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Jaspinder Kaur, and Shirshendu Das IEEE Member

Abstract—Contemporary computing employs cache hierarchy
to fill the speed gap between processors and main memories. In
order to optimise system performance, Last Level Caches(LLC)
are shared among all the cores. Cache sharing has made them
an attractive surface for cross-core timing channel attacks. In
these attacks, an attacker running on another core can exploit
the access timing of the victim process to infiltrate the secret
information. One such attack is called cross-core Covert Channel
Attack (CCA). Timely detection and then prevention of cross-
core CCA is critical for maintaining the integrity and security
of users, especially in a shared computing environment. In this
work, we have proposed an efficient cross-core CCA mitigation
technique. We propose a way-wise cache partitioning on targeted
sets, only for the processes suspected to be attackers. In this way,
the performance impact on the entire LLC is minimised, and
benign applications can utilise the LLC to its full capacity. We
have used a cycle-accurate simulator (gem5) to analyse the per-
formance of the proposed method and its security effectiveness.
It has been successful in abolishing the cross-core covert timing
channel attack with no significant performance impact on benign
applications. It causes 23% less cache misses in comparison to
existing partitioning based solutions while requiring ≈ 0.26%

storage overhead.

Index Terms—Cache Security, Timing Channel Attacks, Cache
Partitioning, Covert Channel Attack (CCA), Last Level Cache
(LLC).

I. INTRODUCTION

Modern multi-core processors have adopted a multi-

level cache hierarchy to address the rising needs for high-

performance computing. Caches are small-sized faster memo-

ries deployed to bridge the speed gap between processor and

main memory. Most commercial processors available in the

market are equipped with multiple levels of caches. The top

levels of caches are private to each core, and the Last Level

Cache (LLC) is shared among all the processing cores1. Cache

memories boost overall performance by allowing processors

quicker access to data. While improving the system’s overall

performance, the LLCs have also become an attractive target

surface for timing channel-based attacks [1] due to these

reasons:

1) The significant time difference between a cache hit and

miss provides an effective timing channel that is exploited

to unveil the memory accesses of the targeted process [2],

[3].

The authors are associated with the Department of CSE, Indian Institute of
Technology Ropar, Punjab, India, 140001. Email: {2017csz0002@iitrpr.ac.in,
shirshendu@iitrpr.ac.in}

1All the cache memories in this paper are considered as set-associative
cache. We used the term “set” and “way” of a set-associative cache without
detailed explanation about them.

2) Shared nature of LLC allows an attacker process to inter-

fere in cache occupancy of other processes. The attacker

uses the timing channel to understand other processes’

access patterns on the shared cache as described in Figure

1. These accesses are further analysed to reveal the

underlying secret [4].

Any remote process, sharing LLC with the victim process,

can mount these attacks without requiring special privileges

or shared address space [5]. The victim and attacker process

may run in separate cores, but they share the LLC space. Such

attacks are called cross-core attack. These attacks become

more threatening in shared computing environments such

as the cloud, where multiple users from different security

domains share the underlying LLC. Cache timing channel can

be implemented in two forms: Side-Channel Attack(SCA) and

Covert Channel Attack(CCA) [6], [7]. The private keys of

cryptography algorithms like AES [8], RSA [9], and ECDSA

[10] have been the primary target of cache-based SCAs. In a

CCA, two suspicious processes, spy and trojan, communicate

covertly by exploiting the cache timing channel [6]. The trojan

runs on a different core and knows some secret information

that it needs to send to the spy. The attacker uses CCA when

no direct communication between trojan and spy is possible

because of the security restrictions. It is crucial to detect

and prevent these attacks effectively in order to preserve the

confidentiality and integrity of the computer systems [11],

[12]. This paper is based on proposing countermeasures for

preventing cross-core CCA attacks. Section II-A discusses

CCA in more detail.

The CCA attack that is discussed in this paper is cross-

core attacks; based on the shared LLC used by the multi-core

processors. Attack defence mechanisms based on not allowing

cache sharing through LLC partitioning have been proposed

previously [13], [14]. Cache partitioning techniques were

initially proposed for improving the performance of the system

by fairly dividing the LLC among the cores (or applications)

[15]–[17]. Most of them were not proposed keeping security

in mind. These partitioning techniques divide the LLC either

way-wise or set-wise. The way-wise partitioning techniques

are more prevalent where the ways of a set-associative LLC

is partitioned among the cores (or applications) [15]. The

partition can be either static or dynamic. The static partitioning

techniques cannot change the partition during the execution,

while the dynamic partitioning techniques can change the

partition based on the requirement of the running applications.

Since cache partitioning can separate the LLC space used by

trojan and spy, the cache interference of two applications can

ar
X

iv
:2

20
3.

12
20

7v
1 

 [
cs

.A
R

] 
 2

3 
M

ar
 2

02
2



2

Fig. 1: The step-wise details of LLC based timing channel attacks

be prevented. However, there are two major challenges in using

cache partitioning for preventing CCA:

1) The static partition-based solutions suffer from severe

performance degradation as cache cannot be utilised fairly

based on the dynamic behaviour of the system [15].

2) Dynamic partitioning techniques utilise the cache more

efficiently and hence improve performance. However, the

dynamic partitioning technique itself can be exploited

to mount CCA as proposed in [18]. In this work, the

authors have shown that if the attacker knows the logic

of partition change, it can misuse this and change the

partition as per the attacker wish. Thus, a dynamic

partitioning based countermeasure can restrict the attack

but indirectly opens another option for CCA.

Hence for preventing CCA, a partitioning technique is re-

quired, in which the attacker cannot change partition size.

Also, the technique should not degrade the performance of

the overall system.
There are some existing countermeasures proposed based on

the static partition where the technique applies to all the sets

within the LLC. In this paper, we call this type of countermea-

sures as non-targeted countermeasures. Such countermeasures

cause higher performance degradation in the system. Our

attack mitigation mechanism overcomes the drawbacks of the

existing partitioning-based solutions. We do this by providing

Targeted Pseudo Partitioning based Defence (TPPD). It is

termed as “targeted” because the attack prevention mechanism

is only applied to the cache sets suspected to be participating

in CCA. The sets which participate in the timing channel

attacks are termed as targeted set. The remaining cache sets

can behave as before, thus minimising the effect of static

partitioning on the performance. A practical attack detection

technique is deployed that send the information regarding

suspicious processes (trojan and spy) and cache sets involved.

