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This review article, dedicated to the bicentenary
celebration of Sir George Gabriel Stokes’ birthday,
presents the state-of-the-science of terminal fall
velocity, highlighting his rich legacy from the
perspective of fluvial hydraulics. It summarizes
the fluid drag on a particle and the current status
of the drag coefficient from both the theoretical
and empirical formulations, highlighting the three
major realms—Stokesian, transitional and Newtonian
realms. The force system that drives the particle
motion falling through a fluid is described. The
response of terminal fall velocity to key factors,
which include particle shape, hindered settling and
turbulence (nonlinear drag, vortex trapping, fast
tracking and effects of loitering), is delineated. The
article puts into focus the impact of terminal fall
velocity on fluvial hydraulics, discussing the salient
role that the terminal fall velocity plays in governing
the hydrodynamics of the sediment threshold,
bedload transport and suspended load transport.
Finally, an innovative perspective is presented on
the subject’s future research track, emphasizing open
questions.

1. Introduction
When a particle falls through a fluid, it accelerates
owing to gravity. The fluid drags the particle in unison

2019 The Author(s) Published by the Royal Society. All rights reserved.
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FD

FG

Figure 1. Schematic of terminal fall velocity of a particle. FD is the fluid drag and FG is the submerged weight of the particle.

Flow streamlines past the particle are also shown. (Online version in colour.)

to reduce its inertia (figure 1). By and by, the acceleration of the particle ceases, and it falls with
a constant velocity, called the terminal fall velocity. Quantification of the terminal fall velocity is
made by balancing the fluid drag FD and the submerged weight FG of the particle (figure 1). A
precise measure of the terminal fall velocity requires a good understanding of the fluid drag,
the importance of which was envisioned long ago by Sir Isaac Newton. However, with regard
to the estimation of fluid drag, the name that first comes to mind is Sir George Gabriel Stokes
(figure 2), whose astounding contributions to fluid dynamics need no introduction. It is in no
way an exaggeration to highlight one of his remarkable papers in the mid-nineteenth century:
‘On the effect of the internal friction of fluids on the motion of pendulums’, which was published
in 1851 in the Transactions of the Cambridge Philosophical Society. In this paper, Stokes made the first
breakthrough in calculating the fluid drag—also called Stokes’ law, which defines the Stokes drag

FD on a spherical particle of diameter d as

FD = 3πμUd, (1.1)

where μ is the dynamic viscosity of the fluid and U is the free stream velocity. Equation (1.1) is
legitimate when the particle Reynolds number R(= Ud/ν) remains smaller than unity [1], where
ν is the kinematic viscosity of fluid (= μ/ρf ) and ρf is the mass density of fluid. The applications
of Stokes’ law are far-reaching. Stokes’ law is deemed to have played a subtle role in research
leading to the bestowing of at least three Nobel prizes [2]. This law was applied by Millikan in
his oil-drop experiment to determine the charge of an electron. In addition, Stokes’ law is a key
prerequisite to understanding a wide variety of physical processes; for instance, swimming of
microorganisms [2], residence time of volcanic stuffs [3,4], and sedimentation of tiny particles in
air [5] and water [6]. From the perspective of fluvial hydraulics, terminal fall velocity is among
the central parameters to drive some of the key processes of sediment transport. It offers limiting
values of movability number M∗(= u∗/wt), which could be used as a guideline to distinguish
various modes of sediment transport. Here, u∗ is the shear velocity [= (τb/ρf )1/2], τb is the bed
shear stress and wt is the terminal fall velocity. To be specific, for M∗ ∈ [1/6, 1/2], particles are
transported in rolling and sliding modes, called contact load transport. For M∗ ∈ [1/2, 5/3], particles
are transported in a series of tiny leaps, called saltation. In addition, for M∗ > 5/3, particles are
transported as a suspended load [6].

After Stokes [1], researchers made impressive strides in their quest to obtain an improved
formulation of fluid drag over a rich spectrum of particle Reynolds number R. Despite
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Figure 2. Portrait of George Gabriel Stokes (courtesy of Alice Power, The Royal Society, London). (Online version in colour.)

momentous advances made by the legacies of Stokes, Stokes’ law has remained a rule of thumb,
for more than 16 decades, in estimating the terminal fall velocity for R < 1. This review article
pays tribute to the bicentennial anniversary of George Gabriel Stokes (1819–1903), whose brief
biography is furnished below.

George Gabriel Stokes, son of Gabriel Stokes, who was a clergyman, was born on 13 August
1819 in Skreen, County Sligo, Ireland (figure 2). He was brought up at home, where he learnt
reading and arithmetic. In 1832, he was admitted to Dr Wall’s school, Dublin, and during 1835–
1837 he was taught at Bristol College. In 1837, he went to Pembroke College, Cambridge, where
his inherent talents attracted attention. He graduated as Senior Wrangler and the first Smith’s
Prizeman from Pembroke College in 1841, and was elected to a fellowship there. In 1849, he
became the Lucasian Professor of Mathematics at the University of Cambridge, a position he
held until death. The jubilee of this appointment was celebrated in 1899 in a ceremony where
he was presented with a memorial gold medal. In 1857, he married Mary Susanna Robinson.
They had five children. As a mathematician, Stokes pioneered Stokes’ theorem in vector calculus
and made seminal contributions to the theory of asymptotic expansions. Being a physicist, he
significantly contributed to fluid dynamics, including the Navier–Stokes equations, and especially
to physical optics, with outstanding works on fluorescence and polarization. He made an
impressive contribution to the conduction of heat in crystals and to many engineering aspects.
He also worked on religion. As a Gifford lecturer, in 1891, he published his works on natural
theology. He was also the vice-president of the British and Foreign Bible Society. Stokes received
several scientific honours. He was a Knight of the Prussian Order Pour le Mérite and a Foreign
Associate of the French Institute. He was awarded the Rumford Medal in 1852, Gauss Medal in
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1877, Copley Medal in 1893, the Arago Medal in 1899 and the Helmholtz Medal in 1901. He was
secretary of the Royal Society during 1854–1885 and president during 1885–1890. In 1889, he was
made a baronet. He represented the University of Cambridge in Parliament during 1887–1891.
He was selected Master of Pembroke in 1902. About a month before his demise, he managed to
attend the annual dinner of the Cambridge Philosophical Society and gave a splendid speech
about his cordial connection with the College and the Society. He died on 1 February 1903. On his
extraordinary scientific brilliance, one of his colleagues, Sir R. C. Jebb, wrote the following lines
on the occasion of the 50th anniversary of his Lucasian Professorship [7]:

Clear mind, strong heart, true servant of the light,
True to that light within the soul, whose ray
Pure and serene, hath brightened on thy way,
Honour and praise now crown thee on the height
Of tranquil years. Forgetfulness and night
Shall spare thy fame, when in some larger day
Of knowledge yet undream’d, Time makes a prey
Of many a deed and name that once were bright.
Thou, without haste or pause, from youth to age,
Hast moved with sure steps to thy goal. And thine
That sure renown which sage confirms to sage,
Borne from afar. Yet wisdom shows a sign
Greater, through all thy life, than glory’s wage;
Thy strength hath rested on the Love Divine.

The rest of the article is organized as follows. In §2, the fluid drag on a particle is described.
The legacy of Stokes, highlighting the drag coefficient, is presented in §3. A particle’s motion
falling through a fluid is furnished in §4. The response of terminal fall velocity to key factors is
delineated in §5. In §6, the impact of terminal fall velocity on fluvial hydraulics is summarized.
Finally, an innovative perspective is delivered as the future research scope, highlighting open
questions, in §7.

2. Description of fluid drag
From the fundamental principle, the fluid drag FD acting on the interface between a fluid and a
particle is defined as the component of the fluid force in the flow direction (figure 3). The fluid
drag comprises skin friction drag and pressure drag. Therefore, fluid drag FD is expressed as

FD = −

∫
S
τ0 sin θ dS −

∫
S

p cos θ dS, (2.1)

where τ0 is the wall shear stress, p is the pressure intensity and S is the surface area of the particle.

(a) Stokes drag

(i) Creeping flow past a spherical particle

It is important to shed light on the Stokes drag that arises in a creeping flow, also called the
Stokes flow, with a free stream velocity U past a spherical particle of diameter d (figure 3). Under
such circumstances, the particle Reynolds number R (= Ud/ν) is quite small (R < 1). Although
derivation of the Stokes drag is given in standard textbooks of fluid mechanics, it has been found
that there remains confusion in some of the derivational steps. The reasons for this are twofold:

— improper distinction between the Laplace operator and the H operator (details are given
below);

— inaccurate derivation of the final form of the differential equation for the Stokes stream
function.
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Figure 3. Schematic of fluid drag on a particle. (Online version in colour.)

