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Abstract. In this article we obtain the Horn-Li-Merino formula for comput-
ing the gap as well as the spherical gap between two densely defined unbounded
closed operators. As a consequence we prove that the gap and the spherical
gap of an unbounded closed operator are 1 and

√

2 respectively. With the help
of these formulae we establish a relation between the spherical gap and the gap
of unbounded closed operators. We discuss some properties of the spherical
gap similar to those of the gap metric.

1. Introduction

The aim of this article is to deduce the Horn-Li-Merino formula for the gap
and the spherical gap between two unbounded closed operators. The gap and
the spherical gap are two equivalent metrics on the set of all closed subspaces
of a Hilbert space. These allow one to discuss the convergence of subspaces and
has applications in Perturbation Theory [12] and in invariant subspaces of finite
dimensional operators [7]. These concepts can be applied to define a metric on
the space of bounded operators between Hilbert spaces and the class of unbounded
closed operators between Hilbert spaces via the graph of an operator.

These metrics play an important role in the class of unbounded closed operators,
since most of the operators that arise in physical applications are unbounded (see
[12, 21] for details). By the closed graph theorem [22, page 281] an everywhere
defined closed operator between Hilbert spaces is bounded. Hence unbounded closed
operators are defined on proper subspaces of Hilbert spaces. Because of this fact,
the sum and product of unbounded closed operators need not be defined. Hence
this class of operators does not form a vector space. Thus one can think of only
defining a metric on this class of operators. One of the well known and widely used
metrics is the gap metric. This metric was defined by Cordes and Labrousse in [3]
to study the properties of unbounded semi-Fredholm operators. A metric which
is stronger than the gap metric was introduced by Kaufman in [13] to study the
convergence of unbounded operators in Hilbert space. Some relations between the
gap metric, the metric defined by Kaufman and the metric induced by the operator
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1082 G. RAMESH

norm on the space of bounded operators between Hilbert spaces are discussed in
[14].

On the space of bounded operators on a Hilbert space, the topology induced by
the gap metric and the one induced by the operator norm are the same. Hence the
gap metric is a natural generalization of the operator norm. A relation between
the operator norm and the gap between two bounded operators on a Hilbert space
and applications to Perturbation Theory of operators can be found in [18].

There are two formulae available in the literature for computing the gap between
operators, namely the MacIntosh formula and the Horn-Li-Merino formula. A
formula for the gap and the spherical gap of an operator on finite dimensional
Hilbert space was derived by Habibi in [5, 6].

A more general version of the result for the gap between two n × n matrices
was proved by MacIntosh, which is now well known as the MacIntosh formula (see
[17]). Later this result was extended to bounded operators between Hilbert spaces
by Nakamoto in [18]. This formula for the case of unbounded closed operators was
obtained by S. H. Kulkarni and G. Ramesh in [15].

The spherical gap formula for matrices was obtained by Horn, Li and Merino
in [11], which is well known as the Horn-Li-Merino formula. This formula depends
on the minimum modulus (smallest singular value) of a certain matrix which de-
pends on the given matrices. A generalization of this result to the case of bounded
operators between Hilbert spaces can be found in [19].

Some relations among the gap and the spherical gap of a bounded operator on
Banach spaces were studied by Cvetković in [4].

In this article we obtain the Horn-Li-Merino formula for the gap and the spherical
gap beween two unbounded closed operators. In fact our results generalizes the
results of Nakamoto (see Theorems 3.1 and 3.3). We prove that the gap and the

spherical gap of an unbounded closed operator are 1 and
√
2 respectively. Finally

by establishing a relation between the gap and the spherical gap of unbounded
closed operators, we prove that these two metrics are equivalent and study some
properties of the spherical gap metric, which are analogous to those of the gap
metric.

We hope our results will be useful in the Perturbation Theory of Linear Oper-
ators, results related to invariant subspaces of unbounded closed operators as in
the case of finite dimensional operators and in solving operator equations, in par-
ticular for studying the stability of the solution of an operator equation involving
unbounded operators.

