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Oblivious Transfer, a fundamental problem in the field of secure multi-party computation is
defined as follows: A database DB of N bits held by Bob is queried by a user Alice who is interested
in the bit DBb in such a way that (1) Alice learns DBb and only DBb and (2) Bob does not learn
anything about Alice’s choice b. While solutions to this problem in the classical domain rely largely
on unproven computational complexity theoretic assumptions, it is also known that perfect solutions
that guarantee both database and user privacy are impossible in the quantum domain.

Jakobi et al. [Phys. Rev. A, 83(2), 022301, Feb 2011] proposed a protocol for Oblivious Transfer
using well known QKD techniques to establish an Oblivious Key to solve this problem. Their solution
provided a good degree of database and user privacy (using physical principles like impossibility
of perfectly distinguishing non-orthogonal quantum states and the impossibility of superluminal
communication) while being loss-resistant and implementable with commercial QKD devices (due
to the use of SARG04).

However, their Quantum Oblivious Key Distribution (QOKD) protocol requires a communication
complexity of O(N logN). Since modern databases can be extremely large, it is important to reduce
this communication as much as possible.

In this paper, we first suggest a modification of their protocol wherein the number of qubits
that need to be exchanged is reduced to O(N). A subsequent generalization reduces the quantum
communication complexity even further in such a way that only a few hundred qubits are needed
to be transferred even for very large databases.

PACS numbers:

I. INTRODUCTION

Impressive progress has been made over the last two
decades in our understanding of how Quantum principles
can be used to secure communication between trustful
parties against eavesdropping. For example, Quantum
Key Distribution (QKD) techniques have gained steadily
in technical applicability. However, in the more gen-
eral field of secure multi-party computation, which com-
prises tasks such as Coin Flipping and Bit Commitment
and normally implies communication between distrust-
ful parties, only a few quantum alternatives to classical
schemes have emerged. One of the most fundamental
problems of this type is Oblivious Transfer (OT), also
known as Symmetrically Private Information Retrieval
(SPIR). This task is complete for secure multi-party com-
putations in the sense that all other tasks may be con-
structed from it [1]. Originally introduced in two different
flavors by Rabin [2] in 1981 and by Even, Goldreich and
Lempel [3] in 1985, which were shown to be equivalent
by Crépeau [4], the problem of 1-out-of-2 OT requires
Bob to send two bits to Alice such that (i) Alice gets to
receive only one bit – she cannot get significant informa-
tion about the other – and (ii) Bob does not get to know
which bit Alice received, i.e. he is oblivious to what she
learns. The problem of 1-out-of-N OT is a generalization
of the 1-out-of-2 OT: Bob hosts a database DB of N bits.
Alice wishes to retrieve the value of a certain bit, say the
bth, from the database. Privacy has to be preserved sym-
metrically: Bob should not get to know which bit Alice

is interested in (that is, in this case he should not get to
know b); at the same time, Alice should not get to know
the value of any other bit in the database that she has
not queried for.

It is interesting to note that this task may accom-
plished by precomputing an “Oblivious Key” [5]: a string
OK ofN random bits that is (i) completely known to Bob
while (ii) Alice knows only one bitOKj of this string, with
Bob being oblivious to j. Once such a key is established,
it can be used to complete the actual OT: Alice being in-
terested in the database element DBb announces a shift
s = j − b to Bob. Thus, Bob gets to know neither j nor
b, but only s. Bob then encrypts the database bitwise as
DB′

a = XOR(DBa, OKa+s), 1 ≤ a ≤ N , and announces
the encrypted database DB′. From this, Alice recovers
the bit that she wanted: DBb = XOR(DB′

b, OKj) and the
OT is complete.

There exist several approaches in the classical realm to
SPIR and OT (see e.g. [1–3, 6]). Existing classical proto-
cols for these problems depend on some unproven com-
putational complexity theoretic assumption like nonexis-
tence of efficient algorithms for integer factoring. More
recently, classical approaches have been complemented
by several quantum protocols. However, they have been
subsequently shown to be inadequate because of suscepti-
bility to different attacks [7], or practical difficulties [8, 9].

