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Abstract—HTTP based adaptive video streaming has become a
popular choice of streaming due to the reliable transmission and
the flexibility offered to adapt to varying network conditions.
However, due to rate adaptation in adaptive streaming, the
quality of the videos at the client keeps varying with time de-
pending on the end-to-end network conditions. Further, varying
network conditions can lead to the video client running out of
playback content resulting in rebuffering events. These factors
affect the user satisfaction and cause degradation of the user
quality of experience (QoE). It is important to quantify the
perceptual QoE of the streaming video users and monitor the
same in a continuous manner so that the QoE degradation can
be minimized. However, the continuous evaluation of QoE is
challenging as it is determined by complex dynamic interactions
among the QoE influencing factors. Towards this end, we present
LSTM-QoE, a recurrent neural network based QoE prediction
model using a Long Short-Term Memory (LSTM) network. The
LSTM-QoE is a network of cascaded LSTM blocks to capture the
nonlinearities and the complex temporal dependencies involved
in the time varying QoE. Based on an evaluation over several
publicly available continuous QoE databases, we demonstrate
that the LSTM-QoE has the capability to model the QoE
dynamics effectively. We compare the proposed model with
the state-of-the-art QoE prediction models and show that it
provides superior performance across these databases. Further,
we discuss the state space perspective for the LSTM-QoE and
show the efficacy of the state space modeling approaches for QoE
prediction.

Index Terms—Adaptive streaming, Hyper Text Transfer Pro-
tocol (HTTP), Long Short-Term Memory (LSTM), Quality-
of-Experience (QoE), rebuffering, Recurrent Neural Networks
(RNN), stalling, state space, time varying quality, video streaming.

I. INTRODUCTION

Streaming videos on demand over Hyper Text Transfer

Protocol (HTTP) has grown significantly in the recent years.

According to Cisco’s Visual Networking Index [1], mobile

video traffic accounted for 60% of the total mobile data traffic
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in 2016. It is estimated that videos will constitute more than

three-fourths of the world’s mobile data traffic by the year

2021. Such a massive growth in the video traffic will lead

to a tremendous amount of stress on the video delivery in-

frastructure. Therefore, it is important for the network service

providers to perform a careful and optimal utilization of the

available resources for video streaming while maintaining an

acceptable level of Quality-of-Experience (QoE) for the video

users.

Adaptive streaming solutions such as Dynamic Adaptive

Streaming over HTTP, popularly known as DASH, provide an

operative framework for media streaming over networks [2].

DASH has become a popular choice of media streaming as

most networks today are configured to operate over Transfer

Control Protocol (TCP) in HTTP/TCP. The media delivery

in DASH is lossless as TCP is a reliable transport level

protocol. However, network impairments such as congestion,

poor wireless channel etc. can cause packet loss in the network

resulting in significant delays in the packet arrival. Delays in

the video packet arrival can result in the emptying of the

playback buffer causing the playback to stall. Such events

are referred to as rebuffering events [3]. The playback is not

resumed until sufficient content is available in the buffer. The

rebuffering events can also occur in wireless networks where

the resources are limited and are shared between multiple

users. Due to resource sharing, some users can end up being

starved of resources, thereby reducing their throughput. The

data rate of a wireless video user is highly influenced by

network dynamics such as the number of users, load on the

network and so on. In order to minimize the occurrence of

rebuffering events for video users, DASH provides an adaptive

streaming capability to the clients (video users) to adapt their

video rate in accordance with the changing network conditions.

Rate adaptation is a key feature of adaptive streaming that

is useful in dynamic and varying transmission environments

such as mobile wireless networks. However, it should be noted

that the videos encoded at different rates offer different video

qualities. Hence, rate adaptation can result in a video quality

that keeps varying with time. The QoE as perceived by the user

is determined by a complex interplay of the time varying video

quality and rebuffering events [4]. Given these dynamically

varying QoE influencing factors in a video streaming session,

the QoE evolution is continuous, dynamic, and time varying

in nature.

