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Supergravity can reconcile dark matter with lepton number violating neutrino masses
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Supersymmetry offers a cold dark matter candidate, provided that lepton number is not violated
by an odd number of units. On the other hand, lepton number violation by even (two) units gives
us an attractive mechanism of neutrino mass generation. Here we offer an explanation of this, in a
supergravity framework underlying a supersymmetric scenario, the essential feature being particles
carrying lepton numbers, which interact only gravitationally with all other known particles. It is
shown that one can have the right amount of ∆L = 2 effect giving rise to neutrino masses, whereas
the lifetime for ∆L = 1 decays of the lightest supersymmetric particle can be prolonged beyond the
present age of the universe.

PACS numbers:

I. INTRODUCTION

Speculations abound nowadays about a supersymmetric (SUSY) nature at the fundamental level, described by a
theory invariant under boson-fermion transformations. One of the positive features of SUSY [1] is that in its minimal
form it provides a candidate for cold dark matter in our universe, since, in most models, the lightest SUSY particle
(LSP) is stable, neutral and weakly interacting only, and also lies in the mass range of the electroweak scale [2].
However, the stability of the LSP requires the SUSY theory to conserve R-parity, defined as R = (−1)L+3B+2s, where
L, B and s stand for the lepton number, baryon number and spin of a particle, respectively. Arguing in this line,
lepton number is expected to be conserved in order to ensure that SUSY is the source of cold dark matter.
To be very precise, however, the conservation of R-parity means that L is not violated by an odd number of units.

Thus one may conserve R-parity and retain stability of the LSP even if L is violated by even number of units, which
makes it possible to have ∆L = 2 neutrino masses of the form ν̄cν. Such mass terms form the seed for, say, the seesaw
mechanism [3] which is a beautiful explanation of the smallness of neutrino masses vis-a-vis the masses of the charged
leptons. So the smallness of neutrino masses and the dark matter in the universe can be explained together in SUSY
models if we assume lepton number is violated by two units. In contrast to this, with ∆L = 1 terms one may explain
the smallness of neutrino masses but additional sources for dark matter are required to be postulated. The question
that one may ask now is: if ∆L = 2 is allowed, is there any fundamental reason to believe that ∆L = 1 terms either
cannot occur or are very suppressed? In other words, can a cold dark matter candidate be reconciled with Majorana
masses for neutrinos with the help of some fundamental principles? These questions form the central theme of the
present work.
The superpotential of a lepton number conserving theory, including right-handed neutrino superfields Ni (required

for the seesaw mechanism), is

WMSSM = Y ij
u QiU

c
jH2 + Y ij

d QiD
c
jH1 + Y ij

e LiE
c
jH1 + Y ij

ν LiN
c
jH2 − µH1H2, (1)

where the flavor indices, i, j run from 1 to 3 and SU(2) gauge indices have been suppressed. The Y ’s stand for various
Yukawa couplings. µ is the Higgsino mass parameter. H1, H2 are the two SU(2) doublet Higgs superfields, with
H1 = (H0

1 , H
−
1 ) and H2 = (H+

2 , H
0
2 ). Q,L are SU(2) doublet quarks and leptons, while U c, Dc, Ec are SU(2) singlet

up-quark, down-quark and charged lepton superfields respectively. If L is violated, then one can further add the terms
[4]

W6L = λijkLiLjE
c
k + λ′ijkQiLjD

c
k + ǫiLiH2 +MijN

c
iN

c
j , (2)

where λ, λ′ are some constants and ǫ,M are mass parameters. Here the first three terms violate L by one unit, and
need to be forbidden for the stability of LSP. The last term, violating L by two units, gives Majorana masses for
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neutrinos. The aim, therefore, is to try to understand why the last term should be allowed but not the first three
terms of equation (2).
There have been some explanations of the above claim in, say, supersymmetric Grand Unified Theories (GUTs). For

example, in a SUSY GUT model based on the gauge group SU(5)× SU(5), R-parity can automatically be conserved
and seesaw masses for neutrinos can also be generated [5]. There have been some SUSY models where R-parity arises
from a continuous gauge symmetry [6]. Since R-parity is naturally conserved, the stability of LSP and Majorana
nature of neutrinos can be understood in these models.
Here we take an alternative approach and seek an explanation of such a phenomenon in a supergravity (SUGRA)