Attack detector based on conflict misses pattern [19] has been

tested to identify the suspicious processes and sets involved.
The main contributions of this work are listed as following:

1) We propose an effective attack defense mechanism,

TPPD, that dismantles the cross-core CCA with an in-

significant effect on system performance.

2) The proposed TPPD creates the pseudo partition only on

the targeted set and is applied only for the trojan and spy

process.

3) Effect of TPPD on the performance of PARSEC bench-

mark [20] is tested experimentally in gem5 simulator

[21].

4) Experiments are conducted to test the effectiveness of

TPPD in mitigating cross-core CCA.

The organization of the paper is as follows. Section II

describes the background and related work. Section III de-

scribes the threat model taken under consideration, and Section

IV discusses our proposed work in details. The experimental

analysis are shown in Section V. Finally Section VI concludes

the paper.

II. BACKGROUND AND RELATED WORK

This section describes the background information required

to understand the proposed attack defence mechanism. In

cache timing channel attack, the attacker process uses dif-

ferent attack methods to unveil the cache access pattern of

the target process. In side-channel attacks, the target is an

innocent victim process performing cache accesses as part

of its underlying operation without any malign intentions.

In a covert channel attack, there are two malign processes

performing cache accesses with the intent of leaking secrets.

An abstract overview of cache timing channel attacks is shown

in Figure 1.

A. Cross-Core Covert Channel Attacks

In a covert timing channel attack, two suspicious processes:

spy and trojan, are involved. Trojan has access to some critical

information that it wants to transmit to spy, but this transmis-

sion is not allowed under system security policy. Trojan uses

cache timing channel to leak this information to spy without

being noticed. This type of attack is called Covert Channel

Attack (CCA). The CCA is called cross-core when the spy

and trojan execute on two different cores. In this case, both

trojan and spy use the shared LLC to create a timing channel.

Cache timing channel attack can be constructed using vari-

ous attack techniques like Prime+Probe (P+P), Evict+Reload

(E+R), Flush+Reload (F+R), and Evict+Time (E+T) [6]. These

attack techniques, even though different, follow these basic

three steps:

• Step 1: In the first step, the aim is to bring the shared

LLC in a predictable state known to the attackers. It is

done by either bringing some data in LLC or evicting it

out by the spy.

• Step 2: In this step, the spy process sits idle, and the trojan

process performs conditional memory accesses based on

the bit to transmit (bit 1 or 0) .
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Fig. 2: Cross-Core covert channel attack using Prime+Probe technique

• Step 3: In this step, the spy process observes the changes

made in the earlier known state of the cache by the trojan

to detect the bit as 1 or 0.

Repeating the above mentioned steps, the trojan can send

multiple bits to the spy.

CCA using Prime+Probe (P+P) technique is described in

Figure 2. In this method, spy and trojan do not require any

shared address space. Both these processes have their own

Eviction Set (ES) [22]. ES is the group of unique block

addresses mapping to the same set. The number of addresses

in each ES is either equal to or more than the associativity

of the underlying cache. In the prime phase, the spy uses the

addresses present in its ES to fill the targeted set with its

own blocks. After priming the cache, spy waits for a trojan

to send the bit. If trojan wants to transmit bit 1, it replaces

all of spy’s block from the targeted set with its own blocks

(from trojan’s ES). For bit 0, it does not do anything; thus,

spy’s blocks stay in the set. After this, in the probe phase, spy

accesses the addresses from its ES again. In this phase, spy

faces high latency in case trojan has removed its blocks from

the set; otherwise, less latency. Based on this latency, the spy

unveils the cache access pattern of trojan and the secret bit

transmitted. The rest of the discussions of this paper assume

Prime+Probe (P+P) based CCA.

B. Existing Attack Mitigation Techniques

As discussed in Section II-A, cache sharing is the critical

pre-requirement of cross core cache timing channel attacks.

Prohibiting cache sharing across processes or different se-

curity domains is an effective solution. However, it is not

feasible as the impact of a non-shared cache will lead to

under-utilisation of cache capacity thus, impacting system

performance significantly. Various works with different cache

partitioning techniques that try to maintain cache utilisation

have been proposed in recent years. Partitioning Locked cache

(PLcache) [23] allows compiler and programmer to mark

security critical lines, and these will be locked in the cache.

In this architecture, each cache line is augmented with process

id and a bit dictating whether that line is locked or not.

A locked line of a process cannot evict a locked line of a

different process, while no unlocked line is allowed to replace

a locked line. Thus, disabling inter-process and intra-process

cache interference that has been identified as the root cause of

cache access-based attacks. NonMonopolizable (NoMo) [24]

cache allocated v number of ways of each set to an active

thread. The allowed range for v is 1 to A/M , where A is the

associativity of the cache, and M is the maximum number

of threads allowed per processing core. Data of oner thread

cannot evict reserved lines of another thread; thus, an attacker

can not know the victim’s cache access.

NoMo and PLCache offer easy to implement static partition

solutions, but the static partitioning can lead to not utilising

cache to its full capacity. Security Dynamic Cache Partition-

ing(SecDCP) cache [25] addresses this issue by proposing

a dynamic cache partition. SecDCP allocates a number of

ways to different security classes based on their requirement.

However, dynamic partitioning in itself can be exploited to

create cache covert timing channel attack as described in [18].

A secure dynamic partitioning in terms of SCA is proposed

in [13]. It proposes a secure dynamic cache partitioning cache

called FairSDP, where partitioning size is determined by the

cache usage of non-critical processes, thus not revealing the

requirement of security-critical processes. However, this does

not work against CCA as it involves two suspicious processes,

and there is no security-critical process.

All the mitigation techniques discussed above apply some

strict cache partitioning policy across all sets for all processes.

Hence these techniques reduce the performance of the LLC as

well as the entire system. Also, most of the existing counter-

measures are non-targeted, as the mechanism is applied to all

the cache sets and processes regardless of their participation in

the attack. A targeted countermeasure can be less expensive as

the necessary actions can be applied only in the sets currently

under attack. An alternative solution to prevent cross-core

CCA is the recently proposed randomised LLCs [26], [27].

