Summary of model comparison tests for the GRB datasets analyzed. For each dataset we have indicated the
preferred model based on the difference between the values of the AIC and BIC between the best component and the one
with the higher value.

Dataset
∆AIC ∆BIC

Optimum Classes Difference Optimum Classes Difference

BATSE 2 9.5 2 42.9

Fermi 3 32.3 2 2.2

Fig. 6 Scatter plot of logHobs ratio vs log (T90) (expressed
in seconds) for Fermi-GBM data. The ellipses indicate the
1σ contours from our XDGMM based analysis assuming
three components and using the best-fit parameters from
Table 2.

The AIC/BIC trends as a function of number of com-

ponents for BATSE and Fermi-GBM can be found in
Fig. 1 and Fig. 4, respectively. The best-fit XDGMM

values for BATSE and Fermi-GBM are summarized in

Table 1 and Table 2, respectively. A tabular summary

of our results on optimum number of components can

be found in Table 3. Our main conclusions for both the
datasets are as follows:

• For BATSE, we find that both AIC and BIC prefer

two components with very strong (AIC) or decisive

significance (BIC).
• For Fermi-GBM, AIC prefers three components with

decisive significance. However, BIC prefers two com-
ponents, albeit with very marginal significance. Since
AIC is known to be liberal in overfitting more compli-
cated models, the results from BIC should be trusted

in this case (Tarnopolski 2019b).

We should note that ever since it was shown that log

(T90) can be adequately modelled by sum of normal

distributions (McBreen et al. 1994; Koshut et al. 1996),

almost all literature on GRB classification has assumed

that lognormal distributions can adequately describe

the distribution of various GRB observables, and this

work is no exception. However, if the distribution

of log (T90) is not comprised of normal distributions

and is skew-symmetric (Koen & Bere 2012; Tarnopol-
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ski 2015a, 2019b), then one would also need to replace

the Gaussian distributions with skew-symmetric distri-

butions, in addition to incorporating the uncertainties.

We defer such an analysis to a future work.

We note that all our codes to reproduce these results
have been uploaded on the web at https://github.com/

lostsoul3/GRB analysis
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Huja, D., Mészáros, A., & Ř́ıpa, J. 2009, Astron. Astro-

phys., 504, 67
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