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A B S T R A C T In this work, the structural integrity of the critical components of the fast breeder reactor
(FBR) that are subjected thermal striping is assessed using a fracture mechanics approach
based on linear elastic fracture mechanics (LEFM). The structural integrity is assessed
in terms of the actual life of the component for a particular difference between the hot
and cold liquid temperatures at the critical mixing velocities. A generalized procedure is
attempted for the computation of fatigue life. It is demonstrated in this work that the
analysis procedure adopted is computationally very efficient. Green’s function method
is used for transient mode I crack propagation analysis. An inherent parallelism in the
method is exploited for computational efficiency. A distributed computing environment
is, therefore, used to demonstrate the effectiveness of Green’s function method for crack
propagation analysis for the kind of problem solved in this work. A simple idealization
in the form of flat plate geometry is used in a numerical example to show the compu-
tational efficiency. The method shows a good scale-up justifying the benefit of using a
distributed computing environment given a large amount of input data for the thermal
striping problem.

Keywords distributed computing; functional decomposition;Green’s function; structural
integrity; thermal striping.

N O M E N C L A T U R E a = crack depth
aibici = constants used in Buckner’s weight function method

C = paris law constant
E = Young’s modulus

f (x) = initial temperature distribution function
G(x, t) = response to unit impulse or unit heavy side function

Gk(x, t), Gσ (x, t) = modified G(x, t) for evaluation of stress intensity factor and stress
Ḡ = array of change in G(x, t) with x for various td values

H(t) = temperature response function
h = plate thickness

K (a, t) = stress intensity factor
L = plate semi height or width

M(a, x) = weight function
mi = polynomial used in Buckner’s weight function method
Ni = number of temperature distribution units of size �K i

N = number of elements to be analyzed in rain flow counting
N s,NE,NR = starting, ending elements, elements considered

R(x, t) = response at time t to input temperature distribution
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t = time
tq = time at which response is desired
td = decay time
T = temperature variable

T(x, t) = temperature distribution function
T s(x) = steady-state temperature response

T t(x, t) = transient state temperature response
X (x), β(t) = functions of x, t in the solution for T(x, t)

x = thickness coordinate from front x = x0 at t = tq
α = coefficient of linear expansion
δt = duration of temperature pulse

�a = increment in crack depth
�K i = size of the ith cycle in histogram

�K th = threshold value of SIF
δ(x− t) = f (ξ ) = Dirac delta function

θ i(t) = magnitude of temperature signal at time t
θ s(x, t) = temperature response function
σ (x, t) = stress response function

γ = Poisson’s ratio

I N T R O D U C T I O N

The design of Liquid Metal Fast Breeder Reactor
(LMFBR) involves fulfillinghighly stringent safety norms.
This requires in-depth analysis of the failure processes that
the reactormay undergo including the events of low prob-
ability which are usually neglected in the design practices
of other common industrial plants. In the fast breeder re-
actor (FBR), sodium is used as a heat-transferring fluid.
From the structural mechanics viewpoint, there are a few
problems due to the random temperature fluctuations
(thermal stripping) that occur due to mixing of sodium
at different temperatures.
The random fluctuations that occur in the fluid due to
mixing of sodium at different temperatures are transferred
to the surface of the structure adjacent to themixing zone.
This random temperature fluctuation on the structure for
prolonged duration causes crack initiation and propaga-
tion of cracks, formed and pre-existing. Such loads are
inevitable, and hence there is a need to come up with
a limit on temperature difference of mixing fluids. This
limit is known as the thermal striping limit. Consider-
ing the design life and structural integrity of the compo-
nent the thermal stripping limit is obtained. There are
two aspects of the thermal stripping problem. One is the
thermo-hydraulic aspect and the other is the mechanics
aspect. In the present work, the mechanics aspect of ther-
mal stripping, which deals with the damage caused due to
the thermal striping load on the surface of the structure is
studied. Efficient computational analysis for fatigue fail-
ure due to thermal striping is the primary focus of this
work.