In these works, the block-to-set mapping of set-associative

cache changes after an epoch. However, these techniques suffer

significant performance degradation because of the remapping
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Fig. 3: Overall design of TPPD and its structure

[28]. The number of write-backs required to remap is high.

Also, the policies may not be useful for recent replacement

policies like Hawkeye [29]. Hence in this work, we have been

motivated to propose a targeted countermeasure for the cross-

core CCA.

III. THREAT MODEL

In this paper, we have assumed a chip multiprocessor (CMP)

with two levels of cache memories. Each core in the CMP has

its own private L1 cache, and all the cores share a common

L2 cache as LLC. The LLC is inclusive, and all the cache

memories are set-associative. The cores, L1 caches, and LLC

are connected with some on-chip interconnects. The cross-

core CCA attack discussed in this paper runs spy and trojan

on two different cores. These two attacking processes (spy

and trojan) are not using any shared address space. Hence no

cache blocks can be shared among these two processes, and the

eviction sets (c.f. Section II-A) of both the processes are also

different. However, both spy and trojan share the LLC, and

they can evict each other blocks from the LLC. The eviction

set of both spy and trojan maps to the same targeted set. We

propose TPPD to mitigate cross-core CCA. This attack can be

based on Prime+Probe [6], Evict+Reload [6], or Evict+Time

[6] methods, where spy and trojan processes rely on replacing

each other’s block to transmit bits. Trojan has a piece of secret

information that spy cannot access directly due to underlying

system security policies. Trojan transmits this information to

spy through LLC based covert communication channel (details

of CCA is already discussed in Section II-A). Both trojan

and spy can successfully create their eviction sets as they are

aware of the virtual address to LLC set mapping. Both attacker

processes are unprivileged processes that do not have any kind

of special privilege.

IV. OUR PROPOSAL

Our proposed targeted defense mechanism, TPPD, works

against LLC based covert channel attacks (cross-core CCA) by

Fig. 4: Cross-process conflict misses per unit of time(.10

seconds).

creating way-wise pseudo partitioning between the suspicious

process pair (spy and trojan). This partition technique used

in TPPD cannot be changed by the attacker process as per

its requirement. Also, the partition is only applied on the sets

suspected to participate in the covert channel communication.

The purpose of using the term “pseudo” is discussed later in

this section. TPPD decreases the cache interference between

the trojan and spy on the targeted sets, thus disturbing the

access latency pattern observed by the spy to interpret the bit

sent. TPPD receives information regarding suspicious process

ids (spy and trojan) and the targeted sets from a CCA detector

module; then applies the proposed pseudo-partitioning on

these sets for the suspicious processes. The CCA detection

module is discussed in Section IV-A. The overall design of

TPPD is shown in Figure 3(a). In this section, we describe

TPPD in detail, along with how it can be implemented with

minimal modification in architectural design.
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A. Cross-Core Covert Channel Attack Detector

TPPD works efficiently by applying attack mitigation mech-

anisms only for suspicious process pairs on the LLC sets

suspected to be used for cache covert channel attacks. The

countermeasure proposed in TPPD depends on an efficient

CCA detection mechanism. In this section, we describe how

existing attack detection techniques can be modified or ex-

tended to identify suspicious processes and cache sets.
1) Conflict Misses Pattern based Detector: A cross-core

CCA detection mechanism based on conflict misses pattern

is proposed in [19]. It is based on the observation that set

under attack have a higher number of conflict misses than

innocent processes, and these misses form a ping pong pattern

because spy and trojan processes evict each other’s data

regularly to communicate covertly using cache timing channel

attacks. This work proposed a two-step detection mechanism

in which, firstly, sets with low conflict misses are filtered

out. In the second step, sets observing ping pong pattern of

conflict misses between two processes are declared suspicious

along with processes participating in this pattern. However,

we observed that observing total cross-process misses per unit

of time is sufficient in order to identify sets and processes

used for mounting CCA. We have also observed the same

experimentally as shown in Figure 4. The figure shows the

cross-process conflict misses on an LLC set. The experiment

is performed on different mixes of benign processes (Mix-x)

from Parsec benchmarks (described in Table I) and also on

an attacker process pair (only-attack). The details about the

experiment setup, benchmarks and creating attack process pair

are discussed in Section V. From the figure, it can be observed

that the attacker process pair suffers high cross-process conflict

misses when compared to any mix of benign benchmarks for

the duration of the attack.
2) Cache Occupancy based Detector: Another way to

detect the cache sets and the processes involved in covert

channel communication is through tracking cache occupancy,

process wise [30]. This detection method is based on the

observation that cache occupancy of the suspicious process

have a high negative correlation as these two keep evicting

each other’s block frequently. This method requires collecting

cache occupancy traces and then further analysing these traces

to determine occupancy correlation between processes. It was

observed that benign processes do not have such a high neg-

ative correlation. This method did not require any additional

storage overhead and was able to detect suspicious processes

with high accuracy. However, this method was able to disclose

the identity of suspicious processes with high accuracy but

not the cache sets on which the attack was mounted as

cache occupancy was measured for the whole LLC. If cache

occupancy trace is collected for each set individually, then

suspicious sets can be observed as well.

3) The detection mechanism used for TPPD: In this work,

we have used the concept of conflict-miss pattern-based CCA

detector to detect the attack. However, the cache occupancy-

based detector can also be used to detect the attack. Since

our work is on detection based countermeasure, we have used

TABLE I: PARSEC benchmark mixes used.

Mixes Benchmarks Involved

Mix 1 blacksholes + canneal
Mix 2 blacksholes + dedup
Mix 3 blacksholes + fluidanimate
Mix 4 blacksholes + freqmine
Mix 5 canneal + dedup
Mix 6 canneal + fluidanimate
Mix 7 freqmine + fluidanimate

the existing detection techniques. Figure 3(a) shows that the

outcome of the CCA detector is a pair of attacking processes

(trojan and spy) and the targeted sets.

B. Targeted Pseudo Partitioning based Defense (TPPD)

When the CCA detector detects an attack, it sends infor-

mation about the processes and sets involved in the CCA.

