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Abstract— Variability and difficulty in achieving good Ohmic contacts are major bottlenecks towards the realization of 

high performance MoS2-based devices. The role of surface states engineering through a simple Sulfur based technique is 

explored to enable reliable and superior contacts with high work function metals. Sulfur Treated (ST) multilayered MoS2 

FETs exhibit significant improvements in Ohmic nature, nearly complete alleviation in contact variability, ~2x gain in 

extracted field effect mobility, >6x and >10x drop in contact resistance and high drain currents with Ni and Pd contacts 

respectively. Raman and XPS measurements confirm lack of additional channel doping and structural changes, after 

Sulfur Treatment. From temperature dependent measurements, reduction of Schottky barrier height at Ni/MoS2 and 

Pd/MoS2 are estimated to be 81 meV and 135 meV respectively, indicating alteration of surface states at the 

metal/MoS2 interface with Sulfur Treatment. Key interface parameters such as Fermi Pinning factor, Charge Neutrality 

Level and Density of Surface States are estimated using classical metal/semiconductor junction theory. This first report 

of surface states engineering in MoS2 demonstrates the ability to create excellent contacts using high work function 

metals, without additional channel doping, and sheds light on a relatively unexplored area of metal/TMD interfaces. 

 

Index Terms— metal/MoS2 contacts, surface states engineering, Schottky barrier height, variability, Sulfur Treatment. 
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I. INTRODUCTION 

he advent of 2D materials has opened alternate opportunities for transistor scaling, since traditional silicon technology has 

possibly hit technological and economic saturation beyond the sub-20 nm node [1-3]. Transition Metal Dichalcogenides 

(TMDs), unlike graphene, posses an intrinsic bandgap and hold promise for excellent electrostatic control in mitigating Short 

Channel Effects (SCE) [4,5]. In particular, MoS2 (Molybdenum disulphide), with a bandgap of 1.2 eV in bulk, which is 

comparable to that of silicon, has gained prominence. FETs with MoS2 channel material demonstrate high on to off current ratio 

and high mobility [6-8]. However, several key issues need to be addressed before the realization of TMDs-based FETs in viable 

technology. In this work we focus on engineering metal/MoS2 interface to control variability and eliminate Schottky nature of 

contacts. Although preliminary reports suggested that the metal/MoS2 interface forms Ohmic contacts with high work function 

metals [6,9,10], careful analysis confirmed the presence of a conspicuous Schottky barrier [11, 13]. Hence, the MoS2 FET is 

essentially a Schottky Barrier Transistor and the intrinsic channel properties are heavily masked by contacts, thus rendering the 

scaling of the transistor quite inefficient [16]. 

 

Several interesting strategies have been formulated to circumvent this problem and can be categorized under: (1) Contact metal 

engineering (2) Doping of the channel to reduce the tunneling distance of carriers injected from metal to the channel. Under the 

first banner, several groups have tried a variety of contact metals including Sc[11], In[17], Al[17,18], Ti[11,13,17], Cr[7], 

Mo[19], Ni[11,20,21], Au[6,12,18], Pd[22] and Pt[11,18], with low work function metals forming relatively smaller Schottky 

barriers and enabling lower contact resistance. However, since the Fermi Level tends to get pinned just below the Conduction 

Band Minimum [23,24] at the interface, relying only on metal selection may not be a very effective approach. Besides the use of 

very low work function metals, such as Sc, is not compatible with existing CMOS technology. In the second strategy, doping of 

MoS2 has been used to reduce the depletion width and aid tunneling current. Several demonstrations include the use of Potassium 

as adatom [25], polyethyleneimene (PEI) molecular doping [26], Plasma-assisted doping to form p-n junctions [27] and 12 hours 

of di-chloroethane dip which shows record current for Nickel contacted devices [20]. Apart from the degradation of doping with 

time, a key issue in most of these techniques is the lack of control, resulting in doping throughout the channel, instead of just 

below the contacts. A unique approach towards contact engineering was demonstrated by phase transformation of 1-H to 2-T 

metallic phase with 1 hour butyl lithium dip, yielding one of the lowest contact resistance values reported in literature [12]. 