A result of Lo [10] put a damper on the quantum ef-
forts. He showed in 1996 that an ideal solution cannot
exist even in the quantum world – any protocol that
guarantees perfect concealment of b against Bob actu-
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ally leaves the database completely vulnerable to attacks
by Alice.
Since then, several workarounds have been proposed

(see e.g. [11]), albeit with some vulnerabilities. Recently,
Jakobi et al. [12] made interesting progress by propos-
ing a protocol that circumvents the impossibility proofs
at the cost of perfect concealment. Their protocol relies
on well known QKD techniques to establish an Oblivious
Key between Alice and Bob that fulfills the OT require-
ments to a large extent while being consistent with Lo’s
proof. Therefore, we refer to their approach as Quantum
Oblivious Key Distribution (QOKD).
The QOKD protocol offers good database security as

well as user privacy and has been shown to be resilient to
several attacks. However, some problems remain in the
communication complexity of their solution. A transfer
of the N qubits is costly in itself, as modern databases are
extremely large. The QOKD protocol involves transfer-
ring in addition at least kN qubits, where k is a security
parameter. It turns out that Alice will on an average get
to know about N(14 )

k bits of the database. Therefore,
unless k also increases with N , the number of bits that
become known to Alice in addition to the one she is sup-
posed to know increases with N . By the same coin, if it
is required to keep this number a constant, k will have
to rise at least logarithmically with N .

A. This Paper

In this paper, we first suggest a modification of the ini-
tial QOKD protocol wherein the number of qubits that
need to be exchanged is reduced to N . We then investi-
gate the impact of the modification on database security
and user privacy. Subsequently, we show that the modifi-
cation can be generalized to reduce the required quantum
communication complexity even further. We show sim-
ple numerical examples of the generalization indicating
that at most a few hundred qubits are sufficient even for
extremely large databases.
This paper is arranged as follows. The next section

gives a brief account of the QOKD protocol of Jakobi et
al [12]. In section III we discuss its modification, analysis
and generalization. Section IV concludes the paper.

II. THE INITIAL QUANTUM OBLIVIOUS KEY

DISTRIBUTION PROTOCOL

A. Brief Sketch

The QOKD protocol for SPIR proceeds in three
phases: First, a key is established between Bob and Al-
ice using the SARG04 [13] Quantum Key Distribution
(QKD) protocol. In the second phase, this key is pro-
cessed to produce an oblivious key OK, a string ofN bits.

While Bob has complete knowledge of this oblivious key,
Alice knows only a few bits conclusively. Note that this
OK is not perfect and therefore does not contradict Lo’s
impossibility proof. In the final phase, the oblivious key
OK is used to classically encrypt the database so that
Alice can learn the bit that she is interested in.
First phase: In contrast to BB84, the SARG04 QKD

protocol uses the basis to encode a bit. For example,
let the “up-down” basis l encode bit value 0 and “left-
right” basis encode 1. The protocol would then use the
four states |↑〉, |→〉, |↓〉, and |←〉, with |〈↑ |→〉|2 = 1

2 etc.
To establish one bit of the key, Bob prepares one of these
states and sends it to Alice. He then announces the sent
state and one of the other basis. For instance, to send
0, Bob can prepare the state |↑〉 and announce the pair
{|↑〉 , |→〉}. Alice then has to determine whether Bob
sent |↑〉 or |→〉. A simple way to do this is to measure
the received state in one of the two bases and hope for a
result that will exclude one of the announced states.
In the example above, measuring in left-right basis will

yield the result |←〉 with probability 1/2, which excludes
the announced state |→〉. This allows Alice to conclude
that the state sent by Bob must have been |↑〉. A mea-
surement in the up-down-basis would never yield a con-
clusive result as the only possible result is |↑〉.
Since Alice chooses the correct basis half of the time

and then obtains a conclusive result with probability 1/2,
the overall probability of having a conclusive result is 1

4
in SARG04. Therefore, Alice will know only a quarter
of the sent bits with certainty; the values of the rest are
inconclusive. Indeed, a “bit” can now also have the value
“inconclusive” in addition to 0 or 1.
To proceed with the extraction of the oblivious key

OK, all sent bits are kept for the second phase. Note
that this procedure is completely loss-independent [14].
Second phase: The steps of the first phase are re-

peated until a raw key R with elements {qi}, i = 1 . . . kN
is established. Alice will know the values of kN