framework which is by far the most popular paradigm of SUSY breaking [7]. Apart from being the local extension
of global SUSY, SUGRA can also have its root in some radically fundamental idea like superstring theory. In
this framework, the SUSY-breaking soft terms have their origin in non-renormalizable interactions of the observable
fields with a hidden sector which is sterile under all known interactions excepting gravity. Also, non-renormalizable
interactions with the hidden sector have often been invoked to explain neutrino masses [8, 9, 10]. We utilize this
framework to explain the Majorana nature of neutrinos and the dark matter content of the universe. As described
below, we postulate some symmetries applicable to hidden sector fields, suppresses phenomenological effects of the
unwanted ∆L = 1 terms and explain why lepton number is violated by two units in the neutrino sector. Unlike the
models [5, 6], where R-parity is naturally conserved, this model leads to R-parity violating terms when the global
symmetries (lepton number and R-charge) are spontaneously broken below the Planck scale. We show that the effect
of these R-parity violating terms is small and the lightest neutralino of MSSM can be a long lived particle. The
lifetime of this neutralino field can be larger than the age of the universe and can serve as a candidate for dark matter.
The two central features used by us are (a) the possibility of some hidden sector field carrying lepton number, and
(b) the fact that the theory may have a non-minimal Kahler potential, thus accommodating certain desirable values
of parameters in the observable sector.
In the proposed scenario, we make use of three hidden sector chiral superfields S(L = 0), S′(L = 0) and X(L = 1),

where L within the brackets indicate the lepton number of the field. As it will be shown in detail later, the purpose
of the fields S, S′ is to give masses to the scalar and gaugino fields. Among the hidden sector fields, X carries lepton
number +1, and we propose this field to establish the Majorana nature of neutrinos. While it may be unusual
to attribute lepton number to a hidden sector field, such suggestions have been considered earlier in the context
of leptogenesis [11]. It should also be remembered that a right-handed neutrino superfield itself is a gauge singlet
carrying lepton number, and can pass off as a hidden sector field but for the Yukawa interactions. However, the lepton
number assignments prevent X from entering into Yukawa couplings. To generate ∆L = 2 terms for neutrinos, we
assume that lepton number is conserved at the Planck scale. This assumption forbids the usual N cN c term in the
superpotential, but a non-renormalizable term XX

MP
N cN c is allowed. If X acquires a vacuum expectation value (vev)

∆L = 2 terms can be generated for neutrinos, and to have right-handed neutrino mass at the TeV scale the vev of X
should be at the intermediate scale (1010−11 GeV). The assumption of lepton number conservation may not be enough
to postulate, since terms like XN c are also allowed in the superpotential, and they generate unwanted ∆L = 1 terms
through the vev of X . To avoid these problems, we make use of the R-symmetry, assumed to be conserved at the
Planck scale. The breakdown of these symmetries at somewhat lower scales is motivated by (a) the requirement of
seesaw masses for neutrinos and (b) the need to achieve adequate suppression of ∆L = 1 effects when the symmetries
are broken. It may also be noted that such global symmetries have played a role in explaining neutrino masses in
SUSY models, discussed earlier [8, 9].
We describe our model in detail and essential features of it in Section II. We obtain the low-energy scalar potential

of our model in Section III and argue that the sneutrinos cannot acquire non-zero vevs. Since we need a non-zero
scalar vev for the field X which is a carrier of lepton number, there are ∆L = 1 interaction terms in our model. This
and some other consequences of our model are given in Section IV. Section V contains conclusions.