TPPD enables pseudo partitioning on the suspected sets for the

suspected process pair (trojan and spy). Two non-overlapping

way-wise partitions are created and assigned to trojan and

spy. The spy and trojan are unable to replace each other’s

data if the block is present in this allocated partition. This

restriction, however, exists solely for identified malicious pair;

other benign processes can access this cache set as before

without any constraint. Because of this reason, the proposed

partitioning is called pseudo as it is invisible to all processes

except attackers. As our defense mechanism is targeted, it only

affects the cache sets and the processes involved in CCA, thus

not impacting the system’s performance significantly.

The proposed TPPD can handle multiple CCA attacks on

different cache sets simultaneously. However, in this section,

we have assumed only one pair of attacker processes (spy

and trojan) and only one targeted set. For the rest of this

section, we assume that the detector detects pS as a spy and

pT as a trojan. Here pS and pT are the process id of spy

and trojan, respectively. Also, we assume that the detected

targeted set is s′. TPPD can be implemented on top of any

replacement policy with minor modifications. A replacement

policy has three major modules: (a) insertion, (b) promotion

and (c) eviction [16]. To implement TPPD, minimal changes

are required in the eviction module of a replacement policy.

TPPD expects two victim selection approaches on the targeted

set s′. We call it as “dual victim policy”.

a) The default victim selection of a replacement policy. Let

us represent the victim block selected through this method

as V (s′), where s′ is the targeted set.

b) Victim block selection excluding a particular process p.

Let us represent the victim block selected through this

method as Vx(s
′, p). Here the victim block is selected

from the targeted set s′, excluding the blocks owned by

process p.

This dual victim policy can be implemented on most of the

existing replacement policies [29], [31] with minor modifica-

tions. The concept of TPPD, generic to any replacement policy

(those can be modified for dual victim selection), is discussed

next.
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Consider that for a cache block b, O(b) represents the owner

process to which the block belongs. The dual eviction policy

is only required for the targeted set s′, detected by the CCA

detector as discussed in Section IV-A. For other sets, s; s 6= s′,
the victim block is always V (s). Since the attacker can target

any of the cache sets, the facility of dual victim selection must

be present in all the sets. However, it is used only for the

targeted set. To implement the dual eviction policy, we need

to maintain two counters for each set CpS(i) and CpT (i)
where i is the set number. CpS(s′) and CpT (s′) are used

to count the number of spy and trojan blocks respectively

present in s′. When pT (trojan) block needs to replace an

existing block of pS (spy) from s′, TPPD sets some additional

conditions. If O(V (s′)) is pS (spy) and CpS(s′) is less than

a threshold, pT cannot replace V (s′). In that case, the victim

block is selected by Vx(s
′, pS). This policy restricts the trojan

to remove all of the spy blocks from s′. A similar policy

is also applied when a spy tries to evict a block of trojan

from s′. The ping-ponging pattern of conflict misses between

the spy and trojan is interrupted because continuous eviction

of each other’s data is restricted. In this way, a spy cannot

observe the cache access latency pattern to distinguish bit 0
and 1, resulting in noisy covert channel communication. The

value of the threshold depends on the underlying replacement

policy. In the rest of this paper, we use LRU to implement

TPPD, and an appropriate threshold value to inhibit attack is

also discussed.

1) Structure of LLC using TPPD: Figure 3(b) shows the

structure of the LLC using TPPD. The additional com-

ponents required for TPPD are shown in the two sides

of the set-associative LLC. These additional components

are divided into two major parts: the CCA Detector and

TPPD Components. For TPPD, each set maintains a tu-

ple, (attack flag, pS, pT, CpS,CpT ). Here the attribute,

attack flag is a single bit of information that indicates

whether the set is under attack or not. The other attributes

are already defined in this section. The attributes excluding

attack flag, are only required for a suspicious set. When

the CCA detector detects a CCA attack, the corresponding at-

tributes of the attacker set are updated in the TPPD component.

As mentioned in Section IV-A the CCA detection module is a

cross-process conflict-miss pattern-based detector as proposed

in [19].

2) Engagement and disengagement with dual victim pol-

icy: Since the CCA attack happens during execution, in the

beginning, all the sets are non-suspicious. A set engages with

dual victim policy only when it has been detected as targeted

set by the CCA detector. Once a process pair and a set s′ has

been detected as suspicious, one option is to continue with the

proposed dual victim policy (in s′) till the termination of these

processes. However, the option may reduce the performance

of these processes in false-positive cases. The second option is

to periodically check the set status in the CCA detector. If any

time the cross-process misses between spy and trojan reduces

in s′, the set may again reset as non-suspicious. Though the

chances of such false-positive cases in the CCA detector are

very few, we have only used the first option in this paper.

3) Maintaining Process ID: The replacement policy of

TPPD needs the process id of a block stored in the LLC. Figure

3(b) shows it as a metadata of each LLC block. The existing

partitioning techniques [15], [16] as well as some replacement

policies [29], [32], [33] need process id for each block. Hence

the overhead of maintaining process id in LLC as metadata

cannot be considered as the overhead of TPPD. In case we

assume only one process can run in a core, then instead of

process id, we can also use the core id. Storing core id takes

fewer bits than storing process id. This policy is used in some

existing works [15], [16]. However, in a practical design, each

block must store the process id. The additional components

required for TPPD (as shown in Figure 3(b)) also need to store

process id. We have considered all the additional components

as an overhead of TPPD. In Section V-D, we have calculated

the hardware overhead of TPPD, both assuming core id and

process id as TPPD components.

Terminology used in Algorithms:

—————————————–

• EvictionV ictim(i, p): Finds the the victim block to

be replaced from set i .

– i: Set number of the victim block.

– p: Owner process of the incoming block. Or the

prcoess responsible for triggering the cache replace-

ment.

• isUnderAttack(i): Returns true if the set i is under

CCA attack, otherwise false. The value is provided by

status bit maintained in additional TPPD structure.

• getTrojan(i), getSpy(i): Returns the suspicious pro-

cess pair(spy and trojan) on set i. The values are

provided by the two suspicious process identifier

maintained in TPPD structure.

• getLRUV ictim(i): Returns V (i) from the set i. Or

returning the victim block as per LRU replacement

policy.