4 bits of R
conclusively, while Bob knows all. The problem now is
to extract (from the raw key R) an oblivious key OK, a
string of N bits completely known to Bob but of which
Alice only knows a few elements. To that end, we form
N groups of k qubits each. The elements of the oblivious
key OK are then defined as the XOR of the N groups:
OKj = XOR(qk·j , qk·j+1, . . . , qk·j+k−1) for 1 ≤ j ≤ N .
Therefore, even if one of the bits is inconclusive for Al-
ice, her evaluation of XOR will be inconclusive. If Al-
ice conducts her measurement as described in phase I,
the probability that Alice knows all the bits of a group
conclusively and can therefore compute the parity of the
group is (14 )

k. Finally, she will know on average N(14 )
k

elements of the oblivious key OK conclusively. k should
be chosen such that Alice knows on average only a small
number c of key bits, i.e. k = log4(N/c). With a prob-
ability of e−c Alice is left with no known bit of OK and
the protocol must be restarted.
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Third phase: After completion of the second phase,
an oblivious key OK is established such that on average c
bits are known to Alice, while Bob knows OK completely.
This key is used to bitwise encrypt the database DB en-
suring that Alice obtains little information besides the bit
she is interested in. Supposing Alice knows the bit OKj

of the key and is interested in DBb, the b
th bit of DB, she

communicates the shift s = j−b to Bob. As described in
the introduction, Bob then encrypts the database bitwise
as DB′

a = XOR(DBa, OKa+s), 1 ≤ a ≤ N , announces
the encrypted database DB′, and Alice recovers the bit
that she wanted: DBb = XOR(DB′

b, OKj). If {j′} are
the indices of the c− 1 other bits in OK that she learns
conclusively after phases I and II, she can also get to
know some more bits DBb′ = XOR(DB′

b′ , OKj′ ) of the
database. However, the {j′} are randomly distributed in
the OK and will generally not allow Alice retrieving a
second bit of interest to her.

B. On the Security of Quantum Oblivious Key

Distribution

Jakobi et al [12] provide interesting arguments for the
security of their QOKD scheme, while studying the most
obvious attacks directly. Like all quantum SPIR proto-
cols, QOKD cannot offer perfect security for both sides
but exploits a trade-off between database security and
user privacy.

Database security: At the outset, Jakobi et al [12]
let us know that the above protocol actually provides
Alice with information on inconclusive bits, too. In the
example of phase I, Alice measuring Bob’s sent state |↑〉
in the up-down basis will never yield a conclusive result
as it is not possible to rule out any of the two announced
states {|↑〉 , |→〉}. However, with this measurement, Al-
ice will always find the state |↑〉. Having chosen the same
measurement basis as Bob used for state preparation, Al-
ice will always find his sent state “inconclusively”. As
this happens half of the time, and as the other inconclu-
sive result (|→〉 in the example) is found with only 1

4 ,
Alice has indeed a guess on which state Bob had sent.
By assuming her “inconclusive” outcome is actually the
state he had prepared, she will be correct about the bit
value with likelihood 2

3 . This partial information will
be washed out during the extraction of the OK in such
a way that in a group where Alice measures all but x
bits conclusively, she will guess the key bit correctly with
3x+1
2·3x , x ≥ 1.
While analyzing the protocol’s security, one must as-

sume in general that Alice has a quantum memory at
her disposal and is able to postpone her measurements
until after Bob’s SARG04 state pair announcement. She
then knows that her measurement must distinguish, for
instance, the states |↑〉 and |→〉 in order to decipher the
sent bit. It can then be shown that Alice can perform

an unambiguous state discrimination (USD) measure-
ment which is successful with a probability of at most
pUSD = 1 − F (|↑〉 , |→〉) = 1 − 1/

√
2 ≈ 0.29, where F is

the fidelity. If Alice measures each received qubit individ-
ually, this attack is optimal and Alice will have on average
0.29N conclusive qubits instead of 0.25N before starting
phase II of the protocol. However, this fact has only
limited impact as it will increase the number of key ele-

ments known to Alice by only
(

pUSD

0.25

)k ≈ (1.16)k, where
typically k < 10.