II. ESSENTIAL FEATURES OF THE MODEL

As it is explained in the introduction, we assume the conservation of lepton number and R-symmetry at the Planck
scale. We construct a Lagrangian which is invariant under these symmetries. Apart from the gauge kinetic terms,
the Lagrangian of the model is

L =

∫

Kd4θ + (

∫

Wd2θ + h.c.), (3)

where W and K are the superpotential and the Kahler potential, respectively.
It is well known that in the low energy limit of a spontaneously broken supergravity model, the cancellation of large

contributions to the cosmological constant requires the presence of at least one scalar field (usually a singlet under
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the observable sector gauge group) with a vev of the order of Planck scale [1, 12, 13]. If the superpotentials for this
(hidden sector) field and the observable sector fields are additive, then the cosmological constant is determined by
the vevs of the hidden sector field(s) [13]. Given such vevs, and with appropriate choice of parameters in the hidden
sector superpotential in such a scenario, supersymmetry can be broken at an intermediate scale with gravitino mass
as low as ∼ TeV. This in turn results in the generation of SUSY-breaking soft terms of the order of gravitino mass
in the observable sector [14]. In our case, the field S plays this role in the hidden sector. Although the problem of
cosmological constant is not the main focus of this paper, we need the scalar vev of S at the Planck scale to attain
the gravitino and scalar masses at the TeV scale. We briefly comment on the cosmological constant in Section IV. As
we shall see and it is already mentioned in the introduction, the other hidden sector field, namely, X , on the other
hand, has its vev at an intermediate scale, and being a carrier of lepton number, has an altogether different role to
play in the observable sector phenomenology. Finally, the field S′ should acquire zero vev in order for the gaugino
fields to acquire masses at the TeV scale. We present below the explicit forms of the superpotential and the Kahler
potential, through which we can attain consistent SUSY breaking.
The forms of the superpotential and the Kahler potential follow from the conservation of R-symmetry and lepton

number, which we have assumed to be valid at the Planck scale. The R-charges of the fields are assigned as: R(S) = 2,
R(S′) = 0, R(X) = 1, R(Qi) = R(Li) = R(U c

i ) = R(N c
i ) = 0, R(Dc

i ) = R(Ec
i ) = 2, R(H1) = 0, R(H2) = 2. With

this, the superpotential has the form

W =Wh +WMSSM +
XX

2MP
N c

i aijN
c
j , (4)

where MP is the Planck scale and aij are O(1) constants, with aij = aji. WMSSM is defined in equation (1). Wh is
the hidden sector part of the superpotential which takes the following leading terms.

Wh = Λ2S + Λ′S′S + qS′2S, (5)

where Λ ∼ 1010−11 GeV, Λ′ ∼ TeV and q is a O(1) constant. For phenomenological consistency of our model
we need the Λ′ to be at the TeV scale. But in this work we are not justifying it. There is another TeV scale
parameter in the superpotential, which is the µ-term of WMSSM. Here we are not addressing the origin of this
term. In the past there were attempts to understand why the µ-parameter is at the TeV scale [8, 15]. We may
follow these approaches and address the origins of Λ′ and µ terms, but that is not main focus of this paper. The
last term of equation (4), which arises from the conservation of lepton number, is especially noteworthy; such a
non-renormalizable term can obviously lead to ∆L = 2 neutrino masses once the scalar component of X acquires
vev. The role of R-symmetry in the superpotential is that it forbids the following lepton number conserving terms,
such as: S

MP
QU cH2,

S
MP

QDcH1,
S

MP
LEcH1,

S
MP

LN cH2. Since, as explained before, S acquires a scalar vev of
the order of Planck scale, these terms generate unacceptably high masses for quarks and leptons, expect for the top

quark. However, terms of the form: S′

MP
QU cH2,

S′

MP
LEcH1, etc are allowed both by lepton number and R-symmetry

conservations, but since S′ acquires zero vev they do not contribute to masses of fermions. R-symmetry also forbids
the term SH1H2, which generates a high value for the µ parameter. R-symmetry also forbids the term XN c, which
generates ∆L = 1 term in the low-energy regime through the scalar vev of X . The role of lepton number conservation
in the superpotential is that it forbids the following terms: LLEc, QLDc and LH2, which are R-symmetric invariant,
and these are the terms that should be avoided for the stability of the LSP. It also forbids terms such as XX or
XXN c, which are in principle allowed by R-symmetry. Terms in higher powers of S as well as X in W are also absent
via R-symmetry as well as the assumption of lepton number conservation at the Planck scale.
Next, we suggest a specific form of the Kahler potential. In general, the Kahler manifold is a real function of the

fields Y and Y †, where Y = S, S′, X in our case. Since X carries lepton number, here one has a Kahler potential
where X enters only in the form X†X (for the conservation of lepton number) and consider a Kahler potential of the
form