• checkOwner(i, w, p): Returns true if process p is the

owner of the block w in set i, otherwise false.

• Owner(w): Returns owner process of block w. Also

represented as O(w).
• pS[i] and pT [i]: Process identifier of spy and trojan

respectively.

• CpS[i] and CpT [i]: The counters to keep track of

Spy and Trojan’s blocks respectively in a suspicious

set i. This is also defined in Section IV-B.

• updateCounter(i, pin, pout): Updates CpS(i) or

CpT (i) for the set i. Here w is the incoming block.

Here pin and pout are process id of incoming block

and victim block respectively.

• findV ictimExcept(i, p)): Returns Vx(i, p), as dis-

cussed in Algorithm 1.

• ths and tht: Threshold partition size of spy and trojan

respectively.

C. TPPD for LRU Replacement Policy

Algorithm 1 shows an implementation of Vx(s
′, p) for LRU

replacement policy. The alternative victim (Vx(s
′, p)) in LRU



7

Algorithm 1: Modified Eviction Policy for LRU

Input: sId: Cache set index. omitP : Process whose

block not to evict.

Output: A victim block not belonging to process

omitP .

1 Function findVictimExcept(sId, omitP):

2 /*Assuming cache[row, assoc] is the

set-associative LLC where row is the total sets and

assoc is the associativity. victim index and

max age are two variables.*/

3 k = 0
4 while k 6= assoc do

5 if checkOwner(sId, cache[sID, k], omitP ) is

FALSE then

6 victim index = k
7 max age = cache[sID, k].age
8 break

9 end

10 k++

11 end

12 while k 6= assoc do

13 if (max age < cache[sId, k].age) then

14 if

checkOwner(sId, cache[sID, k], omitP )
is FALSE then

15 victim index = k
16 max age = cache[sID, k].age
17 end

18 end

19 k++

20 end

21 return cache[sId, victim index]
22 end

can be selected in two ways. The first method is selecting

a random block not belonging to p, and the second method

is to choose the oldest block that does not belong to p. The

algorithm describes the second method. All the experimental

analyses in this paper use the second method. The complete

mechanism of TPPD in terms of LRU replacement policy

is discussed in Algorithm 2. The terminology used in this

algorithm is described in the box. As mentioned in Section

IV-B, we have used s′ to represent the targeted set, but to write

an algorithm, we have used i to represent any LLC set. The set

can be either suspicious or non-suspicious. Here 0 ≤ i < N ,

and N is the total sets of LLC.

The main function in this algorithm is

EvictionV ictim(i, p), which selects the appropriate victim

block from the LLC as per the requirement of TPPD. The

function is called every time a process p requests for a block

and has a conflict miss. Process p is called an incoming

process, and the block it requested as an incoming block.

Initially, an original eviction victim w is selected per the LRU

replacement policy (Line 2). Then it checks if the requested

set is under attack or not (Line 3). If not, the original victim

block w is returned (Line 4). However, additional checks are

Algorithm 2: Modified LRU Replacement Policy for

implementing TPPD

Input: i: set index, p: process requesting replacement.

Output: w: way index of block to be evicted from set

i
1 Function EvictionVictim(i, p):

2 w=getLRUV ictim(i)
3 if isUnderAttack(i) is FALSE then

4 return w // Return V (i).
5 else

/* The set i is under attack. */

6 pT=getTrojan(i); pS=getSpy(i)
7 if checkOwner(i, w, pS) is TRUE then

// If the owner of w is spy.

8 pw = pS
9 else if checkOwner(i, w, pT ) is TRUE then

// If owner of w is trojan.

10 pw = pT
11 else

12 pw = −1 // if owner of w is an

innocent process.

13 end

14 if ((p! = pS)&(p! = pT )))||(p == pw) then

/* Incoming block from

innocent process or both

incoming and victim from same

process. */

15 updateCounter(i, p, pw); return w
16 else if ((pw == pS) & (CpS[i] <

ths))||((pw == pT ) & (CpT [i] < tht))
then

17 w′′ = findV ictimExcept(i, pw)
18 if checkOwner(i, w′, p) is FALSE then

19 updateCounter(i, p,−1)

20 end

21 return w′′

22 else

23 updateCounter(i, p, pw); return w
24 end

25 end

26 end

27 Def updateCounter(i, pin, pout):

/* pin is the process of incoming

block and pout is the process of

outgoing (or victim) block. */

28 if pin! = pout then

29 if pout == pS then

30 CpS[i]−−
31 else if pout == pS then

32 CpT [i]−−
33 end

34 if pin == pS then

35 CpS[i] + +
36 else if pin == pS then

37 CpT [i] + +
38 end

39 end

40 end
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required if the request is for the suspicious set. Everything

mentioned from Line 5 onward in this function is for a

suspicious set. First, the owner process pw of the victim

block w is determined (Line 6 to Line 13). The pw can be

either spy (pS), trojan (pT ), or an innocent process. If the

incoming process p is innocent, it can replace any block from

the set. Hence, in that case, w is evicted irrespective of pw
and the corresponding counter (CsT [i] or CpT [i] based on

pw) needs to be updated. Line 14 and 15 do the same. The

function updateCounter(i, pin, pout) is used for this which

is discussed later. Similarly, the original victim w is evicted

when the incoming block and victim block belong to the

same process but without an update in counters.

The condition mentioned in Line 16 is true only when these

three conditions are true: (a) p and pw are not the same, (b)

the incoming process p is either trojan or spy, and (c) the value

of counter corresponding to pw is less than the threshold. In

this case the alternative victim block w′′ is selected by calling

function findV ictimExcept(i, p) (Line 17). This function is

defined in Algorithm 1. New victim block w′′ can be from the

incoming process p or from an innocent process. The counter

update is required only in the latter case (Line 18-20). In case

the condition written in Line 16 is false then the original

LRU victim w is selected as victim block (Line 23), and

counters are updated. Function updateCounter(i, pin, pout)
keeps spy and trojan updated based on the id of incoming

process (pin) and process of victim block (pout). Note that no

counter updates are required if pin and pout are the same. Also,

counter updates are not required in non-suspicious sets. Since

the counter maintains the total number of blocks available in

the set for trojan and spy, they may need to be incremented

or decremented during an eviction. From the algorithm, it can

be observed that TPPD applies dual victim policy only to the

suspicious sets. Also, the need for selecting the alternative

victim is only required when trojan and spy tries to remove

each other’s block. Section V shows experimental analysis on

different threshold values (ths and tht) that can be used for

this algorithm.