Instead of performing individual measurements, Alice
can also perform a joint measurement on k qubits in or-
der to directly measure their overall parity. This way, she
directly measures the associated key bit without using
individual bit values. Jakobi et al [12] show that the suc-
cess probabilities for USD as well as Helstrom maximal
information gain measurements on k-qubit states decline
rapidly with increasing k. Therefore, Alice’s knowledge
on the final key is physically restricted by the impossi-
bility to perfectly discriminate the non-orthogonal states
used for encryption of the key elements.

User privacy: Jakobi et al. [12] argue that Bob is
able to obtain limited information on the conclusiveness
of Alice’s bits but will then lose information on which
bit value she has actually measured. He will thus in-
troduce errors. For example, sending |ր〉 or |ւ〉 while
announcing a pair {↑,→} will yield a probability for Al-
ice to measure conclusively of p− = 1

2 − 1
2
√
2
≈ 0.15 or

p+ = 1
2 + 1

2
√
2
≈ 0.85, respectively. This turns out to be

optimal – Bob can bias the conclusiveness probability p
for Alice’s qubits within the limits p− ≤ p ≤ p+. At the
same time, sending |ր〉 or |ւ〉 will obviously not give
Bob any information on the result of Alice’s measure-
ment. In fact, Bob cannot know the measurement basis
Alice chose, which implies that it is impossible for him
to have both increased information on her conclusiveness
and full information on the bit value she measures (if
conclusive). Every manipulation will hence create errors
in the oblivious key.

These characteristics are a consequence of the use of
non-orthogonal states in SARG04 and the no-signaling
principle. As a consequence, the protocol exploits fun-
damental physical principles to ensure database security
and user privacy while allowing small additional informa-
tion gains for both sides thus preventing a conflict with
Lo’s impossibility proof.

C. The Problem of Efficiency

The number c of bits revealed to Alice at the end of
SARG04 and XORing of the N groups of k bits is on aver-
age N(14 )

k. Thus, unless k increases with N , c would also
increases with N . In particular, k needs to increase at
least logarithmically withN to ensure that c remains con-
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stant and quantum communication complexity is there-
fore O(N logN). Given the size of modern databases
(which run into petabytes), such an increase should be
avoided as this would be far too costly for the communi-
cation of only one bit to Alice.
We now show that it is possible to reduce the required

quantum communication complexity, first to O(N) and
subsequently even below, while maintaining the proto-
col’s security.

III. THE ROAD TO

COMMUNICATION-EFFICIENCY

A. The Modified Protocol

We propose modifying the second phase of the above
protocol in such a way that every element of R is replaced
by the XOR of its current value with the values of the k−1
elements immediately following it. The last element is
replaced by the XOR of its current value with the value
of the first elements.
Then, the modified protocol is as follows:

• Let R be the raw key after execution of SARG04
for N bits. Then, while Bob knows the entire R,
on average three quarters of the elements of R are
inconclusive at Alice’s end.

• Define the elements of OK as follows: OKj =
XOR(qj , . . . , qj+k−1) for j = 1 . . .N (with qN+x :=
qx for 1 < x < k − 1).

• If no bit survives at Alice’s end, repeat the above
two steps.

• Continue with the steps of the third phase for
database exchange and verification.

The modification that we have just described requires
a quantum communication complexity of N and is based
on the following observations.
Suppose we have a coin that shows head with probabil-

ity p and tails with probability 1− p when tossed. It is a
folklore theorem that when such a coin is tossed N times,
the length of the longest streak of heads is Θ(log1/p N)
with high probability [15].
The analogue of a streak of heads in coin tosses is

a streak of conclusively known bits at the end of the
SARG04 protocol for N qubits. Tails would therefore be
analogous to the inconclusive bits.
We will now argue that with high probability, the ex-

pected number of times such a maximum length streak
occurs is O(1). Let a bit be conclusively revealed to Alice
with probability p. Then, the probability of a contigu-
ous streak of conclusively revealed l bits is pl. Let Xil

be the indicator random variable that takes the value
1 if a streak of length l starts at position i in the key

N 104 105 106 107 108

k 6 7 9 11 13
At least one 81 98 95 86 79

Average p = 0.25 2.37 6.5 4.09 2.45 2.17
Average p = 0.29 6.46 18.9 15.45 13.42 15.74