In the present study, an integrity assessment is made for a
fully constrained flat plate model of material SS316L (N).
A crack is assumed to exist in the component. A transient
domain approach is adopted in the analysis. The integrity
assessment involves major tasks like identification of criti-
cal loading, thermomechanical analysis to obtain stresses,
and evaluation of stress intensity factors in the structure
and crack propagation analysis. It is demonstrated that
this method can be computationally very effective if par-
allelized using themessage passing interface (MPI) library
functions. An inherent parallelism in some critical steps of
the procedure accounts for the computational efficiency.
Functional decomposition of a program is governed by
its granularity. The effect of functional decomposition of
a problem depends on communication overheads in pass-
ing data between processes and synchronizing processes,
a trade-off of grain size against efficiency and execution
time. Transient analysis such as heat conduction provides
a good platform for studying the granularity of the prob-
lem owing to the large amount of data involved and the
methodology adopted for analysis.
Many studies have reported the life assessment of com-
ponents subjected to thermal stripping and the use of
Green’s function for transient analysis. Jones et al.1 have
studied thermal fatigue damage under thermal striping
conditions based on the impulse response method. Jones
et al.2,3,4 have also carried out an analysis based on the fre-
quency response approach. Lee et al.5 have used a stress
analysis approach calledGreen’s functionmethod to study
the thermal stripping damage on the tee junction. The
results produced by this method showed good agreement
with practical observations. It is important to note that
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this method is quite powerful in that the computational
time involved to find the results for a randomly fluctuating
temperature is very small compared to the FEM fatigue
analysis procedure.Muralidharan et al.6 implemented this
method to perform a transient analysis for a unit input
function. Studies by Miller,7,8 Clayton et al.,9 and Galvin
et al.10 throw some more light on the problem.
The present work focusses on the implementation of
Green’s function method as a time domain approach for
thermal striping analysis. This was done for a unit impulse
function and for a unit heavy side function. A simplemodel
of an LMFBR component is considered and analyzed for
crack propagation. The present work also demonstrates
that this method can be effectively parallelized usingMes-
sage passing Interface (MPI) library functions.11

Green’s function for non-homogeneous boundary con-
ditions is derived in the following section. Subsequently,
the paper outlines the various steps involved in the
integrity assessment and life estimation of LMFBR under
thermal striping. Parallelization of Green’s function and
the results from a numerical study are in the last sections
of the paper.

G R E E N ’ S F U N C T I O N T R A N S I E N T

A N A LY S I S W I T H N O N - H O M O G E N E O U S

B O U N D A R Y C O N D I T I O N S

The important step in solving the thermal striping prob-
lem is to obtain a solution for a transient heat-conduction
problemwith non-homogeneous boundary conditions. In
this section, the methodology of solving such a problem
using Green’s function is presented.
Green’s function is defined as the response to a unit input
or stimulus (Fig. 1).5 It is an integrating kernel, which can
be used to solve a non-homogeneous differential equation
with boundary conditions. Green’s function is determined
either by using the separation of the variablemethod or by
the finite element approach. In the following, we solve the
heat conduction equation to obtain the required Green’s
function.
The heat conduction equation to be solved for is of the
form

∂T

∂t
= α

∂2T

∂x2
0 < x < L t > 0, (1)

with the homogeneous boundary conditions

T(0, t) = T(l, t) = 0; t > 0, (2)

and the initial condition,

T(x, 0) = f (x); 0 < x < L. (3)
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Fig. 1 Concept of Green’s function approach for calculation of SIF

(Lee et al.)

The solution is obtained by the variable separable method
and is of the form

T(x, t) = X(x)β(t). (4)

The solution exists when the roots are real and distinct.
The solution takes the form

T(x, t) = (C1 cos λx + C2 sin λx)
(

C3e
−αλ2t

)

. (5)

The above solution is defined for a static or steady-
state response with homogeneous boundary conditions
andmodifications are required for incorporating the non-
homogeneous boundary conditions for static and transient
response. The transient response may be obtained either
for a unit impulse function input or a unit step function
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with respective modified boundary

conditions.

input (Fig. 1). The change in the boundary conditions
from steady state to transient state is indicated in Fig. 2.
The equation for heat flow is independent of time during
the steady-state condition and is given by

∂2T

∂x2
= 0, (6)

the solution of which is given by,

T = C1x + C2, (7)

where C1and C2 are constants with respect to x.
Satisfying the boundary conditions as given in Fig. 2 for
static response we can write the initial condition as

T(x, 0) = x/L. (8)

The solution satisfying the two different states is of the
form (Fig. 2).

T(x, t) = Ts (s )+ Tt(x, t). (9)

Thus, the static solution which satisfies the boundary con-
dition (Fig. 2) is obtained as

Ts (x) = 1− x/L. (10)

The solution to the transient part satisfying the nonho-
mogenous boundary conditions is obtained as

Tt(x, t) =

∞
∑

m=1,2,3,..