Another major concern, although, not widely reported and discussed is that, the performance of MoS2 FETs suffers from severe 

contact variability across the same wafer showing a large spectrum of contact nature from apparently Ohmic to completely 

Schottky [28,29]. This effect is typically pronounced in low Work Function (WF) metal contacts such as (Ti/Sc/Cr) which are 

used to achieve smaller Schottky Barrier Heights and reduced contact resistance. The gettering nature and reactivity with 

T 
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substrate of low WF metals even at low deposition pressures could be the primary cause for the same. Such large variability in 

contacts would result in low yield of devices which is unacceptable to technological and industrial demands. A recent report 

points at the role of surface defects and stoichiometric variations in accounting for device performance variability [24]. 

 

In this work we address a rather unexplored front in mitigating the issue of contacts to MoS2; the possibility of surface 

preparation/treatment as a strategy to achieve predictable and superior performance contacts with high WF metals. Surface 

preparation has a long history in semiconductors and is reviewed in the reference [30]. We choose Sulfur Treatment owing to 

two primary considerations: first, the compatibility of Sulfur with the chemistry of MoS2 and second, a historically large success 

rate in creating better contacts through Sulfur Passivation in several semiconductors like Germanium[31-33], Silicon[34,35] and 

other compound semiconductors[36]. In order to preserve the metal-semiconductor interface we select two high work function 

metals Nickel (5.0 eV) and Palladium (5.6eV) [24] which do not react with MoS2 and are not prone to oxidation during 

deposition. We demonstrate that through an easy and inexpensive technique it is possible to alter and possibly uniformize the 

surface states at the metal/MoS2 contacts.  

II. SULFUR TREATMENT & DEVICE FABRICATION 

Back-gated FETs were fabricated by mechanical exfoliation of flakes from MoS2 bulk crystal via the scotch tape method on 300 

nm-SiO2/p++ Si substrate (both acquired from Graphene Supermarket supplies). The SiO2/Si wafer was subjected to Piranha 

clean and standard Acetone-IPA rinse prior to exfoliation. Next, the samples were segregated in two parts: Reference and Sulfur 

Treated (ST). For the samples marked as ST the entire flakes were subjected to Ammonium Sulphide solution (NH4)2S [Sigma 

Aldrich Supplies, 40%solution in H2O] treatment for 5 mins at a temperature of 500C, followed by DI water rinse and N2 blow-

dry. The time and temperature parameters were optimized to ensure that no sulfur precipitation was observed. Acetone and IPA 

rinse were performed on both sets of samples to remove any residual and non-bonded chemical species from the surface and also 

remove traces of organic resist. Thickness layers of 5-7 nm were identified first using Optical Microscope and consequently 

confirmed by Atomic Force Microscopy (AFM, Bruker 500). Electron Beam lithography (Raith eLINE/Pioneer) was used to 

define patterns of fixed contact width and channel length of 1 μm each. Two sets of high work function metals Nickel (Ni) and 

Palladium (Pd), 60 nm each, were deposited which serve as contacts for both Reference and S-Treated samples using Techport e-

beam evaporator at the pressure of 2x10-6 mbar and deposition rate of 2 Å/s. Aluminum (150 nm) was deposited as the back 

metal contact. All samples were annealed in vacuum (2x10-6 mbar), inert Argon ambient (1x10-3 mbar) at 400 °C for 1 hr. All 

electrical device parameters with the exception of temperature dependent studies are performed in ambient conditions with the 
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Agilent B1500 Semiconductor Device Analyser. Temperature dependent measurements (100 K-400 K) were performed with the 

LakeShore Probe station. 

III. RESULTS AND DISCUSSION 

The primary observation in the output characteristics (Ids-Vds (0-5V) with Vgs sweep) was unambiguous: huge variability in the 

nature of contacts in case of Reference devices, results varying from apparently Ohmic to purely Schottky with different degrees 

of saturation [Figure 1(a)]. In contrast, the S-Treated devices demonstrated consistent Ohmic behavior with complete saturation 

[Figure 1(b)]. However, this contrast was clearly more prominent in Palladium devices because of a larger work function and 

Schottky Barrier Height (SBH) which is later explained quantitatively.  