In the second section we set up some notation and briefly state some preliminary
results used in the article. In the third section we prove the Horn-Li-Merino formula
for the gap and the spherical gap and we study some properties similar to the gap
metric. Finally, we illustate our theorems with examples.

2. Notation and preliminary results

Throughout the article we consider infinite dimensional Hilbert spaces, which
will be denoted by H,H1, H2, etc. The inner product and the induced norm
are denoted by 〈, 〉 and ||.|| respectively. If A : D(A) → H2 is a linear opera-
tor with domain D(A) ⊆ H1, then the graph G(A) of A is defined by G(A) :=
{(x,Ax) : x ∈ D(A)} ⊆ H1 × H2. If G(A) is closed, then A is called a closed op-

erator. If D(A) is dense in H1, then A is called a densely defined operator. For a
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THE HORN-LI-MERINO FORMULA FOR UNBOUNDED OPERATORS 1083

densely defined A : D(A)(⊆ H1) → H2, there exists a unique adjoint A∗ of A which
satisfies 〈Ax, y〉 = 〈x,A∗y〉 for all x ∈ D(A) and y ∈ D(A∗). The set of all closed
operators between H1 and H2 is denoted by C(H1, H2). The set of all bounded
operators between H1 and H2 is denoted by B(H1, H2). If H1 = H2 = H1, then
B(H1, H2) and C(H1, H2) are denoted by B(H) and C(H) respectively.

If A and B are closed operators with the property that D(B) ⊆ D(A) and
Bx = Ax for all x ∈ D(B), then B is called the restriction of A and A is called
an extension of B. If M is a closed subspace of a Hilbert space H, then PM is
the orthogonal projection PM : H → H with range M , and the unit sphere of
a closed subspace of a Hilbert space is denoted by SM := {x ∈ M : ‖x‖ = 1}. If

A ∈ C(H1, H2) is densely defined, then we define Â := (I + AA∗)−1 and Ǎ :=
(I +A∗A)−1.

Here we recall some of the known facts which are useful throughout.

Definition 2.1 ([12, page 197]). Let M and N be closed subspaces of a Hilbert
space H. Define

θ0(M,N) :=

{
sup {d(x,N) : x ∈ SM} if M 	= {0},
0 else,

where d(x, L) is the distance from x to M . The quantity

θ(M,N) := max{θ0(M,N), θ0(N,M)}
is called the gap between M and N .

Equivalently, if P = PM , Q = PN are orthogonal projections, then θ(M,N) =
‖P −Q‖ = max{‖P (I −Q)‖, ‖Q(I − P )‖} (see [1, page 70] for details).

Definition 2.2 ([12, pages 197-198]). LetM andN be closed subspaces of a Hilbert
space H. Define

θ̃0(M,N) :=

⎧
⎪⎨
⎪⎩

sup {d(x, SN ) : x ∈ SM} if M 	= {0}, N 	= {0},
0 if M = {0},
2 if M 	= {0}, N = {0}.

The quantity
θ̃(M,N) := max{θ̃0(M,N), θ̃0(N,M)}

is called the spherical gap between M and N .

If A,B ∈ C(H1, H2), then G(A) and G(B) are closed subspaces of H1×H2. The
gap and the spherical gap between A and B are defined by θ(A,B) :=θ(G(A), G(B))

and θ̃(A,B) := θ̃(G(A), G(B)) respectively. In particular θ(A) := θ(A, 0) and

θ̃(A) := θ̃(A, 0) are called the gap and the spherical gap of A respectively.

Definition 2.3 (Minimum modulus [12, page 231]). Let A ∈ C(H1, H2) be densely
defined. Then m(A) := inf {‖Ax‖ : x ∈ D(A), ‖x‖ = 1} is called the minimum

modulus of A.

Note 2.4. If A ∈ C(H1, H2) is densely defined, then m(A∗A) = m(A)2.