K = K0(S, S
′, XX†) +

∑

i

Φ†
iΦi. (6)

Here, Φi = Qi, U
c
i , D

c
i , Li, E

c
i , N

c
i , H1, H2. K0 is some function of hidden sector fields, which should be chosen so that

the Kahler potential is invariant under both the R-symmetry and lepton number. In general, this function depends
non-trivially on the hidden sector fields, and thus the Kahler potential has non-minimal character [16]. The Kahler
potential can contain terms involving both hidden and observable fields, such as:

S†S

M2
P

Φ†
iΦi,

S′

MP
Φ†

iΦi,
X†X

M2
P

Φ†
iΦi. (7)
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Among the above terms, the first two at most contribute to the SUSY-breaking soft terms for the scalar fields and
they do not generate undesired ∆L = 1 terms. So we do not consider them in the Kahler potential as they do not
effect the main conclusions of our work. Moreover, the soft terms for scalar fields can be obtained from the Kahler
potential that we have chosen in equation (6), and it will be shown in Section III. However, the last term of equation
(7) can give rise to ∆L = 1 terms through the scalar vev of X . But this term is suppressed by two powers of Planck
mass. In Section IV we argue that in our model ∆L = 1 terms dominantly come due to the last term of equation(4).
It is clear that this term in the superpotential is suppressed by one power of Planck mass, so it gives dominant effects
compared to the last one of equation (7). To present our ideas in a simple fashion we omit this possible term in

the Kahler potential. The Kahler potential can also contain the term S†

MP
H1H2 which is consistent with the lepton

number and R-symmetry conservations. This term effectively generates µ-term if the auxiliary vev of S is non-zero.
It will be shown below that the auxiliary vev of S is at the intermediate scale and so the effective µ parameter is
at the TeV scale. Such a µ-term is already there in the superpotential and here our main motivation is not on the

explanation of the origin of µ-term. So without loss of generality the term S†

MP
H1H2 can be excluded from the Kahler

potential. Notice that the assumption of conservation of R-symmetry at the Planck scale, enables us to avoid the

terms of the form X†

M2

P

LLEc, X†

M2

P

QLDc and X†

MP
LH2 which, via a vev of X , violate lepton number by one unit.

To completely specify our model, we need to fix the gauge kinetic function which determines the interactions of
gauge and gaugino fields. We do not study them in detail since they do not effect our conclusions. But to be
phenomenologically consistent, gaugino fields should have masses which are determined by the form of gauge kinetic
function. In our model its form is

Fab = δab

(

1

g2a
+

1

MP
faS

′ + · · ·

)

, (8)

where ga are the three gauge couplings of the standard model gauge group, fa are O(1) constants and the indices a, b
run over 1,2,3. The dots in equation (8) are higher order terms which can be neglected. The second term of equation
(8) gives masses to gauginos. We will see below that the auxiliary vev of S′ is at the intermediate scale and hence

the gaugino fields have masses of the order of 〈FS′〉
MP

∼ TeV.
So far, everything included in W as well K conserve lepton number. Now, the very form of W tells us that

〈FS〉 = 〈∂W∂S 〉 is on the order of Λ2 and 〈FS′〉 = 〈∂W∂S′ 〉 = Λ′〈S〉 + 2q〈S′〉〈S〉 is at the intermediate scale if 〈S〉 ∼ MP

and 〈S′〉 = 0. We will make the scalar vev of S′ to be zero in order to get its auxiliary vev at the intermediate
scale, and this we require to make sure that the gauginos have masses at the TeV scale which is explained in the
previous paragraph. While 〈FX〉 = 〈∂W∂X 〉 = 0 if the right-handed sneutrinos Ñi have no vev, something that we need
to establish in order to eliminate the possibility of ∆L = 1 terms.