 

Figure 1: Contrast in nature of contacts in output characteristics for 5-7 nm MoS2 flake: (a) Reference: Schottky Contacts with poor saturation. (b) ST device: 

Ohmic Contacts with excellent saturation (c) Contact Metric: derivative of output characteristics on sub threshold conditions: Ratio of RTotal at Vds = 0 to 

minimum RTotal (d) Huge variability in contact nature for Reference (20.71±24.49) against reliable Ohmic contacts in ST (1.43±0.45). Ohmic Contact Line at 

Contact Metric = 1, a guide to the eye. 

 

To quantify the mitigation in variability and change of nature of contacts between Reference and ST samples a new ‗Contact 

Metric (CM)‘ is defined (CM) = RTotal(Vds ~0)/RTotal(minimum), where RTotal is small signal output resistance of the transistor,  

extracted from the derivative of Ids-Vds. The goal of the Contact Metric is to compare in a simple and intuitive fashion the 

‗Schottky nature‘ of contacts between Reference and ST devices. The appropriate region for extraction of RTotal is in the ‗ON‘ 

condition i.e. above threshold voltage where the linearity (Ohmic nature) of the output characteristics is essential. However, for 

large overdrive voltages even contacts with large barrier heights may give an impression of linearity due to excessive barrier 

width thinning, which can be misleading. Hence, the extraction of RTotal is performed for a small overdrive voltage (Vov = Vgs-

Vth). As evident in [Figure 1(c)], for purely Ohmic Contacts, the value for the Contact Metric is equal to 1. This is because the 
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transistor is deeply in linear region for Vds≈0, and then moves away from linear to saturation region with increasing Vds, thus 

resulting in higher output resistance at larger Vds values. On the other hand, for Schottky contacts, the highest output resistance 

occurs for Vds≈0, and then it decreases for larger Vds, due to increasing electric field across the barrier. Hence, the contact metric 

value is substantially greater than 1. The Contact Metric was employed for 12 Palladium contacted Reference and ST devices 

each and the results are shown in [Figure 1(d)] measured for an equivalent small over drive voltage of Vov = 10V. The mean 

value (20.71 for Reference and 1.43 for ST) is indicative of the deviation from purely Ohmic behavior (=1) and the standard 

deviation reflects the variability in different devices for the same wafer (24.49 for Reference vs 0.45 for ST). These numbers 

elucidate the large variability in the nature of contacts within the same wafer for MoS2 FETs and its consequent suppression with 

Sulfur Treatment.  

 

The improvement in contacts was also reflected on the Field Effect (FE) Mobility values (uncorrected for contact resistance, 

unlike in reference [20]) which demonstrated a ~2× improvement for both Nickel and Palladium [Figure 2(a)] contacted devices 

after ST. It is to be noted that the standard deviation in the mobility values does not attribute to the variability in contacts but 

flake to flake variation of MoS2 layers in different devices, which affect both Reference and ST data equally [38]. For 1μm 

channel length FET, we obtain a saturation drain current value of 107 (167) μA/μm in ambient (vacuum), for a gate overdrive of 

0.5V/nm [(Vgs-Vth)/tox], which is on par with the best drain current value reported for Chlorine doped MoS2 FETs [20], at twice 

the gate drive (1V/nm).  These observations bring to the fore, the criticality of contacts in harnessing the intrinsic properties of 

MoS2 based transistors. 

 

Figure 2: (a) Unmasking of FE Mobility in 5 best devices from each group with similar thickness: Nickel Contacte: Reference = (16.6±1.8) vs ST = (28.4±2.9) 

and Palladium Contacted: Reference = (9.8±3.2) vs ST = (23.1±5.4) (all in cm2V-1s-1). (b) Rcontact calculated through the Y-Function Method demonstrates a ~6x 

(from 24.68±6.2 to 4.65±2.6) and ~10x (64.90± to 6.64±1.9)  (all in kΩ-μm) reduction in Nickel and Palladium contacted devices respectively. 

 

To gain further insight into the improved transistor characteristics with ST, Contact Resistance (Rcontact) is extracted from two 

probe measurements using the Y-Function Method. The efficacy of the Y-Function Method in estimating Rcontact for multilayer 

MoS2 FETs have been demonstrated [40, 41] by comparing the results to conventional 4-Probe and TLM measurements. Sulfur 

Treatment could significantly lower the Rcontact for Ni contacts by  ~ 6x (from 24.68 kΩ-μm to 4.65 kΩ-μm) and Pd contacts by ~ 
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10x (from 64.9 kΩ-μm to 6.64 kΩ-μm) [Figure 2(b)]. The values of Rcontact for ST devices are comparable to the lowest reported 

values of ~ 2 and 3 kΩ-μm with low WF metals such as Mo and Ti [19], where the channel below the contacts is unmodified. 