Therefore, to take away such confusion, we put into focus the appropriate derivation of the
Stokes drag, in brief, for clear understanding. The Navier–Stokes equations read

∂u

∂t
+ (u · ∇)u = −

1
ρf

∇p + ν∇2
u + f, (2.2)

where u is the velocity field and f is the body force vector per unit mass of fluid. Since
R < 1, the inertia terms (u · ∇)u in equation (2.2) can be readily overlooked. In addition, for
an incompressible fluid, ∇ · u = 0. Therefore, the identity ∇ × (∇ × u) = ∇(∇ · u) − ∇2u makes
∇ × Ω = −∇2u, where Ω is the vorticity vector (= ∇ × u). Under steady-state conditions and in
the absence of any external body force (f = 0), equation (2.2) produces

∇p = μ∇2
u = −μ∇ × Ω . (2.3)

A spherical polar coordinate system (r, θ , φ) can now be sought to solve the problem (figure 3).
The continuity equation reads

∇ · u =
1

r2

∂

∂r
(r2ur) +

1
r sin θ

∂

∂θ
(uθ sin θ ) +

1
r sin θ

∂uφ

∂φ
= 0, (2.4)

where (ur, uθ , uφ) are the velocity components in (r, θ , φ). The axial symmetry suggests uφ =

∂(·)/∂φ = 0. Therefore, the velocity components (ur, uθ ) can be expressed with the aid of the Stokes

stream function ψ as follows:

ur =
1

r2 sin θ

∂ψ

∂θ
and uθ = −

1
r sin θ

∂ψ

∂r
. (2.5)

Since the velocity field is axisymmetric, only the axial component of vorticity exists. The
vorticity Ωφ about the φ axis is expressed as

Ωφ =
1
r

[
∂

∂r
(ruθ ) −

∂ur

∂θ

]

= −
1

r sin θ
H2ψ �⇒ H2 =

∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)

. (2.6)

Using equations (2.6), (2.3) produces

∂p

∂r
=

μ

r2 sin θ

∂

∂θ
(H2ψ) and

∂p

∂θ
= −

μ

sin θ

∂

∂r
(H2ψ). (2.7)

From (2.7), eliminating the pressure term, one finds

H4ψ =

[

∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
]2

ψ = 0. (2.8)
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Equation (2.8) reveals that the Stokes stream function is bi-harmonic. The boundary conditions
associated with the physical system are given as follows: (i) no slip at the surface of the particle
and (ii) free stream velocity U far away from the particle. The first boundary condition suggests

∂ψ

∂r

∣
∣
∣
∣
r=d/2

=
∂ψ

∂θ

∣
∣
∣
∣
r=d/2

= 0. (2.9)

Regarding the second boundary condition, we note that, far away from the particle (r → ∞),
the velocity components can be expressed as ur = U cos θ and uθ = −U sin θ . Using equation (2.5),
this boundary condition produces

ψ |r→∞ =
Ur2

2
sin2θ . (2.10)

Equation (2.10) provides the bottom line to search for the solution of ψ as ψ(r, θ ) = f (r) sin2 θ .
Substituting this form of ψ into equation (2.6) produces

H2 =

(

d2

dr2
−

2

r2

)

f (r)sin2θ = g(r)sin2θ . (2.11)

Using equation (2.11), equation (2.8) produces

H4 =

(

d2

dr2
−

2

r2

)

g(r)sin2θ =

(

d2

dr2
−

2

r2

)2

f (r)sin2θ = 0. (2.12)

With the substitution of f (r) = rq (q is an exponent), equation (2.12) becomes a quartic equation
of q with roots q = –1, 1, 2 and 4. Therefore, ψ is expressed as

ψ = (a1r−1 + a2r + a3r2 + a4r4)sin2θ , (2.13)

where a1−4 are the coefficients. We note that this form of ψ is compatible with equation (2.10) if
a3 = U/2 and a4 = 0. Using equation (2.9), the coefficients a1 and a2 are obtained as a1 = Ud3/32
and a2 = −3Ud/8. Therefore, the final result is

ψ(r, θ ) =
Ud2

16
sin2θ

(

d

2r
−

6r

d
+

8r2

d2

)

. (2.14)

The terms in equation (2.14) are recognized as a doublet, a Stokeslet and a uniform stream,
respectively. Among these terms, only the Stokeslet contributes to the vorticity. The velocity
components and pressure, obtained from equations (2.5) and (2.7), respectively, are expressed as

ur = U cos θ

(

1 +
d3

16r3
−

3d

4r

)

and uθ = U sin θ

(

−1 +
d3

32r3
+

3d

8r

)

(2.15a)

and

p = p0 −
3μdU

4r2
cos θ , (2.15b)

where p0 is the uniform free stream pressure.
The shear stress τrθ can be expressed as

τrθ = μ

(
1
r

∂ur

∂θ
+

∂uθ

∂r
−

uθ

r

)

= −μU
sin θ

r

3d3

16r3
. (2.16)

Therefore, the total drag (sum of skin friction drag and pressure drag) can be obtained from
equation (2.1) with dS = (πd2 sin θdθ )/2 (figure 3). The fluid drag FD, called the Stokes drag, is
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given by

FD = −

∫π

0
τrθ |r=d/2 sin θ dS

︸ ︷︷ ︸

2πμUd

−

∫π

0
p
∣
∣
r=d/2 cos θ dS

︸ ︷︷ ︸

πμUd

= 3πμUd. (2.17)

Equation (2.17) is known as Stokes’ law, where the viscous shear force and pressure force
contribute two-thirds and one-third, respectively.

(ii) Creeping flow past a long circular cylinder: Stokes’ paradox

Interestingly, in a two-dimensional (2D) configuration, creeping flow past an object produces the
Stokes’ paradox. This paradox states:

There remains no steady solution of the 2D Stokes equations that govern flow past an
infinitely long circular cylinder.

In fact, with reference to a cylindrical polar coordinate system, the 2D Stokes stream function
ψ (symbol remains the same for brevity) produces the following equation:

∇4ψ = 0. (2.18)

The solution of equation (2.18) can be set as ψ(r, θ ) = f (r) sin θ . Therefore, one obtains
(

d2

dr2
+

1
r

d
dr

−
1

r2

)2

f (r) = 0. (2.19)

The solution of f (r) can be sought as

f (r) = b1r−1 + b2r + b3r ln r + b4r3, (2.20)

where b1−4 are the coefficients. The boundary condition at infinity requires b3 = b4 = 0, while the
no slip at the surface of the cylinder yields b1 = b2 = 0. This implies a vanishing flow field (u = 0),
suggesting the delicate role that the dimension plays in fluid dynamics.

(b) Newton drag

From the fundamental tenet, the Newton drag, for which drag coefficient CD is constant, is
expressed as a function of the dynamic pressure. It reads

FD = CD
1
2 ρf Ū2A, (2.21)

where Ū is the mean velocity received by the projected area A of the particle (= πd2/4 for a
spherical particle). The drag coefficient CD must be determined experimentally.

3. The legacy of Stokes: a glance at the drag coefficient
Figure 4 illustrates the experimental data of the drag coefficient CD of spheres, natural grains and
shell fragments over a rich spectrum of particle Reynolds number R (= wtd/ν) [8–17]. Three major
realms are highlighted. They are the Stokesian, transitional and Newtonian realms. To be specific,
Newton’s law declares CD to be a constant. This is expected to be true when the particle Reynolds
number R is quite large, preferably more than 103 (figure 4). However, for R < 103, CD remains
invariably a function of R. In essence, balancing equations (2.17) and (2.21) yields the following
relationship in the Stokesian realm:

CD(R < 1) =
24
R

. (3.1)

Equation (3.1) shows a drastic reduction of the drag coefficient with particle Reynolds number
(also see figure 4). However, as the particle Reynolds number gradually exceeds unity, Stokes’
law departs from the experimental data (see dotted line in figure 4).

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

5
 O

ct
o
b
er

 2
0

2
2
 



8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

475:20190277
...........................................................

105

Stokesian realm
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1

Figure 4. Drag coefficient CD versus particle Reynolds numberR . Experimental data taken from several studies [8–17] include

spheres (circle), natural grains (squares) and shell fragments (diamonds). The solid line is Stokes’ law, while the dotted line is

that extended to the transitional realm. (Online version in colour.)

Although Newton’s and Stokes’ laws work perfectly fine within their respective realms, there
remains insufficient theoretical underpinning in bridging the apparent gap between these realms
(figure 4). To this end, empirical formulations have played a promising role in capturing the
transitional realm that lies between the Stokesian and Newtonian realms. In the following,
we highlight the legacy of Stokes from two broad perspectives: theoretical and empirical
formulations.

(a) Theoretical formulations

(i) Whitehead’s contribution

Since Stokes’ solution was obtained solely in the limit of R < 1, Whitehead [18] attempted
to improve the solution beyond R < 1, considering higher approximations to the flow.
Whitehead [18] applied a lower order approximation to determine the inertia terms in the Navier–
Stokes equations, leading to an iterative technique. The boundary conditions at every iteration
stage were independent of R. Therefore, this technique turned out to be an expansion of the flow
variables in powers of R. However, such an assumption was not valid in the case of free stream
flows. In fact, Whitehead [18] found that the second approximation to the flow velocity past a
spherical particle became finite at infinity. This was an incompatible condition. In addition, it was
identified that higher approximations to the flow velocity did not converge at infinity. Therefore,
the expansion technique in powers of R created a situation where all terms but the leading one
do not satisfy the boundary conditions. This phenomenon is known as Whitehead’s paradox.