III. SCALAR POTENTIAL

Let us now consider the scalar potential of this theory and place our claims about the vevs of S, S′ and X on firmer
ground. The reasons for 〈S′〉 = 0 and 〈X〉 ∼ Λ have already been explained. We will show below that in order for the
gravitino mass to be at the TeV scale we need 〈S〉 ∼MP . These are the demands that we are making on the vevs of
hidden sector fields to be in consistent with the phenomenological masses of the supersymmetric fields. One crucial
thing to be shown is that the sneutrino fields should not acquire non-zero vevs. We show below that these demands
can be satisfied by minimizing the scalar potential and choosing appropriate values of the parameters of the model.
The contribution to the scalar potential from the superpotential and the Kahler potential is given by [1]

V =M4
P e

G[M2
PGMK

MN̄GN̄ − 3], (9)

where

G =
K

M2
P

+ ln

∣

∣

∣

∣

W

M3
P

∣

∣

∣

∣

2

, (10)

GM = ∂G
∂φM

and GN̄ = ∂G
∂φ∗

N

, φ being a chiral superfield. The matrix KMN̄ is the inverse of ∂2K
∂φ∗

N
∂φM

.

The vevs that we get after minimizing the scalar potential determine the SUSY breaking of the theory. SUSY
breaking requires that, expressed in terms of these, the vev of

Fφ =
∂W

∂φ
+

W

M2
P

∂K

∂φ
(11)
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should be non-zero for some hidden sector field(s) φ [17]. In our case, we have 〈FS〉 = Λ2 + Λ2〈S〉
M2

P

〈∂K∂S 〉, after putting

〈S′〉 = 〈Ñ c
i 〉 = 0. If one has 〈S〉 at the Planck scale, together with Λ at an intermediate scale, one can not only have a

non-zero 〈FS〉 but also ensure 〈FS〉 of an order which is required by a phenomenologically consistent SUSY spectrum.
One of the consequences of SUSY breaking in supergravity is that the gravitino field acquires a non-zero mass, which
is given below

m2
3/2 ∼ M2

P e
〈G〉 = e

〈K〉

M2

P

〈W 〉2

M4
P

= e
〈K〉

M2

P

(Λ2〈S〉)2

M4
P

. (12)

The mass of gravitino can be of the order of TeV provided if 〈S〉 ∼MP .
Substituting the forms of K and W in equations (9) and (10), one obtains the form of the scalar potential [18] as

V = V0 + V1 (13)

with

V0 = eK/M2

P

{

KSS̄
0

∣

∣

∣
Λ2 + Λ′S′ + qS′2

∣

∣

∣

2

+KSS̄
0

∂K0

∂S

(

∂K0

∂S

)∗
WhW

∗
h

M4
P

+KS′S̄′

0 |Λ′S + 2qS′S|
2
−

3

M2
P

WhW
∗
h

+KS′S̄′

0

∂K0

∂S′

(

∂K0

∂S′

)∗
WhW

∗
h

M4
P

+

(

KSS̄
0 (Λ2 + Λ′S′ + qS′2)∗

∂K0

∂S

Wh

M2
P

+KSS̄′

0 (Λ2 + Λ′S′ + qS′2)(Λ′S + 2qS′S)∗

+KSS̄′

0 (Λ′S + 2qS′S)∗
∂K0

∂S

Wh

M2
P

+KSS̄′

0 (Λ2 + Λ′S′ + qS′2)

(

∂K0

∂S′

)∗
W ∗

h

M2
P

+KSS̄′

0

∂K0

∂S

(

∂K0

∂S′

)∗
WhW

∗
h

M4
P

+KS′S̄′

0 (Λ′S + 2qS′S)

(

∂K0

∂S′

)∗
W ∗

h

M2
P

+ h.c.

)

+KXX̄
0

∂K0

∂X

(

∂K0

∂X

)∗
WhW

∗
h

M4
P

+

(

KSX̄
0 (Λ2 + Λ′S′ + qS′2)

(

∂K0

∂X

)∗
W ∗

h

M2
P

+KSX̄
0

∂K0

∂S

(

∂K0

∂X

)∗
WhW

∗
h

M4
P

+KS′X̄
0 (Λ′S + 2qS′S)

(

∂K0

∂X

)∗
W ∗

h

M2
P

+KS′X̄
0

∂K0

∂S′

(

∂K0

∂X

)∗
WhW

∗
h

M4
P

+ h.c.