Furthermore, device-to-device variability in Rcontact was substantially lower for ST devices compared to Reference devices. With 

the Y-Function method it is also possible to calculate the ‗intrinsic mobility‘ or the ‗true‘ mobility of the channel not suppressed 

by contact resistance. The value of ‗intrinsic‘ mobility for both ST and Reference devices lies in the range of 49-55 cm2V-1s-1. 

This is in stark contrast to the ‗extracted‘ FE mobility values which (includes the effect of contact resistance losses) show a ~2x 

improvement in case of ST devices, demonstrating the large influence of contacts on transistor performance. Furthermore, it 

illustrates that Sulfur Treatment does not cause any degradation in ‗intrinsic‘ channel mobility. 

IV. MECHANISM OF IMPROVED CONTACTS 

To understand the drastic improvements in the contact performance of ST samples we look at two primary aspects in the 

metal/MoS2interface: (1) Reduction in Schottky Barrier width and hence, tunneling distance as a result of doping and/or (2) 

Reduction in Schottky barrier height due to change in Density of Surface States. 

 

To ascertain if the ST results in only surface level basal plane modifications or deep bulk level changes through doping, two 

strategies are adopted. First, Angle Resolved X-Ray Photoelectron spectroscopy (AR-XPS) measurements are performed on both 

Reference and ST samples at 0, 30 and 60 degrees before metallization. Several reports have suggested a 0.6-1.2 eV shift in 

Binding Energy, for both Mo and S peaks, positive shift for n-type doping and negative shift for p-type doping [20, 25, 27].The 

results for all angles show no alteration in Binding Energy or nature of Mo 3d/5d and S2p peaks, providing unambiguous 

evidence that MoS2 does not undergo bulk level changes in electronic configuration after ST [Figure 3(a)]. Furthermore, micro-

Raman [Figure 3(b)] and Photolumiscence performed on same flakes before and after ST demonstrated absence of 

chemical/structural change post ST. These results could be energetically reconciled considering that the relatively low 

temperature (50 0C) and time (5 mins) of Sulfur Treatment energetically favor diffusion of Sulfur Vacancies [37] on the top basal 

plane rather than diffusion of S atoms through the Van der Waals layers and/or alterations to a stable MoS2 bond (ΔG0= -225.9 

kJ/mol). It has to be categorically stated that these techniques can provide insight regarding changes to MoS2 bulk film only and 

not the top basal plane. 

 

The Schottky nature of metal/ MoS2 contacts has been widely reported in literature [11, 14, 41]. [Figure 4(a)] demonstrates the 

change in current conduction from Thermionic Emission to Tunneling with increase in gate voltage as measured in the 

temperature dependent transfer characteristics [15]. 
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Figure 3: (a) X-Ray Photoelectron Spectroscopy (b) micro-Raman analysis for Reference and ST, no shift in Mo-3d/S-2p peaks, hence no doping or structural 

alteration as a result of ST. 

 

The conventional Thermionic emission model (Ids=AT2exp(-Φb/kBT)[(exp(qVds/kBT)-1]) was used for extraction of barrier height 

for different gate voltages[11, 14]. Where, A is the Richardson‘s Constant, T is the temperature in Kelvin, ∅𝐵 is the Schottky 

Barrier Height (SBH), kB is the Boltzmann‘s constant and Vds is the source to drain voltage fixed at 100 mV. For gate voltages 

deep in the sub-threshold region, the drain current is dominated by thermionic component which results in a linear dependence of ∅𝐵with Vgs. At the onset of Flatband condition, the tunneling current contribution begins to play a significant role and non-

linearity is observed in ∅𝐵vs Vgs plot [Figure 4(b)]. The Barrier Height extracted at this flat band condition is termed the ‗true‘ 

SBH [11]. The true SBH is measured for Nickel and Palladium contacted devices as shown in [Figure 4(c)] for Reference and ST 

devices. For Nickel contacted devices, barrier height was measured to be 260.30±24.35 meV and 179.25±18.88 meV for 

Reference and ST devices respectively, recording a difference of nearly 81 meV. Palladium, as expected demonstrated a larger 

reference SBH of 331.82±17.86 meV which dropped to 196.08±8.64 meV after ST, with a difference of nearly 135 meV.  