(ii) Oseen’s contribution

Both Stokes’ and Whitehead’s paradoxes were resolved by Oseen [19,20]. He recognized that, far
away from the sphere, the inertia force may not be trivial as compared with the viscous force.
The viscous force can be predominant only if the disturbance decays faster in an exponential
way. Stokes’ theory was thus identified as self-inconsistent in the far field. Oseen [19,20] provided
an improvement of the Stokes drag by partly considering the inertia terms in the Navier–Stokes
equations. In essence, away from the sphere, the inertia terms (u · ∇)u in equation (2.2) cannot be
readily neglected, because the velocity field is almost spatially invariant there. It follows that the
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Figure 5. Drag coefficient CD versus particle Reynolds number R , obtained from the theoretical formulations, and the

experimental data. (Online version in colour.)

effects of friction are negligible and, therefore, the inertia force becomes larger than the viscous
force. However, taking into consideration the terms (u · ∇)u in the governing equation, the
mathematical analysis becomes too intricate to produce any straightforward analytical solution.
Therefore, the solution is sought by expanding the stream function with respect to the particle
Reynolds number. It is important to mention that the Stokes expansion is applied to the close field,
while the Oseen expansion is used in the far field. Oseen [19,20] expressed the stream function as

ψ(r, θ ) =
Ud2

16
sin2 θ

(

d

2r
+

8r2

d2

)

−
3
4

Ud2 1 + cos θ

R

{

1 − exp
[

−R
r

2d
(1 − cos θ )

]}

. (3.2)

Equation (3.2) satisfies the steady Navier–Stokes equations without external force to introduce
body force and the appropriate boundary conditions at infinity. Moreover, close to the spherical
surface (when r approaches 2d), equation (3.2) recovers the Stokes stream function (see
equation (2.14)). The drag coefficient was found to be

CD(R ≤ 1) =
24
R

(

1 +
3
16

R

)

. (3.3)

Figure 5 illustrates the drag coefficient CD as a function of particle Reynolds number R,
obtained from some of the theoretical formulae, and the experimental data of spheres, natural
grains and shell fragments. Figure 5 shows that equation (3.3) has a good matching with the
experimental data up to R = 10.

(iii) Goldstein’s contribution

Goldstein [21] gave an extended series solution of Oseen’s approximation. It is

CD(R ≤ 2) =
24
R

(

1 +
3
16

R −
19

1280
R

2 +
71

20 480
R

3 −
30 179

34 406 400
R

4 +
122 519

550 502 400
R

5 − · · ·

)

.

(3.4)

Equation (3.4) is plotted in figure 5. It appears that, for R > 2, Goldstein’s solution departs
from the experimental data. Later, the last denominator within parenthesis on the right-hand
side of equation (3.4) was corrected as 550 502 400. However, with regard to the above expansion,
Goldstein [22] reported that, after the first two terms within the parenthesis, the drag coefficient

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

5
 O

ct
o
b
er

 2
0

2
2
 



10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

475:20190277
...........................................................

obtained from the expansion of the Navier–Stokes equations would produce a different result
from that given by equation (3.4).

(iv) Tomotika & Aoi’s contribution

On the basis of Goldstein’s approach and Oseen’s approximations, Tomotika & Aoi [23]
approximately expressed the Stokes stream function for small R (R < 1) as

ψ(r, θ ) = −
Ud2

4
sin2θ

[

3
4

(
2r

d
−

d

2r

)

−

(
1
2

+
3

32
R

)
(

4r2

d2
−

d

2r

)

+
3
32

R

(

4r2

d2
−

d2

4r2

)

cos θ

]

.

(3.5)

In the limit R → 0, equation (3.6) produces the Stokes stream function (see equation (2.14)).
They also reported that, whatever the values of R (R < 1), the skin friction drag and pressure
drag contribute two-thirds and one-third to the total drag, respectively.

(v) Stewartson’s contribution

Stewartson [24] applied Oseen’s linearized approximations to study the viscous flow past a sphere
for large R. It was reported that on the stoss side of the sphere a boundary layer is formed,
whereas on the leeside a wake extends to infinity. The drag coefficient for large R (R → ∞) was
found to be CD ≈ 1.06.

(vi) Proudman & Pearson’s contribution

Proudman & Pearson [25] argued that the resulting solution for R < 1, obtained from the
expansion of the Navier–Stokes equations, is somewhat complicated, involving logarithms and
powers of R. They obtained the drag coefficient CD as (also see figure 5)

CD(R < 1) =
24
R

[

1 +
3
16

R +
9

160
R

2 log
R

2
+ O(R2)

]

. (3.6)

(vii) Chester et al.’s contribution

Chester et al. [26] extended the analysis of Proudman & Pearson [25] for R < 1 up to the order of
R3 log R and expressed the drag coefficient CD as

CD(R < 1) =
24
R

[

1 +
3
16

R +
9

160
R

2
(

γ −
323
360

+
5
3

log 2 + log
R

2

)

+
27

640
R

3 log
R

2
+ O(R3)

]

,

(3.7)

where γ is the Euler–Mascheroni constant.

(viii) Abraham’s contribution

Abraham [27] determined the fluid drag on a particle considering two distinct flow zones. In the
external zone a frictionless flow was assumed, while in the internal zone a boundary layer flow
was considered. The drag coefficient CD was expressed as (also see figure 5)

CD(0 < R < 5000) =

[

0.5407 +

(
24
R

)1/2
]2

. (3.8)
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(ix) van Dyke’s contribution

van Dyke [28] extended the Goldstein’s expansion to 24 terms in powers of R. The drag coefficient
CD was expanded as

CD =
24
R

∑

n=0

cn

(
R

4

)n

, (3.9)

where cn are the coefficients, given by van Dyke [28]. The results produced four significant figures
(CD = 5.929) at R = 3 and one significant figure (CD = 5) at R = 4. The series solution was capable
of capturing at least one more significant figure for R up to 50. For R → ∞, Stewartson’s [24]
result was recovered (CD ≈ 1.06).

(x) Hunter & Lee’s contribution

Hunter & Lee [29] obtained 66 terms in the Goldstein series and sought the performance of CD(R)
for R → ∞. However, neither Padé approximates nor Euler transformation applied to the solution
gave good convergence. The asymptotic performance of CD(R) was found to follow CD(R) −

CD(R → ∞) ∝ R−2/3 for R → ∞. Similar observation was also reported by van Dyke [26].

(xi) Weisenborn & Bosch’s contribution

Weisenborn & Bosch [30] analytically determined the Oseen drag coefficient for R → ∞. They
applied the induced forces method, which allowed the determination of a series of rational
coefficients that converged to a suitable value for the drag coefficient. With the aid of the Shanks
transformation in accelerated form, the drag coefficient was found to be CD ≈ 1.058.

(xii) Liao’s contribution

Liao [31] applied the homotopy analysis method through which Whitehead’s paradox could be
easily resolved. The analytic approximations were able to capture the entire flow field, because
the same approximations were applied to analyse the near and far flow field. The drag coefficient
was derived at the 10th order of analytic approximation. Liao [31] expressed the drag coefficient
CD as

CD(R < 30) =
24
R

(1 + 0.14R
0.7)

⎛

⎝1 +

̟ (m,0)
∑

q=1

m
∑

l=2q

k
q,l
m R

2qh̄l

⎞

⎠ , (3.10)

where k
q,l
m are constant coefficients, ̟ (m, n) was defined as ‘taking the integer part of (m − n)/2’

and h̄ is an auxiliary parameter.

(xiii) Mikhailov & Silva Freire’s contribution

Mikhailov & Silva Freire [32] applied a generalized Shanks transformation to the Goldstein series
(equation (3.4)) to precisely approximate the drag coefficient and to increase the convergence
range. The Shanks transformation of equation (3.4) was obtained as

CD(0.1 < R < 10) =
1920(3696 + 1665R + 136R2)

R(295 680 + 77 760R + 689R2)
. (3.11)

Equation (3.12) is plotted in figure 5. However, with the help of experimental data, Mikhailov &
Silva Freire [32] refined the coefficients in equation (3.11) and proposed the drag coefficient for
0.1 < R < 1.183 × 105.
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Figure 6. Drag coefficient CD versus particle Reynolds number R , obtained from the empirical formulations, and the

experimental data. (Online version in colour.)

(b) Empirical formulations

A detailed compilation of some of the relevant empirical formulae of drag coefficient CD is
furnished below.

(i) Rubey

Rubey [33] found that the terminal fall velocity of finer particles, such as silt and fine sand, follows
Stokes’ law, whereas that of coarser particles, such as coarse sand, pebble and boulder, deviates
from Stokes’ law. Rubey [33] expressed the drag coefficient CD as

CD =
A1

R
+ A2, (3.12)

where A1 and A2 are the phenomenological coefficients [33]. In essence, in the limit of infinite
and small R, this empirical law recovers Newton’s and Stokes’ laws, respectively. The above
formula was introduced to determine the terminal fall velocity of natural particles, such as silt,
sand and gravel. Figure 6 shows the drag coefficient CD as a function of particle Reynolds number
R, obtained from some of the empirical formulae, and the experimental data of spheres, natural
grains and shell fragments. Equation (3.12) is plotted in figure 6 for A1 = 24 and A2 = 0.44, as
suggested by Guo [34].

(ii) Schiller & Naumann

Schiller & Naumann [35] introduced a three-constant formula for the drag coefficient. They
expressed the drag coefficient CD as (also see figure 6)

CD(R < 800) =
24
R

(1 + 0.15R
0.687). (3.13)

(iii) Dou

Dou [36] sought trigonometric functions to express the drag coefficient. The drag coefficient CD

was obtained as

CD(R < 2 × 105) =
24
R

(

1 +
3
16

R

)

cos3δ + 0.45sin2δ, (3.14)
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where δ is given by δ(R ≤ 0.5) = 0, δ(0.5 < R < 2500) = π ln(2R)/[2 ln(5000)] and δ(R ≥ 2500)
= π/2.