− 2
nπ (cos nπ + 1) sin mπx

L e− αm2π2 t

L2 . (11)

Thus, the overall solution is of the form

T(x, t) = 1−
x

L
−
2

π

∞
∑

m=1,2,3,

1

n
sin

mπx

L
e−αm2π2t/L2 . (12)

The relation between Green’s function and the above so-
lution in (12) can be written as

T(x, t) =

∫

G(x, ξ, t) f (ξ ) dξ, (13)

or in terms of the Dirac delta functions we can write the
solution in (13) as

T(x, t) =

∫

G(x, ξ, t)δ(x − ξ ) dξ, (14)

where f (ξ ) is Dirac delta function, for a one-dimensional
situation

T(x, t) = G(x, t)

∫ +∞

−∞

δ(x − ξ ) dξ . (15)
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Therefore, Green’s function itself represents the solution
and is given by

G(x, t) = 1−
x

L
−
2

π

∞
∑

m=1,2,3

1

n
sin

mπx

L
e−αm2π2t/L2 . (16)

In order to analyze a general input loading, consider that
the stripped face is subjected to a general temperature his-
tory of the form shown in Fig. 3. The input boundary load

Unit impulse function 
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Fig. 3 Wall temperature as an integration of small changes.

θ i(ti) at time ti = i∗�t is discretized into a number of heavy
side unit step functions (Fig. 3).The temperature response
R(x, t) at any time is the cumulative effect of the associ-
ated Green’s function. The input load is approximated as
a piecewise linear fit as given below:

θ (τ ) = θ(i−1) +
(

θ(i−1) − θi
)

/(�t)(τ − ti )+ · · · · · · ·

dθ
dτ

= θ (τ ) = �θτ =
θi − θi−1

�ti
. (17)

For each of the temperature difference values between
times ti and ti−1 the response up to any arbitary time tq is
expressed as given below by using convolution integral

R(x, t) =

∫ tq

0
G(x, tq − τ )

dθ (τ )

dτ
dτ or

R(x, t) =

∫ tq

0
G(x, τ )

dθ (tq − τ )

dτ
dτ . (18)

The above integration of the temperature response is
carried out in two regions. In the first regionGreen’s func-
tion varies with respect to time till it reaches a constant
amplitude at decay time td .

R(x, tq ) =
1

�t

∫ tq

0
G(x, τ )(�θ (tq − τ )) dτ, (19)

R(x, tq ) =
1

�t

∫ td

0
G(x, τ )(�θ (tq − τ )) dτ

+

∫ tq

td

G(x, τ )(�θ (tq − τ )) dτ. (20)

The decay time is determined from the response of the
system for a unit step input. Thus, response to the input
function, θ (t) at the surface (x = 0) can be written as

R(x, t) =

∫ t−td

0
G(x, t − τ )

dθ (τ )

dτ
dτ. (21)

On integrating by parts we get

R(x, t) = G(x, t − τ )θ (τ )t0 −

∫ t

0
θ (τ )

dG(x, t − τ )

dτ
dτ.

(22)

Rewriting we get

R(x, t) = (1− x/L)θ (0)−

∫ t

0
θ (τ )

dG(x, t − τ )

dτ
dτ. (23)

For various values of x from the second term of Eq. (23)
we can get an array of values corresponding to x = 0, x =

x1, . . . , x = xm as,

Ḡ =
[

Ḡm, Ḡm−1, . . . . , Ḡ1

]

(24)

from which the variation of the decay time td for various
values of x can be obtained.
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M E T H O D O L O G Y F O R L I F E A S S E S S M E N T O F

C O M P O N E N T: T I M E D O M A I N A P P R O A C H

Using the linear fracture mechanics approach assuming
an initial crack the integrity of the component is assessed.
It is also assumed that LEFM can be used for the range
of crack lengths dealt with in this study. Integrity assess-
ment involves the following major tasks: thermomechani-
cal analysis to obtain stresses in the structure, evaluation of
stress intensity factor (SIF) and finally crack propagation
analysis.
Thermomechanical analysis to obtain stresses in the structure:
The analysis of stresses involves finding the temperature
distribution in the structure (heat transfer analysis) and
evaluation of strains and stresses due to temperature gradi-
ents (stress analysis). Green’s function approach has been
implemented for the stress determination. The input can
be a unit impulse input or a unit heavy side function (Figs 1
and 3). The wall temperature is described as the integra-
tion of small changes of the wall temperature and there-
fore the superposition principle can be used to compute
the stress at a point at a given time as the following integral