TABLE I: Simulation over 100 runs of the modified QOKD
protocol with database size N . “Average” denotes the average
number of survivors and “At least one” denotes the number
of runs that have at least one survivor.

and 0 otherwise. Thus, Xl =
∑N

i=1 Xil is the random
variable that counts the number of streaks of length l in
the key. By linearity of expectation, the expected num-
ber of streaks of length l is

∑N
i=1 E[Xil]. Given that

Pr[Xil = 1] = pl, we have E[Xl] =
∑N

i=1 p
l. That is,

E[Xl] = Npl. For l = log1/p N , we have E[Xl] = 1.
Moreover, by Markov inequality, the probability that the

number of such streaks exceeds some t is at most E[Xl]
t .

For instance, if we take p = 1
4 and l = k = log4(N/c),

we find E[Xk] = c. That is, the above procedure
will yield on average c streaks of length k, where k =
log4(N/c) as in the original QOKD protocol. Finally, by
Markov inequality, the probability that the number of
such streaks exceeds E[Xk]

m = cm, for any m > 1, is at
most 1

cm−1 .

In other words, it is likely that (i) there is at least one
streak of length k in the key, (ii) there is only a small
number c of streaks of length k, and (iii) every other
streak in OK is less than k in length.

We report in table I simulations that justify the pro-
tocol. As pointed out by Jakobi et al. [12], even with
a quantum memory, Alice can conclusively obtain only
about 0.29 of the bits after execution of SARG04 (the
first step of the protocol). For this reason, and in contin-
uation of our running example, we run the simulations
on p = 1

4 and p = 1 − 1√
2
respectively with the same k

for both.

B. On the Security of the modified protocol

The security considerations of [12] presented above
largely apply to the modified protocol as well as the
changes only concern the post-processing and extraction
of the oblivious key.

Database security: If Alice has a quantum mem-
ory at her disposal, she is able to postpone her mea-
surement after the state announcement of Bob during
the SARG04 phase. As discussed before, when mea-
suring each received qubit individually, this attack is
optimal and directly covered by the considerations on
the likelihood of conclusive streaks in section IIIA us-
ing pUSD = 0.29 instead of p = 0.25. The impact is
precisely as before an increase in known key bits for Al-
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ice by a factor of
(

pUSD

0.25

)k ≈ (1.16)k. However, while
individual key bits are as hard to extract as in the
initial protocol, the modified version offers less protec-
tion with respect to the relative parities between key
bits. The difference between two consecutive key bits
OKj and OKj+1 consists in the substitution of the qubit
qj by qj+k, i.e. OKj = XOR(qj , qj+1, ..., qj+k−1) and
OKj+1 = XOR(qj+1, qj+2, ..., qj+k−1, qj+k), where the qi
are the bit values corresponding to Bob’s sent states. The
parity ofOKj andOKj+1 is revealed upon successful mea-
surement of qj and qj+k. We note hence that the reduc-
tion in communication complexity comes at the cost that
parity information is easier to obtain.
With respect to joint measurement, the new as-

pect in the modified protocol is that each qubit
contributes to k different key elements. Looking at
a key bit OKj = XOR(qj , qj+1, .., qj+k−1), we can
assume without loss of generality that Bob announces
for all k qubits a SARG04 pair of {↑,→}. The ini-
tial state before Alice’s measurement of OKj is then

ρk = 1
2k

⊗j+k−1
i=j (|↑〉 〈↑|i + |→〉 〈→|i). Alice now per-

forms a joint USD measurement on ρk in order to
retrieve OKj directly. This USD measurement can
either be conclusive or non-conclusive, with conclusive
results being increasingly unlikely with higher k [12].
In case of a conclusive outcome, Alice will know the
overall parity OKj of ρk, and the state after the measure-

ment is given by all possibilities with parity OKj : ρ
OKj

k =
1

2k−1

∑

XOR(qj ,..,qj+k−1)=OKj
|qj , ..., qj+k−1〉 〈qj , ..., qj+k−1|.