Continuous time QoE monitoring is vital for optimizing

the utilization of shared resources and thereby maximize the



QoE of video users in the network. It is also useful for

performing optimal video rate adaptation at the client so that

the degradations in the QoE caused due to time varying quality

as well as rebuffering events are minimized. While continuous

QoE evaluation approaches such as [4], [5], and [6] have

shown to provide a reasonable QoE prediction performance

upon the databases over which they are trained, their predic-

tion performance typically degrades when evaluated on other

databases. For instance, the nonlinear autoregressive (NARX)

model proposed in [5] is shown to perform well over the LIVE

Netflix Database [7], but yields a lower performance when

evaluated over the LFOVIA QoE Database [4]. There is a

need for a comprehensive QoE prediction model that performs

consistently well across the QoE databases. Furthermore, there

is a need for improvement in the QoE prediction as compared

to the existing QoE evaluation methods. These form the

motivating factors for this work.

Therefore, in this paper, we present LSTM-QoE, a novel

method for predicting the continuous QoE of video streaming

users based on Long Short Term-Memory (LSTM). We rely

on LSTMs for QoE evaluation, as LSTMs have shown to

be effective in modeling complex temporal dependencies in

applications such as sequence labeling [8], visual recognition

[9] etc. The proposed LSTM-QoE model relies on three input

features for continuous QoE prediction, namely, 1) short time

subjective quality, denoted as STSQ, 2) playback indicator,

denoted as PI, and 3) time elapsed since the last rebuffer-

ing event, denoted as TR [5]. The LSTM-QoE is evaluated

on four publicly available continuous QoE databases and is

shown to effectively capture the QoE dynamics with a high

prediction performance. To the best of our knowledge, this

is the first work that performs a comprehensive evaluation

over all publicly available continuous QoE databases and

proposes an efficient QoE prediction method that delivers

significantly higher performance compared to the state-of-the-

art QoE evaluation methods.

The rest of the paper is organized as follows. Section II gives

a brief overview of the existing QoE modeling approaches. The

proposed LSTM-QoE model is presented in Section III. The

performance evaluation of the proposed model in explained

in Section IV along with a discussion on the comparison

with the existing QoE models. Finally, Section V provides

the concluding remarks.

II. BACKGROUND

QoE centric design has gained a lot of importance owing to

several advantages it offers to multimedia service providers.

Formulating descriptors and/or prediction models that quantify

the end user QoE has been receiving enormous attention lately

[10]–[19]. Real time multimedia applications such as online

video streaming demand maintenance of an acceptable level of

user QoE despite varying network conditions. For providing

a satisfactory quality of service, the end user QoE should

be constantly monitored. The continuous monitoring of user

QoE can enable network operators to optimize the utilization

of network resources and stream videos to provide enhanced

QoE. Measuring the continuous QoE is a challenging task as

it is highly subjective and dynamic in nature. However, many

subjective evaluation studies have shown that although the

preferences of individual subjects vary, by and large the QoE

of users concur to a particular trend [4], [7], [12], [16], [20].

Subjective studies help a great deal in understanding the QoE

and thereby facilitate the development of objective algorithms

for quantifying the QoE.

Video quality assessment (VQA) plays a crucial role in the

QoE prediction system [4], [5], [20]. VQA has been studied

in several works in the literature [21]–[27]. A survey on the

evolution of VQA measures is discussed in [28]. [29] provides

a comprehensive study of various VQA metrics and suggests

that the metrics MS-SSIM [30] and MOVIE [21] provide a

good video quality prediction performance. An optical flow

based VQA method proposed in [26] is shown to provide

a superior video quality prediction performance over all the

existing methods. Even though the VQA metrics incorporate

the aspects that determine user’s perceptual quality, they are

insufficient for determining streaming QoE [7]. It is shown

that the QoE is determined not just by the video quality

but by a combination of factors such as rate adaptation and

rebuffering events occurring at different time instants in a

video session [4], [7]. Rate adaptation causes the video quality

to fluctuate over time because of which the user QoE becomes

time varying.

In wireless networks, the data rate delivered to the video

user keeps varying with time due to channel fluctuations,

mobility of the user, resource sharing etc. DASH allows

the client to adapt its video rate to ‘best’ match the data

rate of the client. In spite of the best efforts, when the

network/channel conditions degrade, the video client can run

out of the playback content causing the playback to stall.

Hence, the rate adaptation together with rebuffering events

lead to a degradation of the user QoE.