σ (x, t) =

∫ t

0
Gσ (x, t − τ )

dθ

dτ
dτ, (25)

where θ is the wall temperature as a function of time. In
terms of the temperature response we can write

σ (x, t) = βR(x, t) where β =

(

αE

1− γ

)

(26)

and α is the coefficient of thermal expansion, E is Young’s
Modulus of the material, γ is Poissons ratio.
Green’s function decays fast to a constant value with time
(decay time td). This constant value is taken to be a fraction
of the peak amplitude. The above integration for a partic-
ular time, thus, needs only to be evaluated within decay
time before the current time of evaluation. This reduces
the computation time considerably. Integration by parts is
done to derive a response (Eqs (21)–(23)), which involves
the evaluation of the derivative of Green’s function and
wall temperature function.
Stress intensity factor calculation: Stress intensity factor was
computed for mode I fracture only. The other modes
of crack are assumed to be less conservative than the
mode I crack. The weight function method proposed by
Bueckner12 is used in this study. The stress intensity factor
according to the Buckner weight function approach at a
time t for an edge crack length a is given by

K (a, t) =

∫ a

0
σ (x, t)M(a, x) dx. (27)

In the above integral,M (a, x) is the weight function and
is given by

M(a, x) =

(
√

2

πa

)

2
∑

i=0

mi (1− x/a)(i−1/2) (28)

where mi = ai + bi(a/h)2 + ci(a/h)6, i = 0, 1, 2. mi are
polynomials independent of x, and ai, bi and ci are constants
unique to the Buckener weight function method. These
expressions are valid only in the range of 0 ≤ a ≤ h/2.
Inserting an expression for stress in terms of Green’s
function (Eq. (25)), we can obtain a fresh Green’s func-
tion Gk such that the stress intensity factor K (a, t) can be
written as

K (a, t) =

∫ t

0
Gk(a, t − τ )

dθ

dτ
dτ and

Gk(x, t) =

∫ a

0
Gσ (x, t)M(a, x) dx. (29)

Crack propagation analysis: In this analysis, linear elastic
fracture mechanics is assumed to apply. Only positive
stress intensity factor values are assumed effective in crack
propagation analysis. For the random temperature fluctu-
ation load on the structure, the SIF history at intermediate
crack lengths is obtained using Eq. (29). In order to obtain
the amplitude and mean of the cycles of SIF history for
a particular crack length a, a standard rainflow counting
procedure is adopted.
TheParis law for crack propagation is used to find the in-
crement in crack length for a given crack length.Using the
Paris law, the total crack growth per block for a given crack
length is computed. The stress intensity factor history ob-
tained at intermediate crack lengths a for the random load
is analyzed by the rainflow counting technique and crack
growth, �a, is obtained at each crack length. Having ob-
tained crack growth (�a) for intermediate crack length
a, a piecewise fit is obtained and integrated from initial
crack length to final crack length to estimate life. Thus,
for a given random input load, initial crack length and fi-
nal crack length, the crack growth and hence life of the
component can be estimated.
Rainflow analysis: Rainflow counting procedure is used to
decompose the complex irregular history into a series of
simple events equivalent to individual cycles in a constant
amplitude history. There are several algorithms available
to perform the counting but most of them require that the
entire load or stress history be known before the counting
process starts and in addition, require rearrangement of
the history before counting. In the present study an algo-
rithm proposed by Glinka et al.13 has been implemented.
Themain feature of the algorithm (Fig. 4a and b) is count-
ing the history in segments called blocks. Thus, only one
relatively short block is required to be read to computer
memory each time. The size of one block depends on
the computer capability and requires no rearrangement
of history. The whole history only needs to be analyzed
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once without any changes in the remaining part of the his-
tory. This saves computing time in comparison with other
algorithms.13

For a block of SIF time history for a particular crack
length a, N i cycles of size �K i are obtained from the

�a =

∫ a+�a

a
da =

∫

N
C(�K )n dN ≈

N
∑

i=1

NiC(�Ki )
n

(30)

rainflow counting procedure. The above increase in crack
length occurs over a time interval�t, where�t is the time
length of the given loading block. Only �K i above the
threshold value, �K th, is taken into consideration in the
above crack propagation determination. An average crack
growth rate�a/�t can be obtained over the loading time
interval leading to (a, �a/�t) pairs available for finding
the total time period taken for crack to propagate to a par-
ticular crack length. Reasonably close (a,�a/�t) pairs will
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give rise to a smooth plot of time elapsed to crack prop-
agated plot (a vs t). Two possibilities could occur. There
could be crack arrest, which means that there is no prop-
agation of crack for an increase in time or there could be
progressive crack propagation beyond a particular time.
The critical crack length for the first case cannot be deter-
mined from a failure point of view but the designer could
enforce a limit on the amount of crack length allowed. In
the second case, clearly the crack length at which a pro-
gressive crack growth starts to occur is the critical crack
length.