Definition 2.5 (Positive square root [23, Theorem 13.31, page 349]). Let A ∈ C(H)
be a positive operator. Then there exists a unique positive operator B such that
A = B2. The operator B is called the positive square root of A and is denoted by
B = A

1
2 .
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Definition 2.6 (Spectrum [23, page 346]). Let A ∈ C(H) be densely defined. The
resolvent of A is defined by

ρ(A) := {λ ∈ C : A− λI : D(A) → H is bijective and (A− λI)−1 ∈ B(H)},
and the spectrum σ(A) is the complement of ρ(A) in C.

Proposition 2.7. Let A ∈ C(H) be selfadjoint. Then m(A) = inf {|λ| : λ ∈ σ(A)}.
Proof. The proof of this goes along similar lines to that of [16, Theorem 3.5]. �

Proposition 2.8 ([23, page 336, Theorem 13.13]). Let A ∈ C(H1, H2) be densely

defined. Then the operator I +A∗A : D(A∗A) → H1 is bijective and Ǎ is bounded.

The following results will be used quite often throughout the article without
mentioning.

Lemma 2.9 ([3, 8, 9, 10, 20]). Let A ∈ C(H1, H2) be densely defined. Then:

(1) Ǎ ∈ B(H1), Â ∈ B(H2), ‖Ǎ‖ ≤ 1 and ‖Â‖ ≤ 1.

(2) ÂA ⊆ AǍ, ||AǍ|| ≤ 1

2
and ǍA∗ ⊆ A∗Â, ||A∗Â|| ≤ 1

2
.

(3) If g ∈ C[0, 1], then g(Ǎ)A∗ ⊆ A∗g(Â) and g(Â)A ⊆ Ag(Ǎ).

Theorem 2.10 ([15, Theorem 3.5]). Let A,B ∈ C(H1, H2) be densely defined.

Then the operators BB̌
1
2 Ǎ

1
2 , B̂

1
2AǍ

1
2 AǍ

1
2 B̌

1
2 and Â

1
2BB̌

1
2 are bounded, and

θ(A,B) = max
{
‖BB̌

1
2 Ǎ

1
2 − B̂

1
2AǍ

1
2 ‖, ‖AǍ

1
2 B̌

1
2 − Â

1
2BB̌

1
2 ‖

}
.

3. Main results

In this section we prove the main results. Recall that if A : D(A)(⊆ H1) → H2

is densely defined, then Ǎ = (I +A∗A)−1 and Â = (I +AA∗)−1.

Theorem 3.1 (The Horn-Li-Merino formula for the spherical gap). Let A,B ∈
C(H1, H2) be densely defined. Let Γ(A,B) = Ǎ

1
2 B̌

1
2 + A∗Â

1
2BB̌

1
2 . Then Γ(A,B)

is bounded, and

θ̃(A,B) =
√
2− 2 min{m(Γ(A,B)),m(Γ(B,A))}.

Proof. The operators Ǎ
1
2 and B̂

1
2 are bounded, and hence Ǎ

1
2 B̂

1
2 is bounded. By

Lemma 2.9, A∗Â
1
2 and BB̌

1
2 are bounded; hence A∗Â

1
2BB̌

1
2 is bounded. Thus

Γ(A,B) is bounded.
By definition,

θ̃0(A,B) = sup
(x,Ax)∈SG(A)

inf
(y,By)∈SG(B)

‖(x,Ax)− (y,By)‖

= sup
(x,Ax)∈SG(A)

inf
(y,By)∈SG(B)

(
‖x− y‖2 + ‖Ax−By‖2

)
.

For x ∈ D(A) and y ∈ D(B), consider

f(x, y) : =
√
‖x− y‖2 + ‖Ax−By‖2

=
√
‖x‖2 + ‖y‖2 − 2Re 〈x, y〉+ ‖Ax‖2 + ‖By‖2 − 2Re 〈Ax,By〉

=

√
‖x‖2 + ‖Ax‖2 + ‖y‖2 + ‖By‖2 − 2Re

(
〈x, y〉+ 〈Ax,By〉

)
.
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Thus θ̃0(A,B) = sup
‖x‖2+‖Ax‖2=1

inf
‖y‖2+‖By‖2=1

f(x, y).