(iv) Concha & Barrientos

Concha & Barrientos [37] argued that a fifth-order polynomial could be used to represent the drag
coefficient over a wide range of particle Reynolds number. They obtained the drag coefficient CD

as (also see figure 6)

CD(R < 3 × 105) = 0.284153
(

1 +
9.04

R1/2

)2 5
∑

j=0

ajR
j, (3.15)

where the coefficients aj can be approximately expressed as a0 = 0.962, a1 = 2.736 × 10−5, a2 =

−3.938 × 10−10, a3 = 2.476 × 10−15, a4 = −7.159 × 10−21 and a5 = 7.437 × 10−27.

(v) Flemmer & Banks

Using experimental data, Flemmer & Banks [38] expressed the drag coefficient CD as (also see
figure 6)

CD(R < 3 × 105) =
24
R

10λ and λ = 0.261R
0.369 − 0.105R

0.431 −
0.124

1 + log2
R

. (3.16)

(vi) Turton & Levenspiel

Turton & Levenspiel [39] proposed a five-constant formula for the drag coefficient as

CD(R < 2 × 105) =
24
R

(1 + 0.173R
0.657) +

0.413

1 + 16300R−1.09
. (3.17)

(vii) Cheng

Cheng [13] reported the following relationship to calculate the terminal fall velocity of sediment
particles as a generalization of Rubey’s [33] formula, equation (3.12):

CD =

[
(

A1

R

)1/A3

+ A
1/A3
2

]A3

, (3.18)

where the coefficients A1 and A2 and the exponent A3 were reported in the literature [6]. In the
above, the particle Reynolds number is obtained as R = wtdn/ν, where dn is the nominal diameter
of sediment particles of median size d. It is approximately taken as dn = d/0.9 [6]. Equation (3.18)
is plotted in figure 6 for A1 = 36, A2 = 1.4 and A3 = 1, as suggested by Fredsøe & Deigaard [40].
The resulting curve shows good agreement with the experimental data.

(viii) Ceylan et al.

Ceylan et al. [41] used an approximate series solution and expressed the drag coefficient CD as

CD(0.1 < R < 2 × 106) = 1 − 0.5 exp(0.182) + 10.11R
−2/3 exp(0.952R

−1/4)

− 0.03859R
−4/3 exp(1.3R

−1/2) + 0.037 × 10−4
R exp(−0.125 × 10−4

R)

− 0.116 × 10−10
R

2 exp(−0.444 × 10−5
R). (3.19)

(ix) Brown & Lawler

Considering a large experimental dataset, Brown & Lawler [42] applied the wall correction to
the data points that emerged from terminal fall velocity measurements for cylinders. To apply
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the wall correction, they used the results of Fidleris & Whitmore [43]. They recommended the
following equation to estimate the drag coefficient CD:

CD(R < 2 × 105) =
24
R

(1 + 0.15R
0.681) +

0.407

1 + 8710R−1
. (3.20)

(x) Almedeij

Almedeij [44] applied a matched asymptotic approach, where a wide trend of the drag coefficient
was divided into smaller segments. These segments were combined together to form a final
relationship of drag coefficient. The drag coefficient CD was expressed as

CD(R < 106) =

[

1

(ζ1 + ζ2)−1 + ζ−1
3

+ ζ4

]1/10

, (3.21a)

where ζ1−4 are functions of R. They are expressed as

ζ1 =

(
24
R

)10

+

(
21

R0.67

)10

+

(
4

R0.33

)10

+ 0.410, ζ2 =
1

0.5−10 + (0.148R0.11)−10
,

ζ3 =

(

1.57 × 108

R1.625

)10

and ζ4 =
1

0.2−10 + (6 × 10−17
R2.63)

−10
.

⎫

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎭

(3.21b)

(xi) Cheng

Cheng [45] used the experimental data of Brown & Lawler [42] and expressed the drag coefficient
CD as

CD(2 × 10−3 < R < 2 × 105) =
24
R

(1 + 0.27R)0.43 + 0.47[1 − exp(−0.04R
0.38)]. (3.22)

On the right-hand side of the above equation, the first term signifies the extended Stokes’ law
that was found to be applicable for R < 100. In addition, the second term denotes an exponential
function that takes into account the deviations from Newton’s law. In this regard, it is worth
mentioning that Yang et al. [46] obtained a series of empirical formulae for the drag coefficient
CD based on the formulations of Stokes, Oseen and Goldstein. The fitting parameters were
determined with the aid of experimental data.

In this context, it is pertinent to point out that Rouse [47] gave an empirical curve for the drag
coefficient using the experimental data of spheres. However, except for Rubey’s formula and its
modified version (see equations (3.12) and (3.18), respectively), it has been found that the other
empirical formulae do not vary significantly from each other, because most of them were prepared
using the experimental data of spheres. These formulae do not take into account the experimental
data of natural particles and shell fragments. Therefore, only some of the empirical formulae for
spheres are plotted in figure 6. It may also be noted that, in the theoretical formulations, a regular
spherical particle was considered. As a result, the theoretical predictions for the drag coefficient
of spheres cannot be strictly applied to natural particles (figure 5).

4. Particle motion falling through a fluid

(a) Governing equation

The equation of motion of a spherical particle falling through a fluid is given by the Boussinesq–

Basset–Oseen equation [34]. It is expressed as

(mp + αmmf )
dw

dt
= (mp − mf )g − CD

1
2
ρf w2 π

4
d2 −

3
2
π1/2ρf ν

1/2d2
∫ t

0

dw

dσ
(t − σ )−1/2 dσ , (4.1)
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where mp and mf are the mass of particle and fluid, respectively, αm is the added mass coefficient,
w is the fall velocity of the particle, t is the time, g is the acceleration due to gravity and σ is the
dummy variable.

The terms appearing in equation (4.1) can be explained one by one. The term on the left-hand
side denotes the particle inertia, including the added mass. The added mass is often introduced
when an accelerating (or retarding) particle moves in a fluid. The reason is attributed to the fact
that, since both the particle and fluid cannot possess the same space concurrently, the traversing
particle moves with a finite volume of fluid surrounding it. It turns out that a finite volume of
fluid is in motion with the particle. In practice, the assumption of αm = 0.5 is frequently sought.
On the right-hand side of equation (4.1), the first term is the submerged weight of the particle,
while the second term represents the fluid drag. In addition, the third term signifies the Basset
force, which arises due to the particle acceleration as a result of unsteady viscous shear on the
surface of the particle. In this context, it is worth noting that, in recent years, the settling of non-
spherical particles falling through a fluid was studied by Yaghoobi & Torabi [48,49] and Dogonchi
et al. [50].

(b) Equilibrium state

At the equilibrium state (w → wt), the inertia and the Basset terms disappear, and the particle
achieves the terminal fall velocity. The terminal fall velocity wt, from equation (4.1), can be
expressed as

wt =

(
4�gd

3CD

)1/2

, (4.2)

where � is the submerged relative density of the particle [= (ρp − ρf )/ρf ] and ρp is the mass
density of the particle.

To solve equation (4.2), accurate expression for the drag coefficient CD is to be used. However,
using equation (3.18), which is applicable to natural particles, equation (4.2) becomes

wt =
A1

A2

ν

dn

⎧

⎪
⎨

⎪
⎩

⎡

⎣
1
4

+

(

4A2

3A2
1

D3
∗

)1/A3
⎤

⎦

1/2

−
1
2

⎫

⎪
⎬

⎪
⎭

A3

, (4.3)

where D∗ is the particle parameter [= dn(�g/ν2)1/3].
In addition, several empirical formulae of the terminal fall velocity of natural particles are

available in the literature. Hallermeier [12] considered three different ranges of particle parameter
D∗ (sand particles) and expressed the terminal fall velocity wt as

wt(D∗ ≤ 3.42) =
ν

dn

D3
∗

18
, wt(3.42 < D∗ < 21.54) =

ν

dn

D2.1
∗

6
and wt(D∗ ≥ 21.54) = 1.05

ν

dn
D1.5

∗ .

(4.4)

Analysing the experimental data, Dietrich [51] expressed the terminal fall velocity wt of natural
particles as

wt =
ν

dn
10−1.25572+2.92944 log D∗−0.29445log2D∗−0.05175log3D∗+0.01512log4D∗ . (4.5)

Ahrens [52] expressed the terminal fall velocity wt of quartz sand particles as a function of
particle parameter D∗ as

wt =
ν

dn
{0.055D3

∗ tanh[12D−1.77
∗ exp(−4 × 10−4D3

∗)] + 1.06D1.5
∗ tanh[0.016D1.5

∗ exp(−120D−3
∗ )]}.