M E T H O D O L O G Y A N D J U S T I F I C AT I O N

F O R F U N C T I O N A L D E C O M P O S I T I O N

As stated earlier, Green’s function method for the de-
termination of SIF values for a discretized input using
a unit heavy side function has been implemented in a dis-
tributed computing environment. This was implemented
onParam10000.This section justifies the implementation
of Green’s function method on a distributed computing
environment.
Because Green’s function quickly reached a constant
value asymptotically within the decay time td , the convo-
lution integral for a particular time needs to be evaluated
only within the length of time equal to the decay time just
before the current time of evaluation. This reduces the
computation time considerably.
The response is obtained using Green’s function for a
piecewise linear fit of the input loading (Fig. 2):

R(x, t) =
1

�t

∫ td

0
G(x, τ )�θ (tq − τ ) dτ

+
(

1−
x

L

)

∫ tq

td

�θ (tq − τ ) dτ , (31)

where td , N and m are the decay time, total number of
time steps, and number of time steps up to decay time
respectively.
The above response can be rewritten as

R(x, t) =

(

1−
x0
L

)

�t

(

tr
∑

td

�θ

)

+
1

�t

[

�θkḠ1 + · · · + �θk−m−1Ḡm

]

. (32)

If we consider another time tr > tq and let k be the num-
ber of divisions up to tr , i.e. k > N , we can rewrite the
above response as

R(x, t) =
1

�t

[

�θNḠ1 + �θN−1Ḡ2 + · · · + �θN−m−1Ḡm

]

+

(

1−
x0
L

) ∫ tq

id

�θ (tq − τ ) dτ , (33)

where

Ḡ =
[

Ḡm, Ḡm−1, . . . . , Ḡ1

]

. (34)

Thus, for any new time ti it is seen that the operation
requires shifting and multiplying the G matrix with the
input θ values. Because of variation of G up to td there is
a reduction in θ values. Beyond td , G is a constant. This
requires a shift in θ values and multiplication byG for the
evaluation of new response. Instead, to account for this the
values are taken for a length of td prior to the actual first
term as zeros and we shift the G matrix by one term of θ

value. This being a repeated process of vector multiplica-
tion, parallelization drastically reduces the computational
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time given that a large amount of input data is involved
in the analysis, thereby rendering efficiency in the com-
putation of fatigue life. Appendix I gives the details of the
algorithm adopted for parallel computation. The compu-
tations were carried out on a platform called Param. The
details of Param are also given in Appendix I.

N U M E R I C A L S T U D I E S

Input data: The geometry of LMFBR components can
be idealized to be a flat plate. The flat plate geometry
is assumed to be fully restrained to obtain conservative
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Fig. 6 (a) Variation of maximum temperature difference allowed

for various crack lengths for an allowable period of 1 year. (b)

Variation of crack growth �a for various crack lengths. Obtained

using unit impulse response.

results.2 The flat plate is assumed to have an edge crack
or flaw of length a. It is stressed again that only thermal
striping loading is considered in the analysis.
Relevant data are given below:

Material: SS316LN
Plate thickness: 10 mm
Maximum wall temp: 820 K
Thermal conductivity: 21.54 W/m-K;
Thermal expansion coefficient = 20.4 × 10−6/K
Elastic modulus = 149 Gpa
Specific heat = 58.2 J/kg-K
Density = 7739 kg/m3

Paris law constant C = 7.5e-13; n = 4

(a) 

time 

G
(x

,t
) 

0 5 10 15 20 25 30 35 40 45 

0 

0.2 

0.4 

0.6 

0.8 

1 

X=1.0mm 

X=2.0mm 

X=3.0mm 

X=4.0mm 

X=5.0mm 

X=6.0mm 

X=7.0mm 

X=8.0mm 

X=9.0mm 

20sin(wt) 

0 0.5 1 1.5 2 2.5 
-20 

-15 

-10 

-5 

0 

5 

10 

15

20 

time 

te
m

p
er

at
u

re
 

(b) 

Fig. 7 (a) Input load function considered. (b) Variation of Green’s

function with respect to time for various plate thicknesses.
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Geometry: Flat plate geometry fully restrained to obtain
conservative results