)}

(14)

and

V1 = eK/M2

P

{(

∂WMSSM

∂Φi

)∗
∂WMSSM

∂Φi
+m2

0(S, S
′)Φ∗

iΦi +

(

A1(S, S
′)
∂WMSSM

∂Φi
Φi +A2(S, S

′)WMSSM

+BN(S, S′, X)Ñ c
i aijÑ

c
j +

XX

MP

(

∂WMSSM

∂Ñ c
i

)∗

aijÑ
c
j +

XXX∗X∗

2M2
P

aija
∗
ikÑ

c
j Ñ

c∗

k + h.c.

)}

, (15)

where

m2
0(S, S

′) =
WhW

∗
h

M4
P

, A1(S, S
′) =

W ∗
h

M2
P

,

A2(S, S
′) = KSS̄

0

(Λ2 + Λ′S′ + qS′2)∗

M2
P

∂K0

∂S
+KSS̄

0

∂K0

∂S

(

∂K0

∂S′

)∗
W ∗

h

M4
P

+KSS̄′

0

(Λ′S + 2qS′S)∗

M2
P

∂K0

∂S

+KS′S̄
0

(Λ′S + 2qS′S)∗

M2
P

∂K0

∂S′
+KSS̄′

0

W ∗
h

M4
P

∂K0

∂S

(

∂K0

∂S′

)∗

+KS′S̄′

0

(Λ′S + 2qS′S)∗

M2
P

∂K0

∂S′

+KS′S̄′

0

W ∗
h

M4
P

∂K0

∂S′

(

∂K0

∂S′

)∗

− 3
W ∗

h

M2
P

,

BN (S, S′, X) =
XX

2MP
A2(S, S

′) +
X

MP
KXS̄

0 (Λ2 + Λ′S′ + qS′2)∗ +
X

MP
KXS̄

0

(

∂K0

∂S

)∗
W ∗

h

M2
P

+
X

MP
KXS̄′

0 (Λ′S + 2qS′S)∗ +
X

MP
KXX̄

0

(

∂K0

∂X

)∗
W ∗

h

M2
P

+
XX

MP

W ∗
h

M2
P

. (16)

It should be noted that the chiral superfields and their scalar components have been denoted by the same set of
symbols here. The contribution to scalar potential from the gauge kinetic function is neglected here, since the scalar
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Field Scalar vev Auxiliary vev

S ∼ MP ∼ Λ2

S′ 0 ∼ Λ2

X ∼ Λ 0
Nc 0 0

TABLE I: vev’s of the scalar and auxiliary components of the addtional chiral superfields.

Parameter Source Order of
magnitude

m2
0 m2

0(S, S
′) in V1 TeV2

A A1(S, S
′), A2(S, S

′) in V1 TeV
Bµ µA1(2)(S,S

′) in V1 TeV2

m1/2
F
S′

MP
from gauge kinetic terms TeV

TABLE II: The different parameters of low energy SUSY and their sources.

vev of S′ is made to be zero which is shown below. By minimizing the scalar potential we have to achieve the vevs of
hidden sector fields as: 〈S〉 ∼MP , 〈X〉 ∼ Λ and 〈S′〉 = 0. We can achieve this by choosing an appropriate form of the
function K0(S, S

′, X). There are six independent double derivatives and three independent single derivatives of K0 in
the scalar potential. We can fix them in such a way that the desired vevs of hidden sector fields arise after minimizing
the potential. In deriving V1, we have used 〈Φi〉 ≪ 〈X〉 ≪ 〈S〉, and terms suppressed by higher powers of MP have
been neglected. Substituting the vevs of the hidden sector fields in V1, we get the low-energy scalar potential. The
first term in equation (15) is the F-term contribution to the scalar potential of MSSM. Remaining terms in equation
(15) are SUSY-breaking soft masses. The soft masses, which are given in equation (16), are determined by the high
scale parameters of our model. It can be noticed that these soft masses are at the TeV scale after plugging the vevs
of hidden sector fields in their respective formulas. So our proposed model is consistent with SUSY breaking as it
produces a viable low-energy scalar potential. For simplicity, we list the vevs of the scalar and auxiliary components
of the additonal superfields that we require in our model, in Table I. In Table II we present a list of sources for
soft terms in the SUSY Lagrangian, completely determined by the superpotential and scalar potential, and a clear
demonstration of how they are governed by the vevs of the hidden sector fields.
While our main conclusions depend critically on various vevs in the hidden sector, it may be argued that their values