D. How does TPPD effectively mitigate covert channel attack?

In this part, we give a theoretical analysis of how TPPD

dismantles LLC-based cross-core covert channel attacks with

minimal impact on system performance. Our observations and

their explanations are described as follows:

Observation 1: The communication between the spy and

the trojan of the covert channel attack is degraded when the

suspicious process pair is prevented from accessing all the

ways of a targeted cache set.

Explanation: A low and high cache access latency pattern

observed by a spy to determine the bit transmitted by trojan is

at the foundation of a successful covert channel attack. Trojan

establishes this pattern by removing all of the spy’s data in one

case (e.g., bit 1) or none at all for another bit (bit 0). In TPPD

design, cache interference between spy and trojan is decreased

by restricting them from evicting each other’ block when the

current number of blocks of these processes falls below the

threshold. As a result, the trojan is unable to replace all of the

spy’s data for sending bit 1, and the spy cannot fully prime

the cache set by replacing trojan’s data with its. In this way,

the spy’s easily identifiable access latency pattern is obscured.

Observation 2: A targeted defence mechanism that affects

only suspected sets and processes limit the overall system

performance degradation.

Explanation: The main feature of our proposed defense

mechanism is that it is a targeted countermeasure. It affects

only processes and cache sets detected to be participating

in covert channel attack by the CCA detector. Modified

replacement policy to implement TPPD design is activated on

suspicious sets, and it restricts only conflict misses occurring

between the suspicious processes. Original replacement policy

is implemented for remaining sets not participating in covert

channel attack. On suspicious sets, trojan and spy processes

have restrictions on evicting each other’s block. The innocent

processes have access to the entire cache set and can evict

block of any process as determined by the original replacement

policy. However, when suspicious processes are restricted

from evicting each other’s block, a new block is selected for

eviction. This can lead to premature eviction of benign process

blocks, thus slightly impacting overall system performance.

E. Calculating Performance of TPPD

TPPD can use different threshold values for ths and tht.

These values can be either the same or different for spy and

trojan. In the rest of the discussion, we have considered the

same values (ths = tht) for both spy and trojan. The TPPD-z
is considered as a configuration having ths = tht = z. The

minimum value of z is 1, and the maximum is A/2, where A
is the associativity of the LLC. The value of z can be changed

dynamically, but for most of our experiments, we have fixed

the value of z throughout the execution.

We have measured the isolated performance impact on

benign applications through the following steps:

• When only the attacker processes are executing in the

system, the impact of TPPD-z in terms of LLC misses

(DIFFz) is calculated by differentiating number of

misses in LLC having TPPD-z and no defense.

DIFFz = Missesz −Misses0 ∀z ∈ (1, A/2) (1)

Here Missesz means total misses on LLC while TPPD-

z is active. Misses0 means total LLC misses when no

defense mechanism is implemented in LLC.

• In the next scenario, a Parsec benchmark [34] is run

parallel to the attack processes. The difference in LLC

misses (DIFF ′

z,b) encountered in TPPD-z (Missesz,b)

and without defense (Misses0,b ) is measured for bench-

mark b.

DIFF ′

z,b = Missesz,b −Misses0,b ∀b ∈ PARSEC
(2)

Here Missesz,b means total LLC misses while TPPD-z
is active. Misses0,b means total LLC misses without a

defence mechanism.
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Fig. 5: An example to demonstrate the working of TPPD after detecting a CCA on set s′ for pS (as spy) and pT (as trojan). We

have assumed that the set s′ contains all the blocks of trojan during the detection. The prime process starts with this assumption.

The TPPD configuration considered here is TPPD-2. The figure shows that the Prime+Probe method cannot perform CCA

once TPPD-2 becomes active.

• The isolated impact of TPPD-z on a benign application

(Dz,b) and average impact(AvgDz) is calculated as de-

scribed in Equation 3 and 4 respectively.

Dz,b = DIFF ′

z,b −DIFFz (3)

AvgDz =
∑

b∈PARSEC

Dz,b

Tn

(4)

Here, Tn is the total number of PARSEC applications

considered.

These equations are used in Section V for performance anal-

ysis. The higher positive difference (AvgDz) indicates more

significant performance degradation of benign processes. A

difference close to zero will signify that there has been no

effect on these processes.

F. An example of TPPD

An example discussing how our proposed approach de-

teriorates covert channel communication on LLC is shown

in Figure 5. Consider the Prime+Probe based CCA attack

mounted on set s′ of LLC. After attack detector detects this

attack; it sends the set id s′ along with process ids pS and pT
to TPPD. When TPPD-2 is deployed initially, we assumed the

entire cache set s′ contains trojan’s block (trojan is sending 1)

as shown in Step 2 of Figure 2. This assumption is considered

without any loss of generality and a better understanding of

TPPD working.

During the prime phase, the spy requests for blocks from

its eviction set. From the figure, it can be observed that at the

end of all the block requests of the prime phase, the spy could

not be able to remove all the trojan’s block from the set. This

is because of the dual victim policy of TPPD-2. In its first two

accesses, the spy is able to replace trojan’s block as intended.

However, for the next spy access, if the original LRU victim

spy block is evicted, the number of spy’s blocks present in

the set falls below the threshold of 2, which is not allowed by

TPPD-2. In this case, as per the dual victim policy of TPPD,

an alternative replacement victim that does not belong to the

trojan process is selected using Vx(s
′, pT ). After the prime

phase, in the case of sending bit 1, the trojan removes all the

blocks of spy by requesting block from its own eviction set.

However, because of TPPD-2, the trojan cannot remove all the

spy’s blocks. From the figure, it can be observed that, after the

intermediate phase, the status of the set is the same for both

bit 1 and bit 0. In the probe phase, when spy probes set s′ for

the blocks from its eviction set, it encounters 2 misses and 2
hits in both cases of a bit 1 and bit 0.