Furthermore, reduced Schottky Barrier Height resulting in better charge injection into the channel was noted by early turn on of 

ST devices and a ~20 V left shift in Flatband Voltage (VFB) as also demonstrated by S. Das et.al with different metals [11]. 

 

Temperature dependent mobility measurements present further benefits of Contact improvements. The experimentally extracted 

values with and without ST are compared against a model considering two dominant scattering mechanisms, Remote Impurity 

Scattering and Optical Phonon Scattering [Figure 4(d)] replicating the models used by S. Kim et.al [13]. Substantially reduced 

Rcontact losses in Sulfur Treated devices are evident by a lower suppression of channel mobility and the extracted mobility 

approaching the theoretical model. Furthermore, ST devices exhibit lower mobility degradation vs. temperature (∝T-1.01) 

compared to Reference devices ( ∝T-1.21) extracted for T ≥ 250K. 
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Figure 4: (a) Temperature dependent transfer characteristics demonstrating shift from thermionic regime to tunneling regime with increase in Vgs. (b) SBH vsVgs 

deviation from linear behaviour marks the onset of Flat Band Condition where the 'true' SBH is measured for Ni ST and  Ni Reference (c) Nickel contacted 

devices: SBH recorded to be 260.3±24.3 meV for Reference and 179.3±189 for ST; Palladium contacted devices: larger reference barrier height of 331.8±17.8 

meV which dropped to 196.1±8.6 meV after ST. (d) Temperature dependent mobility values are compared against a model considering two dominant scattering 

mechanisms, Remote Impurity Scattering and Optical Phonon Scattering 

V. ESTIMATION OF SURFACE PARAMETERS WITH AND WITHOUT SULFUR TREATMENT 

The fundamental charge neutrality equation was used to determine the change in surface states before and after S-Treatment 

[42]: ∅𝐵𝑛 = 𝑆 ∅𝑚 − 𝜒 +  1 − 𝑆 (𝐸𝑔 − ∅0) (1) 𝐷𝑖𝑡 =
(1−𝑆)𝜀𝑖𝑆𝛿𝑞2

 (2) 

Where, the known parameters in the equation (1) are, 𝑞 the elementary charge, ∅𝐵𝑛  the extracted SBH, ∅𝑚  the Work Function of 

the contact metal, 𝜒 and 𝐸𝑔 the Electron Affinity and bandgap of MoS2 taken to be 4.1 eV and 1.2 eV respectively. The two 

unknown parameters, the Pinning Factor, S which can take values from 0 (complete pinning) to 1 (no pinning)and the Charge 

Neutrality Level above the Valence Band, ∅0are calculated by simultaneously solving the equation (1) before and after ST, for 

Nickel and Palladium devices with work function of 5.0 and 5.6 eV respectively. The Pinning Factor is used to determine the 

Density of Surface States (Dit) by using equation (2), assuming the interface permittivity (𝜀𝑖) to be equal to vacuum and the 

interfacial layer width (𝛿) to be in the order of 0.4-0.5 nm. The results are summarized in the Table 1 below:  
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Parameters 

Fermi 

Pinning 

Factor (S) 

Charge Neutrality 

level (∅𝟎)(in eV) 

Density of Surface 

states (𝑫𝒊𝒕)(in cm-

2eV-1) 

Reference 0.122 1.029 eV 7.98×1013 

S-Treated 0.028 1.041 eV 3.82×1014 

 

Table 1: Key surface parameters (Fermi Pinning Factor, Charge Neutrality Level, Density of Surface states) as extracted on Reference and S-Treated devices. 