Assuming Bob announced a SARG04 state pair {↑,→},
|qi〉 should be read as |qi = 0〉 = |↑〉 and |qi = 1〉 = |→〉;
that is, the states are not orthogonal. Alice can
now try to determine the parity of the next key
element OKj+1 = XOR(qj+1, .., qj+k−1, qj+k). Since

all but one of these qubits are part of ρ
OKj

k , re-
alizing the measurement of OKj+1 implies tracing

out the qubit qj from ρ
OKj

k , which simply yields

Trjρ
OKj

k = 1
2k−1

⊗j+k−1
i=j+1 (|↑〉 〈↑|i + |→〉 〈→|i), the initial

SARG04 state before measurement for a k − 1 qubit
state. All parity information is hence erased from this
sub-state and measuring OKj+1 is exactly the same
(difficult) task as measuring OKj .

Now we consider the case of Alice’s joint USD measure-
ment being inconclusive. Per definition, the parity of the
k qubits’ ensemble is lost and can no longer be retrieved.
That is, depending on the concrete design of the mea-
surement, at least one of the k qubits must have lost its
bit value information and can no longer be used to define
other key elements. As each qubit contributes to k differ-
ent key elements, Alice’s failed joint USD measurement
of a single key element renders in fact the decoding of k
key elements impossible. In this sense, our modification
can indeed increase database security.
User privacy: The fundamental arguments of [12]

for user privacy were based on the impossibility of per-

fectly distinguishing non-orthogonal quantum states and
superluminal communication. These remain valid for the
modified protocol as well. In particular, we remind the
reader that Bob has no measurement that would allow
him learning both conclusiveness and Alice’s bit value in-
formation. Our first observation is that by manipulating
the conclusiveness of a single qubit qi, Bob will impact
the conclusiveness probability of the k key elements that
use qi. However, the same is true for the error he in-
troduces which also affects k key elements and becomes
hence easier to detect. A possible strategy for Bob to
narrow down Alice’s conclusive bits is to increase the con-
clusiveness of a (contiguous) part of his sent qubits while
reducing it for the rest. Remembering that p+p− = 1

2 ,
increasing the conclusiveness of p−N qubits to p+ while
reducing the conclusiveness of the remaining p+N qubits
to p− will maintain Alice’s statistics of conclusive bits in
R. Neglecting border effects, these two parts can be seen
as independent strings on which the results of section
IIIA can be applied. For the number of streaks of length
k one finds E+ = p−Npk+ and E− = p+Npk−. It follows

that E+

E−

=
(

p+

p−

)k−1

≫ 1. Therefore, Bob knows that the

conclusive bit, which Alice will use to code the database
element she is interested in, will lie with a high proba-
bility of E+

E++E−

in the high conclusiveness part of OK.

However, we note the following observations: (1) Bob’s
knowledge remains considerably limited as p−N ≈ 0.15N
key elements are still equally likely, (2) Bob does not
know a single bit of the final key correctly and will thus
give completely random answers during the third phase,
and (3) Alice will have significantly more strings of length

k than expected since E+ ≫ N
(

1
4

)k
, which should make

her more than suspicious. Indeed, as the protocol is both
linear in p (number of conclusively measured qubits) as
well as non-linear (number of streaks of length k), Bob
altering the conclusiveness of qubits systematically will
easily show in Alice’s statistics.

C. Generalization

In the present modification of the QOKD protocol, a
bit of the final key is defined as the parity of a streak of k
qubits OKj = XOR(qj , qj+1, ..., qj+k−1). The reduction in
communication complexity arises from the re-utilization
of each qubit as a contributing element for k bits of the
final key, i.e. qubit qj is used in the definition of the key
bits OKj−k+1 to OKj . This idea can be generalized in
order to further reduce communication requirements: Let
us assume phase I of the QOKD protocol is performed
until M < N qubits are distributed to Alice. In order to
define the elements of the oblivious key, we now consider
all possible combinations of k out of theseM qubits. This
allows to extract a key of length

(

M
k

)

as each combination
constitutes an independent parity functions of k qubits
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N ≥ 105

Mmin 41 29 23 21 20
k 4 5 6 7 8

Average 397 131 46 28 19
No bit 3.8% 11.5% 46.8% 74.4% 89.8%

N ≥ 1010

Mmin 71 58 50 45 42
k 8 9 10 11 12

Average 162531 41833 11714 4094 1876
No bit 1.2% 2.9% 16.4% 40.9% 64.9%

TABLE II: Calculated examples for generalized QOKD of
databases of size 105 and 1010 for different combinations of
quantum communication complexity M and security param-
eter k. “Average” denotes the average number of survivors
conditioned on cases with at least one survivor and “No bit”
the probability for no survivors.

in the sense introduced by our modified protocol. As
such, by considering all these possible definitions of key
bits, the minimal quantum communication complexity
required for a N -bit database is given by

(

Mmin

k

)

≥ N .