Since the operators Ǎ
1
2 : H1 → D(A) and B̌

1
2 : H1 → D(B) are bijective, there

exist u, v ∈ H1 such that x = Ǎ
1
2u and y = B̌

1
2 v. It can be easily verified that

‖x‖2 + ‖Ax‖2 = ‖u‖2 and ‖y‖2 + ‖By‖2 = ‖v‖2.
So

f(x, y) =

√
‖u‖2 + ‖v‖2 − 2Re

(
〈Ǎ 1

2 u, B̌
1
2 v〉+ 〈AǍ

1
2 u,BB̌

1
2 v〉

)

=

√
‖u‖2 + ‖v‖2 − 2Re

(
〈u, Ǎ 1

2 B̌
1
2 v〉+ 〈u,A∗Â

1
2BB̌

1
2 v〉

)

=

√
‖u‖2 + ‖v‖2 − 2Re

(
〈u,Γ(A,B)v〉

)

=: g(u, v).

Hence θ̃0(A,B) = sup
u∈H1, ‖u‖=1

inf
v∈H1, ‖v‖=1

g(u, v). Using the Cauchy-Schwarz in-

equality, we get

inf
‖v‖=1

g(u, v) =
√
1 + ‖u‖2 − 2‖Γ(A,B)∗u‖.

Taking the supremum over u such that ‖u‖ = 1, we have

θ̃0(A,B) = sup
‖u‖=1

inf
‖v‖=1

g(u, v) =
√
2− 2 inf ‖Γ(A,B)∗u‖

It can be easily verified that Γ(A,B)∗ = Γ(B,A). Hence

θ̃0(A,B) =
√
2− 2m

(
Γ(B,A)

)
.

Interchanging the roles of A and B we get

θ̃0(B,A) = sup
‖v‖=1

inf
‖u‖=1

g(u, v) =
√
2− 2m

(
Γ(A,B)

)
.

The conclusion follows from the definition of θ̃(A,B). �

Remark 3.2. Theorem 3.1 generalizes the formula given by Horn, Li and Merino for
m× n matrices (see [11] for details), whereas Nakamoto [19] proved that if A,B ∈
B(H), then θ̃(A,B) =

√
2− 2min {m(Γ(A,B)),m(Γ(B,A))}, where Γ(A,B) :=

Ǎ
1
2 (I + A∗B)B̌

1
2 . By using the relations in Lemma 2.9, it can be shown that this

result and Theorem 3.1 coincide for A,B ∈ B(H).

Theorem 3.3 (The Horn-Li-Merino formula for the gap). Let A,B ∈ C(H1, H2)
be densely defined. Then

θ(A,B) =
√
1−min{m(Γ(A,B))2,m(Γ(B,A))2},

where Γ(A,B) is as in Theorem 3.1.
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Proof. Let P := PG(A) and Q := PG(B). Then by [15, Theorem 3.5], we have

‖P (I −Q)‖ = ‖AǍ
1
2 B̌

1
2 − Â

1
2BB̌

1
2 ‖. So

‖P (I −Q)‖2 = ‖
(
AǍ

1
2 B̌

1
2 − Â

1
2BB̌

1
2

)∗(
AǍ

1
2 B̌

1
2 − Â

1
2BB̌

1
2

)
‖

= ‖
(
B̌

1
2A∗Â

1
2 −B∗B̂

1
2 Â

1
2

)(
AǍ

1
2 B̌

1
2 − Â

1
2BB̌

1
2

)
‖

= ‖B̌ 1
2A∗Â

1
2AǍ

1
2 B̌

1
2 − B̌

1
2A∗ÂBB̌

1
2

−B∗B̂
1
2 Â

1
2AǍ

1
2 B̌

1
2 +B∗B̂

1
2 ÂBB̌

1
2 ‖

= ‖B̌ 1
2A∗AǍB̌

1
2 − B̌

1
2A∗ÂBB̌

1
2

−B∗B̂
1
2AǍB̌

1
2 +B∗B̂

1
2 ÂBB̌

1
2 ‖.