There have been several efforts that address the challenge

of QoE prediction for internet video delivery [31], [14]. The

metrics that are defined in the 3GPP DASH specification TS

26.247 for QoE measurement have been identified in [13].

Some of these include the average throughput, initial playout

delay, buffer level etc. However, these metrics can only act

as indicators of the QoE and cannot measure the actual QoE

as they do not capture the perceptual experience of the user.

Other factors such as the initial loading time and startup

delay have also been identified as the QoE influencing factors

[12], [15], [16], [32]. However, it is shown in these studies

that shorter startup delays have minimal or almost negligible

effect on the QoE. This suggests that the users are willing to

wait for a considerable amount of time before the playback

begins if they can be provided with a higher QoE. However,

once the playback is started, the QoE of a user has been

observed to be sensitive to time varying video quality as well

as interruptions in the playback. Further, it is consistently

observed in many QoE studies such as [12], [15], [16], [4]

that the rebuffering events degrade the QoE severely. It is

reported in [15] that the users are willing to sacrifice higher

resolution (or equivalently higher visual quality) for avoiding

interruptions in the playback. Hence, it is imperative for the

video client to maintain sufficient content in the playback



buffer in order to avoid severe QoE degradation.

In [20], a Hammerstein-Wiener (HW) model has been

proposed for measuring the time varying video quality due to

rate adaptation. [7] presents the LIVE Netflix Database along

with a subjective study of the user QoE in the presence of

both time varying quality and rebuffering events. Upon this

database, a nonlinear autoregressive model is proposed using

a neural network to predict the continuous QoE [5]. Similar to

[7], the LFOVIA QoE database is presented in [4] along with

a subjective study of continuous QoE of videos at Full-HD

(FHD) and Ultra-HD (UHD) resolutions. [4] also investigates

the degradation in the continuous QoE when the viewers are

subjected to various patterns of rate adaptation and rebuffering.

Further, a continuous QoE prediction model is proposed based

on Support Vector Regression (SVR). In [33], a QoE predic-

tion model based on nonlinear state space (NLSS-QoE) has

been proposed. [6] presents the Time-Varying QoE (TV-QoE)

Indexer for predicting the continuous QoE using multi-stage

and multi-learner HW approaches. These approaches employ

multiple HW systems for modeling nonlinearity and memory

effects and subsequently fuse their predictions for predicting

the continuous time QoE.

Most QoE models proposed so far are evaluated and vali-

dated only on the QoE database for which they are designed.

To the best of our knowledge, there is no single QoE model

that performs consistently well in a comprehensive evaluation

across all available continuous QoE databases. Therefore, in

this paper, we present LSTM-QoE, a QoE prediction model

based on Long Short-Term Memory (LSTM) networks. We

demonstrate that the proposed model provides superior per-

formance over the state-of-the-art QoE models on all the

considered continuous QoE databases. The proposed model

is presented in the following section.

III. QOE MODELING

The user QoE in video streaming is determined by the

human visual perception [34]. According to International

Telecommunications Union, QoE is defined as the overall

quality of an application or a service as perceived subjectively

by the end user [35]. Many psychovisual experimental studies

have hypothesized that the relationship between the visual

quality and the perceptual experience in the human visual

system (HVS) is highly nonlinear in nature [36], [37]. This

is due to the nonlinear response properties of the neurons in

the primary visual cortex. Because of this, the QoE behavioral

patterns of a user while watching a video are nonlinear

functions of the stimulus. Further, it has been observed through

subjective studies that the visual QoE in general is dynamic

and time varying in nature, varying continuously in response to

a series of QoE influencing events such as rebuffering [12] and

rate adaptation [20]. Due to these events, the HVS produces

hysteresis effect [38], wherein, the past event occurrences

leave a considerable impact on the QoE at the current time

instant. This is particularly observed to be prominent in the

cases where the effects of poor visual quality segments occur-

ring in the past ripple through and produce a significant impact

on the current QoE, even though the visual quality rendered

y(t-3) y(t-2) y(t-1) y(t)

Fig. 1: Non-Markovian nature of QoE process with

long-term dependencies.

at the current instant is higher. Hysteresis effect essentially

implies that the QoE process is non-Markovian in nature, as

there exists a memory of a sequence of events beyond first

order influencing the current QoE. The QoE process can have

time varying long and short-term dependencies as it evolves

continuously with time. Such dependencies can be modeled

using a higher order process as illustrated in Fig. 1, where the

current QoE has influences from the previous QoE values.