can be altered through gravitational effects. However, these effects should in general be suppressed by O(Λ/MP ) and
therefore can be ignored in the preliminary proposal.
As mentioned above, we need to ascertain that neither the left- nor the right-chiral sneutrinos develop any vev. To

ensure this, one has to fulfill the minimization conditions [19] for the low-energy scalar potential V1 (i.e. vanishing

of the first derivatives, positivity of the eigenvalues of the second derivatives, etc.) for 〈ν̃i〉 and 〈Ñi〉 simultaneously.
We have checked that such solutions can be guaranteed for appropriate values of the parameters in A1(2), BN , Bµ

and aij as well as the vev of X and S . Ensuring this is relatively easy, since the right-chiral sneutrinos do not occur
in quartic terms (except those suppressed by M4

P ), and can develop vev only through terms linear in the vevs of the
left-chiral sneutrinos. Thus it is enough to make the latter zero through an appropriate choice of parameters.

IV. CONSEQUENCES

One of the consequences of our model is that we get ∆L = 2 mass terms for neutrinos. After giving vev to X the

last term of equation (4) gives right-handed Majorana neutrino mass of the form MR ∼ 〈X〉2

MP
∼ TeV. If the neutrino

Yukawa couplings: Yν ∼ 10−7, then the Dirac mass for neutrinos turns out to be mD ∼ Yνv2 ∼ 10−4 GeV, where
〈H0

2 〉 = v2. It may be legitimate to take the neutrino Yukawa couplings of O(10−7), since this is the same as that
of the electron Yukawa coupling and we do not understand why the electron mass is that much small. If we put the
Yukawa couplings of electron and neutrinos on same footing, we can explain the smallness of neutrino masses. In
our model, since the right-handed neutrino mass is much heavier than the Dirac mass for neutrinos, the seesaw mass
formula for light neutrinos is mν = −m2

D/MR ∼ 0.1 eV. This is the right magnitude for the neutrino mass which
has been estimated from the neutrino oscillation experiments. So we can explain consistently the Majorana nature of
neutrino and its smallness of mass in our model.
Another consequence of our model is that the fermionic state belonging to the chiral field X , which we denote as
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ψX , becomes massless at the tree level. This statement follows from the last term of equation (4), since the right-chiral
sneutrinos are made to have zero vevs. Our model requires a non-zero vev for X and the last term of equation (4)
generates an effective term of the form

〈X〉

MP
XN cN c (17)

in the superpotential. Through this ∆L = 1 term and the neutrino Yukawa couplings, ψX mixes with the neutralino
states through one-loop diagrams, if the neutralH0

2 state acquires vev. This loop diagram gives very small contribution
and the mass eigenvalue of ψX is less than the mass of any supersymmetric particle. As a result of this, through the
same one-loop diagram the lightest neutralino of MSSM can decay to ψX and a neutral Higgs boson. We have found
that the decay width of this process is approximately given by

Γ ∼
1

8π

(

g

16π2
Y 2
ν

〈X〉

MP

)2

mχ0 , (18)

where g is the SU(2) gauge coupling strength and mχ0 is the mass of lightest neutralino. For typical values of

parameters in the above equation, the lifetime of lightest neutralino is τ = 1
Γ ∼ 2× 1011 years. This value is one order

of magnitude greater than the age of the universe. Such a long lifetime of neutralino in our model is due to the fact

that the effective ∆L = 1 term in the superpotential, equation (17), is suppressed by a factor of 〈X〉
MP

∼ 10−7 and the
neutrino Yukawa couplings give further suppression in the loop induced decay.
In addition, the last term of equation (4) generates some scalar interactions in the low-energy scalar potential,

which are the last three terms of equation (15). They can generate ∆L = 1 terms through the vev of X , which have
the following schematic forms:

〈X〉

MP
AXÑ cÑ c,

〈X〉

MP

(XX)∗

MP
XÑ cÑ c∗ ,

〈X〉

MP
X(LH2)

∗Ñ c. (19)

Here, A ∼ TeV. All the above three terms have a suppression factor of 〈X〉
MP

∼ 10−7. We have found that they do
not induce any tree level decay of the neutralino state. The loop induced decays due to them will have an additional
suppression of neutrino Yukawa couplings. Thus, in our model the last term of equation (4) is only the source for
∆L = 1 terms. All of them are suppressed by Planck mass and the lepton number violation by one unit is confined
only in the neutrino sector. Because of these reasons, the lightest neutralino of MSSM can have lifetime exceeding
the age of the universe, and it can still provide a candidate for the dark matter content. Now it can be easily justified
why the last one of equation (7) is neglected in the Kahler potential: since that term is suppressed by two powers of
Planck mass, it gives sub-leading contributions to the ∆L = 1 terms and to the neutralino decay.
The low-energy scalar potential is also a consequence of our model. The SUSY-breaking soft parameters in the

scalar sector come out in the phenomenologically expected range, as listed in Table II. An intermediate scale vev of
the auxiliary component of S′ justifies gaugino masses in the same scale as well, through S′ participating in the gauge
kinetic function. The parameter Bµ, which is the coefficient of the bilinear term H1H2 in the scalar potential, is at
the TeV scale provided the µ parameter lies around the TeV scale. While we have not justified the value of µ in this
work, an explanation of the twin parameters µ and Λ′ in the proposed scenario, both belonging to the superpotential
and still around the electroweak scale, is hoped to come from a deeper understanding of the ‘µ-problem’.
It may be re-tread that the suggested orders of magnitude of the scalar and auxiliary components vevs of the fields

X , S and S′ are all consistent with observable sector SUSY breaking parameters, being all in the TeV range. It is
intimately related to the fact that the same set of choices yields a gravitino mass on the same order.
Another interesting possibility which is kept alive by such choice concerns the cosmological constant which, as

is well-known, needs to be fine-tuned to a miniscule value in SUSY scenarios. The dominant contribution to this
constant in our model comes from the part V0 of the scalar potential. After giving vevs to hidden sector fields, the
first four lines of V0 give a contribution of the order of Λ4 and the last two lines give contribution of the order of
Λ2TeV2. Although we are not claiming to solve the cosmological constant problem, the choice of fields and orders of
their vevs make it possible to envision the mutual cancellation of the dominant terms contributing to it, by proper
adjustment of the dimensionless parameters occurring in the Kahler potential.

V. CONCLUSIONS

To conclude, we have suggested a supersymmetric scenario where a field carrying lepton number but otherwise
immune to standard model interactions can generate ∆L = 2 neutrino mass terms and also keeps the lightest neutralino
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of MSSM long lived particle. In this scenario we have proposed three kinds of hidden sector fields: S, S′ and X , where
only X carries a lepton number. The purposes served by these fields are (i) the generation of ∆L = 2 mass terms
for neutrinos, (ii) the elongation of the the lifetime of the LSP, decaying through ∆L = 1 interactions, beyond the
present age of the universe, and (iii) the occurrence of SUSY breaking parameters around the TeV scale, thus yielding
a phenomenologically viable SUSY spectrum. The lepton number carried by X as well as the R-charge assignments
of various fields ensure this, both the charges being broken at energies below the Planck scale, along a line frequently
taken in SUSY models of neutrino masses. It is also demonstrated that the scenario proposed here can accommodate
a cancellation of the leading terms contributing to the value of the cosmological constant. This shows the potency of
supergravity theories in reconciling seesaw masses for neutrinos with the observed cold dark matter of the universe,
and underscores the importance of attempts to derive scenarios such as the aforesaid one from more fundamental
principles.
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Press, New York, 1980, pp. 687; R.N. Mohapatra and G. Senjanović, Phys. Rev. Lett. 44, 912 (1980).
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