Let Γ̃(A,B) = Γ(A,B)Γ(A,B)∗. It is easy to verify that

Γ̃(A,B) = Ǎ
1
2 B̌Ǎ

1
2 + Ǎ

1
2B∗B̂AǍ

1
2 +A∗Â

1
2BB̌Ǎ

1
2 +A∗Â

1
2BB∗B̂AǍ

1
2 .

Note that I − Γ̃(B,A) = I − B̌
1
2 ǍB̌

1
2 − B̌

1
2A∗ÂBB̌

1
2 − B∗B̂

1
2AǍB̌

1
2 −

B∗B̂
1
2AA∗ÂBB̌

1
2 . We claim that ‖

(
P (I −Q)

)∗(
P (I −Q)

)
‖ = ‖I − Γ̃(B,A)‖. It is

enough to show that B̌
1
2A∗AǍB̌

1
2+B∗B̂

1
2 ÂBB̌

1
2 = I−B̌

1
2 ǍB̌

1
2−B∗B̂

1
2AA∗ÂBB̌

1
2 .

Consider

I − B̌
1
2A∗AǍB̌

1
2 −B∗B̂

1
2 ÂBB̌

1
2 = B̌

1
2 ǍB̌

1
2 − B̌

1
2 ǍB̌

1
2 + I − B̌

1
2A∗AǍB̌

1
2

−B∗B̂
1
2 ÂBB̌

1
2

= B̌
1
2 ǍB̌

1
2 + I − B̌

1
2

(
Ǎ+A∗AǍ

)
B̌

1
2

−B∗B̂
1
2 ÂBB̌

1
2

= B̌
1
2 ǍB̌

1
2 + I − B̌ −B∗B̂

1
2 ÂBB̌

1
2

= B̌
1
2 ǍB̌

1
2 +B∗BB̌ −B∗B̂

1
2 ÂBB̌

1
2

= B̌
1
2 ǍB̌

1
2 +B∗B̂

1
2BB̌

1
2 −B∗B̂

1
2 ÂBB̌

1
2

= B̌
1
2 ǍB̌

1
2 +B∗B̂

1
2

(
I − Â

)
BB̌

1
2

= B̌
1
2 ǍB̌

1
2 +B∗B̂

1
2AA∗ÂBB̌

1
2 .

Thus B̌
1
2A∗AǍB̌

1
2 +B∗B̂

1
2 ÂBB̌

1
2 = I − B̌

1
2 ǍB̌

1
2 −B∗B̂

1
2AA∗ÂBB̌

1
2 .

This shows that I− Γ̃(B,A) ≥ 0. As ‖I− Γ̃(B,A)‖ = ‖P (I−Q)‖2 ≤ 1, it follows

that I − Γ̃(B,A) ≤ I and hence Γ̃(B,A) ≥ 0.
Now

‖P (I −Q)‖2 = ‖I − Γ̃(B,A)‖
= sup {‖x‖ − ‖Γ̃(B,A)x‖ : x ∈ H1, ‖x‖ = 1}
= 1− inf {‖Γ̃(B,A)x‖ : x ∈ H1, ‖x‖ = 1}
= 1−m(Γ̃(B,A))

= 1−m(Γ(B,A))2.

With a similar computation we can show that ‖Q(I − P )‖2 = 1 − m(Γ(A,B))2.
The result now follows from the definition of θ0(A,B) and θ(A,B). �
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Remark 3.4. The formula in Theorem 3.3 improves the formula given by Nakamoto
[18, Theorem 4.1]. In fact for A,B ∈ B(H), Nakamoto proved that

θ(A,B) =
√
1−min

{
m(Γ̃(A,B)),m(Γ̃(B,A))

}
,

where

(3.1) Γ̃(A,B) = B̌
1
2 (I +B∗A)Ǎ(I +A∗B)B̌

1
2 .