G. Implementing TPPD on other Replacement Policies

The proposed TPPD can be implemented using any replace-

ment policy where dual victim policy can be implemented.

Algorithm 2 can be modified for that. The internal mechanism

of the functions called from Line 2 and Line 21 of this

algorithm needs to be changed as per the requirement of the

replacement policy. In this work, we have not explored the

TPPD for any other replacement policy except LRU, but that

can be explored without any major changes. The proposed

TPPD can be considered as a countermeasure for cross-core
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TABLE II: System configuration for the experimental setup

Baseline Architecture

Simulator gem5 [21]
Architecture 4 cores each at 2.0 GHz
Coherence Protocol MESI two level
Level 1 Cache Inclusive L1I/L1D Private, 64

KB, 4-way, 2 cycles latency,
64B blocks

Level 2 Cache (LLC) Inclusive Shared, 2MB 8-way,
18 cycles latency, 64B blocks

Main Memory DRAM, 250-cycle latency
Replacement Policy Least Recently Used(LRU)

Fig. 6: Cache access latency observed by spy for bit 0 and 1
in LLC with no TPPD

CCA that can make any existing replacement policy secure

from CCA.

V. EXPERIMENTS AND RESULTS

To perform the experimental analysis, TPPD is implemented

on a full system cycle-accurate simulator, gem5 [21]. We

consider a 4-core system setup with two levels of the cache

hierarchy. Each core has its private L1 cache, and the L2

cache is considered a shared LLC. Other parameters of the

setup are shown in Table II. To simulate the CCA attack,

we have developed our own trojan and spy applications.

These applications are written in C++ and can be executed

on gem5. We considered a generic Prime+Probe attack as

described in Figure 2 in this application. The ability to perform

CCA attack by these two applications have experimented first

on gem5. Parsec benchmarks [20] are used to measure the

performance of the innocent applications in the presence of

attacker applications. From the 4-cores, two cores are assigned

to the attacker processes (spy and trojan). A multi-threaded

Parsec benchmark is binded to the other two cores. We have

considered all the Parsec benchmarks as innocent applications.

To measure the worst-case performance impact, the attacking

applications are developed such that once the attack starts,

it continues during the execution of the system. Different

configurations of TPPD (TPPD-z) are considered in order to

fully analyse the performance behaviour of TPPD. The value

of z varies from 1 to 4 (8 is the associativity of the LLC).

TPPD-0 means baseline design with no defence mechanism.

A. Security Analysis

We assess the effectiveness of TPPD against cross-core

based covert channel attacks on LLC. As described in Section

IV-D, TPPD reduces the difference in probe time observed by

the spy for bit 0 and 1. This difference is substantially more

significant when no defense mechanism is active, as evident by

Figure 6. Here bit 0 represents cache miss and bit 1 as a cache

hit. TPPD reduces this difference such that the information

received by the spy becomes noisy. This difference becomes

close in TPPD-1, TPPD-2 and TPPD-3 but does not overlap

as represented in Figure 7a, 7b and 7c respectively. These

TPPD configurations are effective against attacks based on

fine-grained information, i.e., observing the number of cache

accesses by victim applications in the targeted set. However,

in a low-speed covert channel attack, we considered these

configurations would not be effective, especially when there is

low system noise. However, TPPD-4 was able to completely

obfuscate the receiver’s access time pattern used to identify

bit 0 and 1 as illustrated in Figure 7d. Hence, TPPD-A/2 is

the recommended configuration to prevent most CCA attacks.

Here A is the associativity of the LLC.

B. Performance Analysis

While deconstructing cache timing channel-based attacks,

the attack defense mechanism must guarantee that system

performance does not suffer. The Figure 8 represent the total

LLC misses encountered in different benchmark applications

for TPPD-z and TPPD-0. The upper part of the figure shows

the actual values (in millions), while the bottom part shows

the normalised LLC misses. The values are normalised w.r.t.

TPPD-0. As mentioned above, the benchmarks are combined

with the attacker applications during the execution. However,

in the figure, the benchmark named as ”only-attack” is not a

Parsec benchmark. This is designed only with the combination

of trojan and spy. To analyse the performance impact of

TPPD on innocent applications, it is important to first analyse

the performance of ”only-attack”. From the figure, it can be

observed that, in the case of ”only-attack”, if TPPD is applied

to prevent CCA, the LLC misses are increased by 17% as

compared to TPPD-0 (no defence). All the configurations of

TPPD show almost similar results. However, for the rest of the

benchmarks, the increment is less. On average, while a Parsec

benchmark executes with two attacker applications, which are

constantly trying to covertly communicate, the performance

degradation in TPPD are 05%, 07%, 06% and 09% for TPP-1,

TPPD-2, TPPD-3, and TPPD-4 respectively. The degradation

in TPPD-4 is more because a higher threshold value may evict

some more innocent blocks from the cache. A similar result

can be seen in Figure 9 for Misses per Thousand Instructions

(MPKI).

The important point here is that the misses are higher

when TPPD applies only to the attacker set in ”only-attack”.

However, the miss overhead is reduced when the cores mix

attack applications with some innocent Parsec benchmarks.

It means that the miss overhead of TPPD is higher only for

the attacker applications. The overhead is less for innocent

applications. The two main reasons for this are:

• TPPD is a targeted CCA countermeasure. Hence from the

non-targeted set, the victim is selected per the original

replacement policy.
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(a) (b)

(c) (d)

Fig. 7: Cache access latency for bit 0 and bit 1 in (a) TPPD-1, (b) TPPD-2, (c) TPPD-3, and (d) TPPD-4

Fig. 8: Total number of misses in LLC for PARSEC benchmarks on different TPPD configurations. *The calculation of geomean

is excluding “only-attack”. The lower part of the figure shows the LLC misses normalised to TPPD-0.
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Fig. 9: Total MPKI in LLC for PARSEC benchmarks on different TPPD configurations. *The calculation of geomean is

excluding “only-attack”. The lower part of the figure shows the MPKI normalised to TPPD-0.

Fig. 10: Isolated LLC misses for PARSEC benchmarks with

different TPPD configurations measured using Equation 3

• In the targeted set, the innocent blocks has no restrictions,

and they can remove any other block from the set.