Table II provides some numerical examples of the im-
pact of the discussed generalization. As can be seen, in
this generalization, there is a certain freedom in choos-
ing M and k. While high k and small M will increase
database security but also increase the abortion prob-
ability, low k and high M achieve the opposite. Even
for huge databases, the required quantum communica-
tion complexity can be reduced to under 100.

However, the small number of exchanged qubits gives
rise to generally poor statistics making statistical anal-
yses somewhat unreliable. Also, as this generalization
presents an extreme case of re-using qubits for key def-
inition and hence for reduction in quantum communi-
cation complexity, it does not come as a surprise that
security is considerably less tight. Whereas in the initial
and in the modified protocol a small constant number of
database bits c = Npk was revealed to Alice on average,
the generalized protocol provides Alice with significantly
more bits, especially if the abortion probability should be
low (pM ≥ k). For instance, if Alice measures k + x of
the M qubits conclusively, she is able to calculate

(

k+x
k

)

key elements. Additionally, even when Alice measures
only exactly k qubits conclusively and can hence only
calculate one single key bit, she is still able to calculate
parities between many key elements. As such, the gen-
eralized protocol provides only little database security.
Fortunately, the protocol is sufficiently cheap to be re-
performed a couple of times, which allows to completely
re-establish database security as we will see in the next
section.

D. Enhancing database security

It is possible to significantly enhance database security
by re-performing r times either of the presented vari-
ants of QOKD as follows: in each of the r rounds an
oblivious key is generated, OKi, i = 1 . . . r. To obtain
the final key OKfin, Alice is asked to combine these r
keys bitwise with relative shifts si she can freely choose:

OKfin
j =

r
⊕

m=1

OKm
j+sm . This final key is then used to

encrypt the database as described in phase III of the
original protocol. This procedure serves the following
purpose. Using QOKD to generate the r oblivious keys
ensures that Alice only has partial knowledge on each of
them. Therefore, combining them will further reduce her
knowledge on the key while the free choice of the offset
ensures that Alice always retains at least one element
of the sum string. For instance, let us look at the first
case of table II with r = 2: Alice generates two keys of
105 bits, of which she knows 400 conclusively each. It
is important to remember that these bits are randomly
distributed over the key strings. As such, just combin-
ing these strings without choosing the optimal offset will
yield on average 1.6 remaining conclusive bits. Numeri-
cal simulations show that by selecting the optimal offset,
Alice will be able to retain on average 9.7 known bits
of the sum string. Obviously, r = 3 will further reduce
Alice knowledge. In principle, choosing a large r will al-
most guarantee that Alice retains one and only one bit
in the end [16]. Note that this procedure will also erase
parity information that Alice can gather in the protocols
proposed in this paper.

The presented “dilution process” can obviously obvi-
ously ensure adequate database security and allows hence
to take full advantage of the achieved reduction in quan-
tum communication complexity.

IV. CONCLUSION

We showed that the protocol proposed by Jakobi et al.
can be modified to reduce the required quantum com-
munication complexity without compromising its secu-
rity and while maintaining its strength of loss-resistance,
practical feasibility, and integrability with current QKD
devices. As a consequence, it is now possible to bring
very large databases into the scope of Quantum Obliv-
ious Key Distribution. Moreover, the modified protocol
is sufficiently cheap in terms of quantum communication
complexity so as to construct approximate versions of a
whole range of quantum cryptographic algorithms based
on SPIR. As such, Quantum Oblivious Key Distribution
can significantly add to what can practically be realized
today in the realm of Quantum cryptography and, to-
gether with QKD, it might well provide the basis for all
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practical future applications of quantum cryptography.
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