By the repeated use of relations in Lemma 2.9, it can be shown that Γ̃(A,B) of

(3.1) and Γ̃(A,B) considered in Theorem 3.3 are the same.

Theorem 3.5. Let A,B ∈ C(H1, H2) be densely defined. Then

θ̃(A,B) =

√
2
(
1−

√
1− θ(A,B)2

)
.

Proof. Let c = min{m(Γ(A,B)),m(Γ(B,A))}. Then, by Theorem 3.3, m(Γ(A,B))

=
√

1− θ2(A,B). By Theorem 3.1, we have

θ̃2(A,B) = 2(1− c) = 2
(
1−

√
1− θ2(A,B)

)
.

Hence θ̃(A,B) =
√
2
(
1−

√
1− θ2(A,B)

)
. �

Corollary 3.6. Let A ∈ C(H1, H2) be densely defined. Then θ(A) = 1 and θ̃(A) =√
2.

Proof. By Theorem 3.3, θ(A)=
√
1−min{m(Γ(A, 0))2,m(Γ(0, A))2}. Here Γ(A, 0)

= Ǎ
1
2 = Γ(0, A) is self-adjoint. Hence m

(
Γ(A, 0)

)
= inf { 1√

1+λ2
: λ ∈ σ(A∗A)} = 0.

Here we have used the fact that σ(A∗A) is an unbounded since A∗A is unbounded

self-adjoint operator. By Theorems 3.1 and 3.3, θ(A) =
√
2 and θ(A) = 1. �

Corollary 3.7. Let A,B ∈ C(H1, H2) be densely defined. Then

(1) θ̃(A,B) = θ̃(A∗, B∗).
(2) if A and B are one-to-one, then θ̃(A,B) = θ̃(A−1, B−1).

Proof. This follows from Theorem 3.5 and the corresponding properties of θ(·, ·)
(see [12, Theorems 2.18, 2.20, pages 204-205] for details). �

Corollary 3.8. Let A,B ∈ C(H1, H2) be densely defined. Then

θ(A,B) ≤ θ̃(A,B) ≤
√
2 θ(A,B).

Proof. The inequality θ(A,B) ≤ θ̃(A,B) follows from the definitions of θ(A,B)

and θ̃(A,B). To prove the other inequality, it is enough to show that 2 θ2(A,B)−
θ̃2(A,B) ≥ 0. As 0 ≤ θ(A,B) ≤ 1, it follows that 0 ≤ 1− θ2(A,B) ≤ 1. Hence

2 θ2(A,B)− θ̃2(A,B) = 2 θ2(A,B)− 2
(
1−

√
1− θ2(A,B)

)

= 2 θ2(A,B)− 2 + 2
√
1− θ2(A,B)

= 2
(√

1− θ2(A,B)− (
√
1− θ2(A,B))2

)

= 2
(√

1− θ(2A,B)
)(
1−

√
1− θ2(A,B)

)

≥ 0.

This shows that the second relation is true. �

Corollary 3.9. (1) The set
(
B(H1, H2), θ̃(·, ·)

)
is open in

(
C(H1, H2), θ̃(·, ·)

)
.
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(2) If A ∈ C(H1, H2) is invertible with A−1 ∈ B(H2, H1) and B ∈ B(H1, H2)

such that θ̃(A,B) <
1√

1 + ‖A−1‖2
, then B is invertible and B−1 ∈

B(H2, H1). In particular, if H1 = H2 = H, then {A ∈ C(H) : A−1 ∈ B(H)}
is open in C(H) with respect to the spherical gap metric.

Proof. The proof (1) follows by Corollary 3.8 and [12, Theorem 2.13, page 203].
The proof of (2) follows by Corollary 3.8 and [12, Theorem 2.21, page 205]. �

Corollary 3.10. The set of all bounded self-adjoint operators is a dense subset

of the set of all unbounded self-adjoint operators with respect to the spherical gap

metric.