(4.6)
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Jiménez & Madsen [53] gave an empirical formula to simplify the long expression proposed by
Dietrich [51]. In non-dimensional form, the terminal fall velocity wt of natural particles was set as

W∗ =
wt

(�gdn)1/2
, W∗ =

(

0.954 +
20.48

S∗

)−1

and S∗ = dn
(�gdn)1/2

ν
. (4.7)

5. Response of the terminal fall velocity to key factors

(a) Effects of particle shape

Natural particles are hardly spherical. A large variety of non-spherical natural and artificial
particles is used in engineering applications; for instance, disc [54], oblate spheroid [55], ice
crystals [56], snowflakes [57,58], mineral dust [59], volcanic ash [60] and shell fragments as littoral
sediments [15,17]. As a result, the particle shape is worth considering while estimating the drag
coefficient and, in turn, the terminal fall velocity [17,61,62]. It was found that, for an irregular
particle falling through a fluid, the most stable configuration of the particle corresponds to the
maximum projected area in the direction of particle motion [63]. Therefore, as compared with a
spherical particle of diameter d, an irregular particle possesses a larger surface area that displaces
fluid around it, inducing larger skin friction drag and pressure drag for the same terminal fall
velocity. For the same particle parameter, an irregular particle produces more surface curvature,
giving rise to the drag coefficient because of the flow separation from the surface of the particle.
Consequently, the terminal fall velocity drops down. In addition, the surface irregularity might
induce instability to the particle, yielding rotation and vibration of the particle, which eventually
reduces the terminal fall velocity.

It is worth highlighting that Mrokowska [54] studied specifically the effects of particle shape
on a particle settling through a stratified fluid. In a two-layer fluid with a density transition, it
was found that a disc exhibits five phases of settling. The orientation of the disc was observed to
vary from horizontal to vertical with two local minimum values of disc velocity in the transition
layer. It was also evidenced that particle settling is affected by the density difference, stratification
strength and transition layer thickness. For non-spherical particles, Gustavsson et al. [64] reported
that the orientation of settling particles can be predicted by applying a Gaussian distribution.

Researchers proposed shape factors in the empirical formulations in order to mimic the
terminal fall velocity of an irregular particle [11,51,65,66]. Among many shape factors, the most
commonly used is the Corey shape factor. It measures the cross-sectional area of a spherical
particle relative to the maximum cross-sectional area of an ellipsoidal particle. The Corey shape
factor Sp is expressed as Sp = az/(axay)1/2, where ax, ay and az are the longest, intermediate and
shortest axes of the particle. To be specific, Sp varies in the range 0 < Sp < 1; for instance, Sp ≈ 0.7
for naturally worn particles [6]. Another shape factor that might have some influence, although
trivial, on the terminal fall velocity is the roundness factor P. It defines the mean radius of
curvature of several edges of a particle to the radius of an inscribing circle covering the maximum
projected area of the particle.

For quartz sand particles, Komar & Reimers [11] used equation (3.1) and expressed
equation (4.2) as

wt =
d2

n

18ν

�g

f (Sp)
, f (0.4 ≤ Sp < 0.8) = 0.946S−0.378

p and f (Sp < 0.4) = 2.18 − 2.09Sp. (5.1)

Dietrich [51] found that, for coarse sand with a Corey shape factor Sp = 0.7 and a roundness
factor P = 3.5, the terminal fall velocity is nearly 0.68 times that of a spherical particle with the
same particle parameter D∗. For lower values of D∗, the reduction in terminal fall velocity owing
to the Corey shape factor and roundness factor is insignificant. However, when the Corey shape
factor remains small, a lower value of the roundness factor produces a smaller terminal fall
velocity.
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Wu & Wang [65] reported that the coefficients A1, A2 and the exponent A3 in equation (4.3) are
dependent on the Corey shape factor Sp. They obtained A1, A2 and A3 as

A1 = 53.5 exp(−0.65Sp), A2 = 5.65 exp(−2.5Sp) and A3 = 0.7 + 0.9Sp. (5.2)

On the other hand, Camenen [66] suggested that the coefficients A1, A2 and the exponent A3 in
equation (4.3) can be expressed as a function of the Corey shape factor Sp and roundness factor P.
Using the experimental data of various researchers, Camenen [66] expressed A1, A2 and A3 as

A1 = 24 + 100
[

1 − sin
(π

2
Sp

)]2.1+0.06P
, A2 = 0.39 + 0.22(6 − P) + 20

[

1 − sin
(π

2
Sp

)]1.75+0.35P

and A3 = 1.2 + 0.12Psin0.47
(π

2
Sp

)

. (5.3)

(b) Effects of hindered settling

It has been revealed experimentally that, in a fluid carrying suspended sediment particles, flow
around contiguous falling particles causes a larger fluid drag than that in a clear fluid (without
particles). This phenomenon is called the hindered settling effect [67]. As a consequence, terminal
fall velocity wtc in a sediment-laden fluid diminishes from that in a clear fluid. Richardson &
Zaki [67] proposed the terminal fall velocity wtc in a sediment-laden fluid as

wtc = wt(1 − C)ϑ , (5.4)

where wt is the terminal fall velocity in a clear fluid, C is the sediment concentration and ϑ is the
hindered settling exponent.

Figure 7a depicts the ratio of the terminal fall velocity in a sediment-laden fluid wtc to the
terminal fall velocity in a clear fluid wt as a function of the sediment concentration C, obtained
from the experimental observations [68–71]. The experimental data plots are almost confined to a
shaded zone, whose extreme boundaries obey equation (5.4) and correspond to ϑ = 2.5 and 6. In
fact, the hindered settling exponent ϑ has been found to be dependent on the particle Reynolds
number R [67]. The ϑ(R) relationship obtained by Richardson & Zaki [67] was approximated as
follows [72]:

ϑ(R < 0.2) = 4.65, ϑ(0.2 < R < 1) = 4.4R
−0.03

and ϑ(1 < R < 500) = 4.4R
−0.1, ϑ(R > 500) = 2.4.

⎫

⎬

⎭
(5.5)

On the other hand, Garside & Al-Dibouni [73] expressed the hindered settling exponent ϑ as

ϑ =
5.1 + 0.27R0.9

1 + 0.1R0.9
. (5.6)

In figure 7b, the experimental data of the hindered settling exponent ϑ are plotted as a function
of particle Reynolds number R [68–71,74,75]. In addition, the ϑ(R) relationships proposed by
Richardson & Zaki [67] and Garside & Al-Dibouni [73] are shown. Tomkins et al. [76] found
the hindered settling exponent ϑ given by Richardson & Zaki [67] to be much larger for natural
sand than for regular particles, as also evident from figure 7b. The effects of hindered settling are
therefore quite large for natural particles. In essence, the effects of hindered settling become more
promising for irregular particles. Tomkins et al. [76] reported that, for a sediment concentration of
C = 0.4, the terminal fall velocity wtc of fine and medium sands diminishes to approximately 70%
of the estimation of wtc from the available empirical formulae of ϑ .

Cheng [77] reported that the hindered settling exponent ϑ not only depends on the particle
Reynolds number R but also on the sediment concentration C and the submerged relative
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numberR . (Online version in colour.)

density �. He proposed that the hindered settling exponent ϑ can be obtained from the following
equation:

(1 − C)ϑ = 2
(

1 − C

2 − 3C

)

⎧

⎪
⎪
⎨

⎪
⎪
⎩

√

R2/3(10 + R2/3)
[

(1/4)((1 − C)(2 − 3C)2/1 + �C)
]2/3

+ 25 − 5

(25 + R4/3 + 10R2/3)1/2
− 5

⎫

⎪
⎪
⎬

⎪
⎪
⎭

3/2

.

(5.7)

Figure 8a,b illustrates the variations of hindered settling exponent ϑ as a function of particle
Reynolds number R, obtained from equation (5.7), for different values of sediment concentration
C(= 0.01, 0.05, 0.1 and 0.5) and submerged relative density �(= 0.5, 1, 1.65 and 2.5). From
figure 8a, it appears that, for C ≤ 1, the ϑ(R) relationship is only sensitive for R < 1 and R > 100
(see the enlarged frames). In addition, figure 8b shows that, for a given particle Reynolds number
R, the hindered settling exponent ϑ increases as the submerged relative density � increases.

Using the experimental data, Oliver [78] reported the terminal fall velocity wtc in a sediment-
laden fluid as

wtc = wt(1 − 2.15C)(1 − 0.75C0.33). (5.8)

Sha [79] included the effects of median sediment size d50 in the formulation of wtc and
proposed the following formula:

wtc = wt

(

1 −
C

2d
1/2
50

)3

. (5.9)

Soulsby [80] suggested that the terminal fall velocity wtc in a sediment-laden fluid could be
calculated from equation (4.3) when A1, A2 and A3 take the following forms:

A1 = 26(1 − C)−4.7, A2 = 1.3(1 − C)−4.7 and A3 = 1. (5.10)
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Figure 8. Hindered settling exponentϑ versus particle Reynolds numberR for different values of (a) sediment concentration

C and (b) submerged relative density�. (Online version in colour.)