Response studies: In studying the response for a unit impulse
function the allowable temperature difference evaluated
for 45 years of a component life by the impulse response
method for a random fluctuating load as shown in Fig. 5a
is found to be 128 K. The variation of the maximum SIF
for various crack lengths shows an increase in maximum
SIF with crack length shown in Fig. 5b. Crack growth at
various crack lengths is shown in Fig. 6a. For a life period
of one year, the variation of maximum temperature differ-
ence for various crack lengths is obtained as in Fig. 6b.
The response to unit heavy side function is studied.
Figure 7a shows a plot of sinusoidal temperature fluc-
tuation considered as input. Green’s function derived for
the non-homogeneous boundary condition is obtained for
various lengths of plate and is plotted in Fig. 7b. The re-
sponse obtained for the input shown in Fig. 7a is plotted as
shown in Fig. 8a. There is a clear shift in the response over
a period, of time. For a particular crack length, a typical
plot of the decay time is obtained for various thicknesses
of the plate as shown in Fig. 8b. A plot of Green’s function
versus time, obtained for various crack lengths is shown
in Fig. 8c.
Computational time, speed-up and efficiency are com-
puted in parallelization of Green’s function method on a
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Fig. 8 (a) Plot of the shifted response. (b)

Plot of the decay time td for various

thickness. (c) Plot of stress intensity factor

for various times.

distributed computing environment by using functional
decomposition and are reported. The computation of re-
sponse after the decay time was done in parallel on Param.
Figure 9a and b, gives a plot of the computational time as
against the number of processors showing that a good
speed-up is achieved.

C O N C L U S I O N S

A method of structural integrity assessment of LMBFR
components subjected to thermal striping is presented in
this paper. The variation of maximum SIF for various
crack lengths shows an increase in maximum SIF with
crack length. For a life period of 1 year, the variation of
the maximum temperature difference for various crack
lengths was found to increase. The response for a unit
heavy side function shows an increase in decay time with
an increase in thickness or crack lengths for SIF values
changing with time. It is demonstrated that the procedure
using Green’s function approach for crack propagation
analysis is computationally quite efficient. The procedure
is found to have an inherent parallelism. This character-
istic of the procedure is efficiently used in functional de-
composition for implementation in a distributed comput-
ing environment. The distributed code developed is used
to numerically solve a typical linear transient problem.Re-
sults show good scale-up justifying the implementation.
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Fig. 9 (a) Plot of the computational time

versus number of processors. (b) Speed-up

versus the number of processors.
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A P P E N D I X I

Algorithm for integrity assessment based
on SIF computation

� Input parameters read. Assumed initial crack length, thick-

ness of plate, time increment, material properties (Young’s

FILE SERVER NODE COMPUTE NODES

Two UltraSparc II 64-bit RISC CPUs of 400 MHz Two UltraSparc II 64-bit RISC CPUs of 400 MHz

each, with 2 MB external cache per CPU · 512 MB each, with 2 MB external cache per CPU · 1 GB main

main memory expandable to 2 GB · Two Ultra memory expandable to 2 GB · Four Ultra SCSI HDD

SCSI HDD of 9.1 GB each. One PARAMNet of 9.1 GB each · One PARAMNet CCP2 Card · One

CCP2 Card · One 10/100 Fast Ethernet Card 10/100 Fast Ethernet card

modulus, thermal conductivity, coefficient of thermal ex-

pansion, thermal diffusivity, Poissons ratio, mass density,

specific heat.
� Generating random input temperature load. For a given

total number of terms for time increment the temperature

values at various times and the incremental temperature

between times is computed.
� Computation of decay time. For the crack length input

Green’s function and the decay time is found as the point

at which Green’s function no longer varies with respect to

time.
� Loop on time up to and beyond decay time.
� Computation of SIF. Numerical integration procedure is

adopted.
� Parallel processing.
� Computing Green’s function matrix up to decay time.

Made available on all processors by master.
� Computing number of terms up to decay time, say (N1).

N1 locations ahead of the first temperature value are made

zero.
� Temperature data distributed to P processors. (N/P) com-

putation on each processor in computing the response.

N = number of terms taken for time increment.
� Determination of response up to and beyond decay time

(N–N1) terms this is done on P processors. Computing the

life in the master or the processor with task id zero.

Details of PARAM architecture

Param 10000—Distributed Memory architecture with
two interconnection networks ARAMNet and Fast Ether-
net. It has basically one file server node and three-compute
node with details as given below.
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