Proof. The proof follows from Corollary 3.8 and [2, Proposition 1.6]. �

Example 3.11. Let H := the real space L2[0, π] of real-valued functions, H1 =
{x ∈ H : x is absolutely continuous and x′ ∈ H} and H2 := {x ∈ H1 : x′ ∈ H1}.
Let Lx = dx/dt, where D(L) = {x ∈ H1 : x(0) = x(π) = 0}. Then L ∈ C(H)

and D(L) = H. For n ∈ N, let φn(t) :=
√

2
π
sin(nt), t ∈ [0, π] and ψn(t) :=

√
2
π
cos(nt), t ∈ [0, π]. Then {φn}n∈N forms an orthonormal basis for H.

It can be shown that L∗ =−d/dt, D(L∗) =H1 and L∗L=−d2/dt2, D(L∗L) =
{x∈H2 : x(0)=x(π) = 0}. For x∈D(L∗L) and y ∈ H, we have x=

∑∞
n=1〈x, φn〉φn.

Hence

Lx =

∞∑

n=1

n〈x, φn〉ψn,

L∗Lx =

∞∑

n=1

n2〈x, φn〉φn,

(I + L∗L)x =

∞∑

n=1

(1 + n2)〈x, φn〉φn,

Ľy =

∞∑

n=1

1

1 + n2
〈y, φn〉φn,

Ľ
1
2 y =

∞∑

n=1

1√
1 + n2

〈y, φn〉φn.

We have m(Γ(L, 0)) = m(Ľ
1
2 ) = inf { 1√

1+n2
: n ∈ N} = 0. Hence by Theorems 3.1

and 3.3, θ̃(L) =
√
2 and θ(L) = 1.

Example 3.12. Let H=ℓ2. Let D(A)=D(B)=
{
(xj) ∈ H :

∑∞
j=1 j

2|xj |2 < ∞
}
.

Define A : D(A) → H by A((xj)) = (jxj), for all (xj) ∈ D(A) and

B((xj)) =

{
−jxj if j = 2,

jxj if j 	= 2.
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It can be shown that A and B are self-adjoint. For (yj) ∈ H, we have

Ǎ(yj) = Â(yj) =
1

1 + j2
yj = B̌(yj) = B̂(yj),

Ǎ
1
2 (yj) =

1√
1 + j2

yj = B̌
1
2 (yj),

AǍ(yj) = (
j

1 + j2
yj),

AǍ
1
2 (yj) = (

j√
1 + j2

yj),

BB̌(yj) =

{
−j

1+j2
if j = 2,

j
1+j2

if j 	= 2,

BB̌
1
2 (yj) =

⎧
⎨
⎩

−j√
1+j2

if j = 2,

j√
1+j2

if j 	= 2,

Γ(A,B)(yj) =

{
− 3

5yj if j = 2,

yj if j 	= 2.

We have m(Γ(A,B)) = inf {|λ| : λ ∈ σ(Γ(A,B))} = 3
5 = m(Γ(B,A)). Hence by

Theorems 3.3 and 3.1, we have θ(A,B) = 4
5 and θ̃(A,B) = 2√

5
.

References

1. N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space, Dover Publi-
cations. Inc., New York, 1993. Translated from the Russian and with a preface by Merlynd
Nestell. Reprint of the 1961 and 1963 translations, two volumes bound as one. MR1255973
(94i:47001)

2. Bernhelm Booss-Bavnbek, Matthias Lesch, and John Phillips, Unbounded Fredholm operators

and spectral flow, Canad. J. Math. 57 (2005), no. 2, 225–250. MR2124916 (2006a:58029)
3. H. O. Cordes and J. P. Labrousse, The invariance of the index in the metric space of closed

operators, J. Math. Mech. 12 (1963), 693–719. MR0162142 (28:5341)
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