(c) Effects of turbulence

Experimental observations and numerical simulations of particle settling in homogeneous and
isotropic turbulence with a vanishing mean flow velocity have evidenced that the turbulence is
to enhance the terminal fall velocity [81–89]. However, a few studies reported that the terminal
fall velocity reduces in moderately weak turbulence [90–92]. The direct numerical simulation has
been applied to study the dynamics of particle settling in turbulence [84,92,93], especially with
different volume fractions to study the effects of clustering [55,94,95]. Essentially, the effects of
small-scale turbulence on particle motion are ascertained by the Stokes number S. It signifies the
ratio of particle relaxation time tp[= d2(ρp − ρf )/(18μ)] to Kolmogorov time scale tK[= (ν/ε)1/2],
where ε is the turbulent kinetic energy dissipation rate. Therefore, the Stokes number S is
expressed as

S =
tp

tK
=

�

18

(
d

η

)2

, (5.11)

where η is the Kolmogorov length scale [= (ν3/ε)1/4]. Wang et al. [96] found that, for d/η ≈ 0.5, the
terminal fall velocity was nearly equal to its value in a clear fluid. In addition, the terminal fall
velocity was found to increase with an increase in Reynolds number based on the longitudinal
turbulence intensity and the integral length scale. A reduction in terminal fall velocity was
observed for d/η < 0.5, resulting from the retarding effect due to small-scale eddies. However,
in relatively strong turbulence, the terminal fall velocity was found to increase considerably [91].

Nielsen [90] suggested that the effects of turbulence on terminal fall velocity are primarily
governed by four key mechanisms, such as nonlinear drag, vortex tapping, fast tracking and the
effects of loitering. They are discussed below.

(i) Nonlinear drag

Nonlinear fluid drag can cause a reduction in terminal fall velocity [90]. However, this is expected
to be significant for coarser particles [96]. Nielsen [97] reported that the reduction wrt in terminal
fall velocity can be expressed as

|wrt| =
|wt|

16

(
am

g

)2

, (5.12)

where am is the maximum fluid acceleration. For practical circumstances, the maximum fluid
acceleration am is much smaller than the gravitational acceleration g (e.g. am ≈ 0.01g). Therefore,
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Figure 9. Schematic of vortex trapping. (Online version in colour.)

equation (5.12) suggests that the reduction wrt in terminal fall velocity is wrt ≈ 10−5wt, which is
trivial.

(ii) Vortex trapping

Forced vortices can trap particles, reducing their terminal fall velocity [98]. This phenomenon
is quite common in a wide variety of processes in the realm of fluvial hydraulics; for instance,
vortices formed in the leeside of bedforms create surface boils that carry sediment particles. These
surface boils, trapping sediment particles in their core, eventually reach the free surface. In
addition, sediment entrainment from a rippled bed under the action of waves is governed by
the vortex trapping mechanism. Nielsen [97] assumed that the particle velocity up remains equal
to the summation of flow velocity uf and terminal fall velocity wt, as sketched in figure 9. Under
such an assumption, a particle, trapped in a forced vortex with an angular velocity Ωa, can travel
forever along any circle whose centre is located at (wt/Ωa, 0).

(iii) Fast tracking

Considerable difference in mass density or inertia yields a deviation in the particle track from the
circular path. It turns out that the finer particles are curved inwards, while the coarser particles
are curved outwards. As a consequence, finer particles remain trapped, whereas coarser particles
try to escape as long as the vortices survive. Maxey & Corrsin [99] revealed an astonishing
consequence of the outward curving, called fast tracking (figure 10). The finer particles are
attracted along a fast track (see the dashed line in figure 10), which follows the right- and left-
hand edges of clockwise and counter-clockwise vortices, respectively. In essence, the fast tracking
mechanism enhances the terminal fall velocity by sweeping the particles towards a preferential
direction.

(iv) Effects of loitering

The vortex trapping and fast tracking mechanisms become ineffective if the particles are too swift
to be directed along the fast track or if the vortices are short-lived. As a result, the terminal fall
velocity reduces, suggesting a retarding effect that can be modelled via the effects of loitering
(figure 10). The crux of the effects of loitering is that a particle falling through a non-uniform
velocity field spends more time with fluid, which flows opposite to the particle motion. Therefore,
a coarser particle suffers from a retarding effect; for instance, the particle that falls along the
vertical line of symmetry (figure 10). Nielsen [90] suggested that the effects of loitering become
effective when the terminal fall velocity becomes 0.3 times larger than the longitudinal turbulence
intensity. However, in homogeneous and isotropic turbulence, the effects of loitering play an
insignificant role [92].
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Figure 10. Schematic of fast tracking and the effects of loitering. (Online version in colour.)

6. Impact of the terminal fall velocity on fluvial hydraulics
In this section, the impact of terminal fall velocity on some key aspects of fluvial hydraulics
is delineated. These are the hydrodynamics of sediment threshold, bedload transport and
suspended load transport.

(a) Hydrodynamics of sediment threshold

The sediment threshold refers to a critical flow condition (commonly called the threshold
condition) for which the bed shear stress is just adequate to entrain the surface sediment particles
into the flow. It indicates that, at the threshold condition, the mean flow velocity Uf or the bed
shear stress τb just reach their respective threshold values Ufc and τbc. The state-of-the-science
of the bed sediment entrainment was recently reviewed elsewhere [100]. In essence, researchers
attempted to correlate the threshold mean flow velocity Ufc or the threshold bed shear stress τbc

with the terminal fall velocity wt of sediment particles. Some of these attempts are furnished
below.

Yang [101] used a force balance model considering the submerged weight FG of the particle to
be balanced by the fluid drag FD of a falling particle, when the particle reaches the terminal fall
velocity wt. He obtained the following equation for the threshold mean flow velocity Ufc:

Ufc = wt

(
ψ1ψ2ψ3

ψ2 + ψ3

)1/2 [

1 +
5.75
BR

(

log
h

d
− 1

)]

, (6.1)

where ψ1−3 are phenomenological coefficients, BR is the roughness function and h is the flow
depth. However, to simplify the above equation, Yang [101] used ample experimental data and
expressed the threshold mean flow velocity Ufc as

Ufc(0 < R∗c < 70) = wt

(

0.66 +
2.5

log R∗c − 0.06

)

and Ufc(R∗c ≥ 70) = 2.05wt, (6.2)

where R∗ is the shear Reynolds number (= u∗ks/ν), ks is the roughness height and subscript
‘c’ refers to the threshold condition. For uniform sediments, roughness height can be taken
approximately as the particle size (ks = d).
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numberM∗c versus particle Reynolds numberR , obtained fromM∗c(R∗c) relationships. (Online version in colour.)

Paphitis [102] introduced the threshold movability number M∗c, defined as the ratio of the
threshold shear velocity u∗c to the terminal fall velocity wt, to study the effects of the terminal fall
velocity wt on the threshold bed shear stress τbc (= ρf u2

∗c) in terms of the threshold shear Reynolds
number R∗c. Figure 11a depicts the threshold movability number M∗c(= u∗c/wt) as a function of
the threshold shear Reynolds number R∗c [102]. The lower bound, mean and upper bound curves,
given by Paphitis [102], are expressed, respectively, as

M∗c(0.1 < R∗c < 105) = 0.078 + 0.01 ln R∗c + 12 exp(−2.5R∗c) +
0.65
R∗c

,

M∗c(0.1 < R∗c < 105) = 0.115 + 0.01 ln R∗c + 14 exp(−2R∗c) +
0.75
R∗c

and M∗c(0.1 < R∗c < 105) = 0.18 + 0.01 ln R∗c + 14 exp(−1.5R∗c) +
0.88
R∗c

.

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

(6.3)

Importantly, figure 11a does not render a straightforward estimation of the threshold bed
shear stress τbc, because the threshold shear velocity u∗c is involved in both the independent and
dependent variables, R∗c and M∗c, respectively. To resolve this issue, the threshold movability
number M∗c (= u∗c/wt) can be plotted as a function of particle Reynolds number R (= R∗c/M∗c),
as shown in figure 11b. For a given particle size d, the terminal fall velocity wt can be estimated
using one of the empirical formulae. Once the particle Reynolds number R(= wtd/ν) is obtained,
the threshold shear velocity u∗c and, in turn, the threshold bed shear stress τbc(= ρf u2

∗c) can be
obtained from figure 11b.

Some researchers expressed the threshold movability number M∗c as a function of particle
parameter D∗ (figure 12). Using the experimental data, Beheshti & Ataie-Ashtiani [103] obtained
the threshold movability number M∗c as

M∗c(D∗ ≤ 10) = 9.667D−1.57
∗ and M∗c(D∗ > 10) = 0.474D−0.226

∗ . (6.4)
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In addition, Cheng [104] applied an interpolation function in the form of a power sum and
expressed the threshold movability number M∗c as (also see figure 12)

M∗c = 0.21

[

1 +

(

0.76 +
41

D1.7
∗

)20
]1/20

. (6.5)

(b) Hydrodynamics of bedload transport

When the bed shear stress τb exceeds its threshold value τbc, the surface sediment particles are
transported in various modes; for instance, rolling, sliding and lifting modes, collectively called
the bedload transport. Einstein [105] was the pioneer to propose a semi-theoretical formulation of
the bedload flux. In the mathematical analysis, Einstein [105] equated the number of entrained
particles NE with the number of deposited particles ND per unit time and bed area. NE and ND

can be expressed as

NE =
Ie

k2d2

PE

te
(6.6a)

and

ND =
GbId(1 − PE)

lxρpgk1d3
=

GbId(1 − PE)

λxρpgk1d4
, (6.6b)

where Ie is the bedload fraction to be entrained, k2 is a factor related to the projected area of the
particle, PE is the entrainment probability in lifting mode, te is the exchange time, Gb is the bedload
flux in dry weight (per unit time and bed width), Id is the bedload fraction to be deposited, lx is
the mean saltation length (= λxd), λx is a constant (≈ 100 for spherical particles) and k1 is a factor
related to the particle volume.