 

Several key aspects of metal/MoS2 contacts could be encapsulated through these results [Figure 5]. First, we confirm and 

quantify strong Fermi Level Pinning in MoS2 contacts, with a pinning factor (S) of 0.122, nearly identical to the value (0.1) 

measured by S. Das et. al [11] with 4 metals. Furthermore, if we try to evaluate the expected SBH of Ti contacts using the Fermi-

pinning Equation (1): ∅𝐵(𝑁𝑖) −∅𝐵𝑛 (𝑇𝑖) = 𝑆∅𝑚 (𝑁𝑖) −∅𝑚 (𝑇𝑖) ,∅𝑚 (𝑁𝑖) =5.0 𝑒𝑉 ,∅𝑚 (𝑇𝑖) =4.3 𝑒𝑉∅𝐵𝑛 (𝑁𝑖) =260 𝑚𝑒𝑉 we get ∅𝐵𝑛 

(𝑇𝑖) = 174.6 meV which is nearly equal to ∅𝐵𝑛 of Ni(ST). This provides clear indication that ST is an effective method to mimic 

contacts with low work function metals and still achieve very low contact variability. Second, the proximity of the Charge 

Neutrality Level (∅0) to the Conduction Band Minimum matches theoretical predictions [23, 24].Third, while in traditional 

semiconductors, ST is known to ―passivate the surface‖ reducing surface states and depinning the Fermi level, metal/MoS2 

contacts demonstrate the contrary.  

 

A plausible model to explain these results could be the presence of spatially non uniform sub-oxides of Molybdenum (MoOx) on 

the basal plane. The oxides when sulfurised or etched away by the proposed treatment produce uniformly pristine MoS2 surface 

on which contacts are formed. It is well known that sub-oxides in traditional semiconductors aid in the de-pinning the Fermi 

level. Hence, the removal of these sub-oxides leads to strongly and reliably pinned n-type contacts governed entirely by surface 

states. However, this model remains to be accurately tested with the help of advanced atomic level imaging techniques such as 

Scanning Tunneling Microscopy/Spectroscopy.  

 

Figure 5: Band Diagrams elucidating the impact of S-Treatment of surface states on (a) Ni/MoS2 and (b) Pd/MoS2 contacts. 
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VI. CONCLUSIONS 

In summary, a novel method of surface engineering, in the context of MoS2 back gated FETs, is demonstrated through 

Ammonium Sulphide treatment in a bid to systematically improve contact performance and reliability with high WF metals 

[Table 2]. ST devices show consistent Ohmic characteristics with good saturation against a range of Schottky to Ohmic behavior 

with poor saturation in case of Reference samples. Controlling contact variability is essential for improving device yield for 

CMOS technology. For the four sets of devices; Ni(ST), Pd(ST), Ni(Ref), Pd(Ref), while extracted field effect mobility values 

demonstrate inverse correlation with measured barrier height, contact resistance demonstrates direct correlation, signifying the 

importance of contacts in  device performance. It is established through material characterization techniques that improvement 

could not be attributed to bulk doping effects. Temperature dependent transfer characteristics measurements provided clear 

evidence of reduction in Schottky barrier height and enhanced charge injection into the channel with ST.   Key interface 

parameters with and without ST are determined using classical M/S theory elucidating that contrary to traditional 

semiconductors, following ST, metal/MoS2 contacts are governed entirely by surface states. By uniformly controlling these 

surface states; it is possible to engineer high performance reliable Ohmic contacts relatively insensitive to differences in metal 

work functions. This is evident for 2 metals Ni and Pd where the difference in barrier heights reduces from 71 meV to 17 meV 

and contact resistance difference drops from 40 kΩ-μm to 2 kΩ- μm after ST. This study also reveals that it would be difficult to 

harness the true potential of transistors on TMD materials, without paying close attention to metal/TMD interfaces. 
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Performance 

Metrics 

Contact 

Variability 

Metric 

(Ohmic 

Contact =1) 

Ids 

(saturation) 

Lch =1μm, 

(in μA/μm) 

Extracted 

Field Effect 

Mobility 

(incm
2
V

-1
s

-1
) 

Rcontact 

(inkΩ-μm)) 

Schottky 

Barrier 

Height 

(in meV) 

Pinning 

factor 

Mobility 

∝T
-γ 

γ= 

Ni Pd Ni Pd Ni Pd 

Reference 20.71 90-100 16.6 9.8 24.68 64.90 260.3 331.8 0.122 1.21 

ST 1.43 160-170 28.4 23.1 4.65 6.64 179.2 196.1 0.028 1.02 

 
Table 2: A summary of performance metrics extracted for Reference and Sulfur Treated FETs 
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