Because of these two reasons, TPPD becomes an efficient

countermeasure for cross-core covert channel attacks.

Figure 8 and 9 only shows the combined miss overhead

when the innocent applications are running with attacker

applications. To understand the isolated impact of TPPD on

innocent applications, we have performed experiments based

on Equation 3 and Equation 4. As evident from Figure 10,

the increment in total LLC misses (compared to TPPD-0)

when benchmark runs alongside attack process is always less

than the misses when just attack runs in LLC augmented

with TPPD-z. In this figure, a less number (large negative

number) means less overhead on an application. On average,

the applications face the lowest overhead in TPPD-1. However,

the miss overhead in TPPD-4 (which is the recommended

configuration) is also less.

Fig. 11: Comparison of MPKI for NOMO-2 vs TPPD-4 when

PARSEC benchmark are executed in parallel to CCA. Here

*geomean is calculated excluding “only-attack”.

C. Comparison with Existing Partitioning based Secure Cache

Architectures

Existing partitioning-based approaches such as PLCache

[23], SecVerilog Cache [35], and SecDCP [25] can combat

cache-based side-channel attacks in which an attacker process

attempts to reveal the cache access pattern of an innocent

victim process in order to leak its secret, such as the private
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key of cryptography algorithms. These secure cache designs

rely on a reliable operating system, compiler, or programmer

to recognise security-critical processes or data that could be

vulnerable to cache timing channel attacks. PLCache pre-

loads and lock the security critical data in the cache and

prevents its eviction by unlocked data. In SecVerilog and

SecDCP, processes are assigned to different security classes,

and cache interference between these security domains is

restricted. These security measures are ineffective in the pres-

ence of covert timing channel attacks where both processes

are malicious.

The static cache partitioning based secure cache design:

NOMO [24] can defend against covert channel attacks by

completely isolating ways of spy and trojan. In our setup,

NOMO-2, in which two ways were fixed per process, was able

to dismantle the covert channel attack. However, significant

performance degradation was observed in the case of NOMO-

2 in comparison to our design TPPD-4 as shown in Figure

11 in terms of MPKI. It can be observed from the figure that

NOMO shows less miss overhead over TPPD-4 when executed

for “only-attack”. However, when innocent applications are

executed with attacker applications, the overhead increases

significantly. The main reason for that is the non-targeted

nature of NOMO. The restricted eviction mechanism is uni-

formly applied to all the sets. Hence, the overhead of misses in

increases in non-targeted sets also. Since the attackers mainly

requested for the blocks mapped to the targeted set, the other

set mostly served innocent applications. Uniform applications

of restriction eviction policy impact the miss rate of innocent

application in non-targeted sets. On average, NOMO-2 had

23% higher MPKI than TPPD-4.

D. Storage and Latency Overhead

The structure of the LLC having TPPD as a countermeasure

is already discussed in Section IV-B1. Figure 3(b) shows

the two additional components required for TPPD: (a) TPPD

Components, and (b) CCA Detector. In this section, we have

discussed the storage and latency overhead of the TPPD

components. As mentioned in Section IV-A, we have used

the existing CCA detector technique [19] to detect the CCA

attack. Each cache line is augmented with its owner process id

to identify the cache block’s owner process, as seen in Figure

3(b). An alternative technique followed by some existing

works [15], [16] is to maintain core id instead of process id

along with each cache line. However, the overhead of storing

process id along with the cache line cannot be considered as

the overhead of TPPD. The issues with maintaining process

id along with the cache lines are already discussed in Section

IV-B3.

Figure 3(b) shows all the counters used in TPPD Compo-

nents. The first counter, attack flag, is a one-bit counter used

to indicate whether or not the set is under attack. The next two

fields (pS and pT ) specify the attacking process pair if the set

is under attack. The last two fields are spy and trojan counters,

each with a size of log2(A) bits to identify the number of

spy and trojan blocks currently in the set. Here, A is the

associativity of the LLC. Thus, the total storage overhead can

TABLE III: Storage overhead calculation of TPPD as per the

LLC configuration mentioned in Table II. We have assumed

16 bits to represent a process id as the maximum process id

possible in Linus is 32768.

Storage Overhead
y as core id y as process id

per set per LLC per set per LLC
status

bit
1 512 Bytes 1 512 Bytes

suspicious
process1

2 bits
2*4096
=1 KB

16 bits
16*4096
=8 KB

suspicious
process2

2 bits
2*4096
=1 KB

16 bits
16*4096
=8 KB

spy
Counter

3 bits
3*4096

=1.5 KB
3 bits

3*4096
=1.5 KB

trojan
Counter

3 bits
3*4096

=1.5 KB
3 bits

3*4096
=1.5 KB

Total

Overhead
11 bits 5.5 KB 39 bits 19.5 KB

be determined as N × (1+2(y+ log2A)). Here N is the total

number of sets in LLC, and y is the bits required to represent

a suspicious process. In our work, y represents the cores in

the system as a single process is binded per core making

core id enough for identifying attacking pair. Table III shows

the storage overhead of TPPD as per the LLC configurations

mentioned in Table II. It can be observed from Table III that

the total storage required for TPPD is 5.5KB, i.e. 0.26% of

total LLC size. However, in real systems, multiple processes

may run on the same core, making core id not sufficient for

uniquely identifying processes. The table shows that when

process id is used instead of core id, the total size of this

additional structure is 20.5KB, i.e. ≈ 1% of total LLC size.

The operations of TPPD are performed in the background

without affecting the critical execution path of the system.

VI. CONCLUSION

This paper proposes an effective and efficient mitigation

mechanism, TPPD, for cross-core cache timing channel at-

tacks. TPPD implements way-wise partitioning on the cache

sets used for covert channel attacks but only for suspicious

process pairs. However, remaining benign processes have

unrestricted access to these and other sets, reducing the

performance impact on system performance. It successfully

abolishes LLC based covert communication between trojan

and spy. Experiments have shown that it does not have any

significant impact on the performance of benign applications

(Parsec benchmark). The total storage overhead required for

implementing TPPD design is approximately ≈ 0.26% of LLC

size. Compared to the existing partitioning based attack pre-

vention mechanism NOMO, it caused 23% less LLC misses.
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