Balancing equations (6.6a) and (6.6b), the bedload flux can be obtained as

Gb = ρpgd2
(

PE

1 − PE

)
Ie

Id

λxk1

k2

1
te

. (6.7)

The entrainment probability PE in lifting mode can be readily obtained by considering the
fluid lift FL surpassing the submerged weight FG of the particle. It follows that PE = PE(FL ≥ FG).
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However, the most important parameter in equation (6.7) is the exchange time te. In fact,
Einstein [105] assumed the exchange time te to be proportional to the ratio of particle size d to
terminal fall velocity wt as

te ∝
d

wt
�⇒ te = k3

d

wt
, (6.8)

where k3 is the proportionality constant. The fundamental rationale behind equation (6.8) is that,
since the terminal fall velocity of a coarser particle is larger than that of a finer particle, specifically
in the Stokesian realm (see equation (5.1)), the exchange time for the former is less than that for
the latter. However, from the perspective of bedload transport, this observation is not physically
feasible, because a coarser particle requires a longer time to reach its destination. To resolve this
anomaly, Zee & Zee [106] modified equation (6.8) as

te ∝
wt

g
�⇒ te = k3

wt

g
. (6.9)

Both equations (6.8) and (6.9) highlight the subtle effects of terminal fall velocity wt on the
determination of bedload flux.

The prominent role of terminal fall velocity wt on the bedload flux is also reflected from
Bagnold’s [107] mathematical analysis. Bagnold [107] considered a force balance between fluid
drag and bed frictional resistance to express the bedload flux Gb as

Gb =

(

1 +
1
�

)(

1 −
u∗c

u∗

)
τ0Uf

tan φd

[

1 −
1
κ

u∗

Uf
ln
(

0.4h

m1d

)

−
wt

Uf

]

, (6.10)

where κ is the von Kármán coefficient (= 0.41) and m1 is the ratio of mean saltation height to
particle size.

(c) Hydrodynamics of suspended load transport

In a turbulent flow over a loose streambed, when the bed shear stress τb becomes much larger
than the threshold bed shear stress τbc, turbulence in the near-bed flow zone is to lift up the
finer sediment particles (figure 13). Eventually, the finer particles travel beyond the bedload layer
and are maintained in suspension. Under such circumstances, the particles are bounded by the
fluid parcel over an adequately long duration. Bagnold [108] found that the sediment particles
remain in suspension when the shear velocity u∗ surpasses 0.8 times the terminal fall velocity
wt (M∗ > 0.8). The suspended particles transport upwards in a convective manner motivated by
the vertical velocity fluctuations and, thereafter, they commingle with the neighbouring fluid.
Importantly, the terminal fall velocity wt of particles plays a delicate role in governing the
dynamic equilibrium of sediment suspension, because the affinity of a particle to settle is balanced
by the turbulent diffusion in the vertical direction. A comprehensive survey on the suspended
load transport was reviewed elsewhere [6,109,110].

The impact of terminal fall velocity on the hydrodynamics of sediment suspension can
be viewed from three different perspectives—determinations of the vertical distribution of a
suspended sediment concentration, suspended load flux and the probability of a sediment
particle remaining in suspension. These aspects are furnished below.

(i) Determination of the vertical distribution of a suspended sediment concentration

Under a steady-state condition, the sediment particles remain in suspension triggered by the
vertical velocity fluctuations w′ of a turbulent eddy, which has a velocity scale vl (figure 13). On
the other hand, owing to gravity, the particles tend to settle with their terminal fall velocity wt.
The fluid parcel that carries the suspended particles in its core travels a distance 2l from a lower
level to a higher level (figure 13). Denoting the concentration distribution as C(z), the upward
and downward sediment fluxes Fu (in volume per unit time and area) through a section SS are
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Figure 13. Schematic of the mechanism of sediment suspension in a turbulent flow. Curved arrows depict turbulent eddies

carrying the suspended particles. (Online version in colour.)

expressed as

Fu = (w′ − wt)C(z − l) = (w′ − wt)
(

C − l
∂C

∂z

)

(6.11a)

and

Fd = (w′ + wt)C(z + l) = (w′ + wt)
(

C + l
∂C

∂z

)

. (6.11b)

The dynamic equilibrium suggests Fu = Fd. It therefore produces

w′l
∂C

∂z
= −Cwt. (6.12)

In equation (6.12), the term w′l is approximated as w′l ≈ εt/Sc, where εt is the turbulent
diffusivity and Sc is the turbulent Schmidt number. Therefore, equation (6.12) takes the form

εt

Sc

dC

dz
+ Cwt = 0. (6.13)

The turbulent diffusivity εt is expressed as follows [6]:

εt = κu∗z
(

1 −
z

h

)

. (6.14)

Substituting equation (6.14) into equation (6.13) and integrating the resulting expression yields

C+ =

(

1 − z+

z+

z+
r

1 − z+
r

)Sc/(κM∗)

, (6.15)

where C+ is C/Cr, Cr is the reference concentration at a reference level z = zr (also see figure 13),
z+ is z/h and z+

r is zr/h. Equation (6.15) provides the concentration distribution in the vertical
direction. Equation (6.15) essentially reflects the role of terminal fall velocity wt in governing the
concentration distribution, because the movability number M∗ explicitly takes into account the
effects of the terminal fall velocity wt.

In equation (6.15), it is a common practice to consider Sc = 1. To highlight the effects of the
terminal fall velocity wt on the concentration distribution, the non-dimensional concentration
C+ as a function of the non-dimensional vertical distance (z+ − z+

r )/(1 − z+
r ), obtained from

equation (6.15), is plotted in figure 14 for different values of movability number M∗ (see solid
lines for M∗ = 2, 4, 6, 8, 10, 20 and 40). To prepare figure 14, we consider z+

r = 0.05. It appears that,
for small values of movability number M∗, the concentration decreases abruptly as the vertical
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distance increases. Conversely, for large values of movability number M∗, the concentration
reduces gradually with an increase in vertical distance. It is worth emphasizing that the
distributional pattern of sediment concentration is principally controlled by the terminal fall
velocity wt and the shear velocity u∗. It turns out that, for a given shear velocity u∗, small and large
values of movability number M∗ correspond to coarser and finer sediment particles, respectively.
On the other hand, for a given terminal fall velocity wt (that is, for a given particle size d), a
reduction in shear velocity u∗ leads to a decrease in movability number M∗, resulting in a rapid
diminution of sediment concentration with the vertical distance (figure 14).

Experimental results have evidenced that the turbulent Schmidt number Sc depends on the
terminal fall velocity wt. To be specific, van Rijn [111] expressed the Schmidt number Sc as a
function of movability number M∗ as

Sc(1 < M∗ < 10) =
M2

∗

2 + M2
∗

. (6.16)

Equation (6.16) can be readily substituted into equation (6.15) to obtain the non-dimensional
concentration C+ as a function of the non-dimensional vertical distance (z+ − z+

r )/(1 − z+
r ). The

resulting concentration distributions are plotted in figure 14 for different values of movability
number M∗ (see dotted lines for M∗ = 2, 4, 6 and 8). Note that, as the above formula is limited
to a specific range of movability number M∗ (1 < M∗ < 10), only four values of M∗ are shown
in figure 14. It is apparent that the concentration distributions for Sc equalling unity and those
obtained from equation (6.16) are alike for movability number M∗ = 8. However, this difference
is significant for a lower value of movability number M∗; for instance, M∗ = 2.

In addition, Velikanov [112,113] pioneered the gravitational theory of sediment suspension,
where fluid and solid phases were treated separately. The energy equation for the fluid phase
essentially reflects the contribution from the terminal fall velocity wt. It is expressed as

�ρf g(1 − C)Cwt = ρf g(1 − C)ūSf + ū
d
dz

[(1 − C)τt], (6.17)
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where ū is the time-averaged longitudinal flow velocity, Sf is the energy slope and τt is
the Reynolds shear stress. The term on the left-hand side of equation (6.17) signifies the
required amount of energy to retain the particles in suspension. In non-dimensional form, the
concentration distribution in the vertical direction was obtained as

C+ = exp(−βvZv), βv =
�κwt

(ghS3
f )

1/2
and Zv =

∫ z+

z+
r

dz+

(1 − z+) ln[1 + (hz+)/�k]
, (6.18)

where �k is the roughness parameter. In the above, the terminal fall velocity wt governs the
parameter βv and in turn the non-dimensional sediment concentration C+.

(ii) Determination of the suspended load flux

The suspended load flux is estimated by integrating the product of the sediment concentration C

and the time-averaged longitudinal flow velocity ū over the flow depth h [6]. It can be expressed
as the suspended load flux in volume per unit time and width Qs or that in weight per unit time
and width Gs. Qs and Gs are expressed as

Qs =

∫ h

zr

Cū dz and Gs = ρpg

∫ h

zr

Cū dz. (6.19)

In order to obtain the depth-averaged concentration 〈C〉, Lane & Kalinske [114] integrated
equation (6.15) over the entire flow depth. They expressed the suspended load flux Qs as

Qs = qCrPC exp

(

15z+
r

M∗

)

, (6.20)

where q is the fluid flux per unit channel width and PC is the relative concentration (= 〈C〉/Cr). In
the above, PC was found to be dependent on the terminal fall velocity wt. Lane & Kalinske [114]
expressed the relative concentration PC as a function of movability number M∗ and nM/h1/6 (h is
in inches), where nM is the Manning roughness coefficient in SI units.

Figure 15a illustrates the relative concentration PC as a function of movability number M∗ for
different values of nM/h1/6 (= 0.1, 0.2 and 0.3), given by Lane & Kalinske [114]. It appears that,
for a given movability number M∗, the relative concentration PC decreases with an increase in
nM/h1/6. In addition, for a given nM/h1/6, the relative concentration PC increases as the movability
number M∗ increases. To shed light on the influence of the terminal fall velocity wt on the
suspended load flux Qs, the relative suspended load flux Qs/(qCr) as a function of movability
number M∗ for nM/h1/6 = 0.2, obtained from equation (6.20) and figure 15a, is shown in figure 15b.
Essentially, the relative suspended load flux Qs/(qCr) increases with an increase in movability
number M∗, because, for a given shear velocity u∗, the suspended sediment flux for finer particles
is larger than that for coarser particles.

On the other hand, Bagnold [108] expressed the flow energetics to keep the particles in
suspension as a product of the total submerged weight WG of sediment particles and the terminal
fall velocity wt. Thus, the energy required to retain particles in suspension was expressed as

WGwt = τbUf (1 − eb)es, (6.21)

where eb and es are the efficiencies of bedload and suspended load transport. Using the
experimental data, Bagnold [108] finally expressed the suspended load flux Gs as a function of
the terminal fall velocity wt as

Gs = 0.01τb

(

1 +
1
�

) U2
f

wt
. (6.22)

(iii) Determination of the probability of a sediment particle remaining in suspension

The terminal fall velocity wt can be used to determine the probability of a sediment particle
remaining in suspension. Here, the central idea is to find the probability PS of vertical velocity
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fluctuations w′ surpassing the terminal fall velocity wt. Cheng & Chiew [115] assumed the vertical
velocity fluctuations w′ to follow a normal distribution. They obtained the probability PS as

PS =
1
2

−
1
2

[

1 − exp

(

−
2
π

w2
t

w′2

)]1/2

. (6.23)

In the above, an over-bar denotes the time averaging. On the other hand, considering the vertical
velocity fluctuations w′ to follow the Gram–Charlier series grounded on the Laplace distribution,
Bose & Dey [116] expressed the probability PS involving the terminal fall velocity wt as

PS =
1

16

⎛

⎝16 −
wt
√

w′2
−

w2
t

w′2

⎞

⎠ exp

⎛

⎝−
wt
√

w′2

⎞

⎠ . (6.24)

7. Closure
In commemoration of Sir George Gabriel Stokes’ two-hundredth birthday, this article has
reviewed the essential elements of the terminal fall velocity from the standpoint of fluvial
hydraulics, underlining the wealthy heritage that Stokes has left over the decades. From the
perspective of both theoretical and empirical foundations, a comprehensive overview of the
fluid drag on a particle in Stokesian, transitional and Newtonian realms has been elaborated.
In addition, the generic force system governing the motion of a falling particle through a fluid
and the subtle factors that control the terminal fall velocity have been critically appraised. From
the perspective of fluvial hydraulics, the inextricable link of the terminal fall velocity with the
hydrodynamics of sediment threshold, bedload transport and suspended load transport has
been illuminated. The article has essentially brought into focus how an accurate estimation of
the terminal fall velocity would lead to the application of the so-called empirical formulae with
confidence in predicting the key aspects of the sediment transport phenomenon.

Among the key processes of sediment transport, the effects of the terminal fall velocity are
reflected mostly on the hydrodynamics of sediment suspension. Despite magnificent advances
in understanding the role of the terminal fall velocity in driving the mechanism of suspended
particles, several key questions still require precise answers. Some of these questions include the
following. How can the hindered settling exponent be determined from a theoretical background?
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What could be the possible estimation of the terminal fall velocity for a strong sediment
suspension? Which of nonlinear drag or the loitering effect is more significant in reducing the
terminal fall velocity of a coarser particle? How does the terminal fall velocity influence the
turbulent Schmidt number over a wide range of particle sizes? What is the precise response of
the terminal fall velocity to various degrees of turbulence, such as weak, moderately strong and
strong turbulence? These open questions not only show the subject’s future research directions
but also offer an insightful glance into the most fundamental research aspects. To resolve the
above-mentioned issues, researchers need to rethink how the most fundamental description
of fluid drag on a particle can be extended and applied to solve real-world problems. In this
regard, analytical, experimental and numerical frameworks must work together to find the most
satisfactory answers to the current challenges.
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41. Ceylan K, Altunbaş A, Kelbaliyev G. 2001 A new model for estimation of drag force in the

flow of Newtonian fluids around rigid or deformable particles. Powder Technol. 119, 250–256.
(doi:10.1016/S0032-5910(01)00261-3)

42. Brown PP, Lawler DF. 2003 Sphere drag and settling velocity revisited. J. Environ. Eng. 129,
222–231. (doi:10.1061/(ASCE)0733-9372(2003)129:3(222))

43. Fidleris V, Whitmore RL. 1961 Experimental determination of the wall effect for spheres
falling axially in cylindrical vessels. Br. J. Appl. Phys. 12, 490–494. (doi:10.1088/0508-3443/
12/9/311)

44. Almedeij J. 2008 Drag coefficient of flow around a sphere: matching asymptotically the wide
trend. Powder Technol. 186, 218–223. (doi:10.1016/j.powtec.2007.12.006)

45. Cheng N-S. 2009 Comparison of formulas for drag coefficient and settling velocity of
spherical particles. Powder Technol. 189, 395–398. (doi:10.1016/j.powtec.2008.07.006)

46. Yang H, Fan M, Liu A, Dong L. 2015 General formulas for drag coefficient and
settling velocity of sphere based on theoretical law. Int. J. Min. Sci. Technol. 25, 219–223.
(doi:10.1016/j.ijmst.2015.02.009)

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

5
 O

ct
o
b
er

 2
0

2
2
 



31

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

475:20190277
...........................................................

47. Rouse H. 1938 Fluid mechanics for hydraulic engineers. New York, NY: Dover Publishers.
48. Yaghoobi H, Torabi M. 2012 Novel solution for acceleration motion of a vertically

falling non-spherical particle by VIM–Padé approximant. Powder Technol. 215–216, 206–209.
(doi:10.1016/j.powtec.2011.09.049)

49. Yaghoobi H, Torabi M. 2012 Analytical solution for settling of non-spherical particles
in incompressible Newtonian media. Powder Technol. 221, 453–463. (doi:10.1016/j.powtec.
2012.01.044)

50. Dogonchi AS, Hatami M, Hosseinzadeh Kh, Domairry G. 2015 Non-spherical particles
sedimentation in an incompressible Newtonian medium by Padé approximation. Powder
Technol. 278, 248–256. (doi:10.1016/j.powtec.2015.03.036)

51. Dietrich WE. 1982 Settling velocity of natural particles. Water Resour. Res. 18, 1615–1626.
(doi:10.1029/WR018i006p01615)

52. Ahrens JP. 2000 A fall-velocity equation. J. Waterw. Port Coastal Ocean Eng. 126, 99–102.
(doi:10.1061/(ASCE)0733-950X(2000)126:2(99))

53. Jiménez JA, Madsen OS. 2003 A simple formula to estimate settling velocity of natural
sediments. J. Waterw. Port Coastal Ocean Eng. 129, 70–78. (doi:10.1061/(ASCE)0733-950X
(2003)129:2(70))

54. Mrokowska MM. 2018 Stratification-induced reorientation of disk settling through ambient
density transition. Sci. Rep. 8, 412. (doi:10.1038/s41598-017-18654-7)

55. Fornari W, Ardekani MN, Brandt L. 2018 Clustering and increased settling speed of oblate
particles at finite Reynolds number. J. Fluid Mech. 848, 696–721. (doi:10.1017/jfm.2018.370)

56. Jucha J, Naso A, Lévêque E, Pumir A. 2018 Settling and collision between small ice crystals
in turbulent flows. Phys. Rev. Fluids 3, 014604. (doi:10.1103/PhysRevFluids.3.014604)

57. Langleben MP. 1954 The terminal velocity of snowflakes. Q. J. R. Meteor. Soc. 80, 174–181.
(doi:10.1002/qj.49708034404)

58. Lee J-E, Jung S-H, Park H-M, Kwon S, Lin P-L, Lee GW. 2015 Classification of precipitation
types using fall velocity–diameter relationships from 2D-video distrometer measurements.
Adv. Atmos. Sci. 32, 1277–1290. (doi:10.1007/s00376-015-4234-4)

59. Li J, Osada K. 2007 Preferential settling of elongated mineral dust particles in the atmosphere.
Geophys. Res. Lett. 34, L17807. (doi:10.1029/2007GL030262)

60. Del Bello E, Taddeucci J, de’ Michieli Vitturi M, Scarlato P, Andronico D, Scollo S, Kueppers
U, Ricci T. 2017 Effect of particle volume fraction on the settling velocity of volcanic ash
particles: insights from joint experimental and numerical simulations. Sci. Rep. 6, 39620.
(doi:10.1038/srep39620)

61. Clift R, Grace JR, Weber ME. 1978 Bubbles, drops and particles. New York, NY: Academic Press.
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