In summary, the continuous QoE is a nonlinear stochastic

process exhibiting non-Markovian temporal dynamics due to

the hysteresis effect. To capture such dynamics, we employ

LSTMs, a class of recurrent neural networks that has been

shown to be effective in modeling sequential data having

long/short-term dependencies [39], [40]. LSTMs have been

successfully used to address complex challenges in applica-

tions such as sequence labeling [8], visual recognition [9],

image captioning [41] and machine translation [42]. Hence,

in the following subsection, we propose an LSTM based

approach to model the continuous QoE prediction.

A. LSTM-QoE

Let the actual and the predicted QoE at time instant t

be represented by y(t) and ŷ(t), respectively. Let x(t) ∈
R

m
≥0

represent the feature set that takes values from a m-

dimensional space of non-negative real numbers. Here, the

feature set x(t) is representative of the QoE influencing

(determining) factors that govern the QoE evolution. Thus,

at any given time instant t, we use the time-indexed feature

vector x(t) = [x1(t) x2(t) · · · xm(t)] to predict the current

QoE ŷ(t). Given that the QoE y(t) is non-Markovian, we have

the following [43]:

p(y(t)|y(t− 1), y(t− 2), · · · , y(1)) 6= p(y(t)|y(t− 1)),

where, the conditional probability p(y(t)|y(t − 1), y(t −
2), . . . , y(1)) indicates that the QoE involves higher order

temporal dependencies. These dependencies could be complex

and it may not be possible for a single LSTM to effectively

capture them [9]. Hence, we propose a network of LSTMs

to learn these dependencies involved in the QoE process as

depicted in Fig. 2. The motivation for this proposal comes

from various LSTM based solutions that have been shown to

be successful in addressing some of the problems involving

complex dependencies such as sequence to sequence learning

[44], activity recognition and image description [9].

Fig. 2 shows the proposed multi-layered multi-unit LSTM

network for QoE prediction. The proposed network is a

cascade of several LSTM units that are stacked up to constitute



Fig. 2: Proposed LSTM network for QoE prediction.

LSTM layers. Let the proposed LSTM network be denoted by

LSTMl,d, where l represents the number of layers and d the

number of units in each layer. The parameters l and d are the

design choices that are to be tuned based on the nature of the

underlying process and the complexity of the dependencies.

Using the input features x(t), the LSTM network computes

the QoE estimate ŷ(t) continuously at every time instant t.

Each LSTM unit tracks the stochastic process by maintaining

an internal cell state, referred to as latent state, and the state

transitions are driven by the input features x(t). Let c(t)
represent the set of LSTM cell states in the network. LSTMs

are modeled to learn the underlying complex distribution

governing the state transition and predict the QoE at every

time instant as follows [43], [45]:

p(y(t)|y(t− 1), y(t− 2), · · · , y(1)) = p(y(t); g(c(t))),

where, g(·) refers to a differentiable function that maps c(t)
of LSTMs to the parameters of the underlying unknown

QoE distribution. LSTMl,d provides two functionalities: 1)

LSTMo
l,d for the output QoE prediction and 2) LSTM c

l,d for

the cell state update. The predicted QoE ŷ(t) is given by

ŷ(t) = LSTMo
l,d(x(t), c(t− 1)). (1)

The cell state update [45] for the LSTM network is given

by

c(t) = LSTM c
l,d(c(1 : t− 1), ŷ(1 : t− 1)), ∀t > 1. (2)

The cell state c(t) is a deterministic function of the past

QoE ŷ(1 : t − 1) and the past cell states through the LSTM

network function LSTM c
l,d. This enables the state vector c(t)

to track complex temporal dependencies in the QoE process

and thereby empower LSTMs to model the sequential data.

The predicted QoE ŷ(t) is obtained using the current input

feature x(t) and the cell state before the update c(t − 1) as

provided in (1). Further, the nonlinearities involved in the QoE

prediction are also taken into account, as LSTMs inherently

possess nonlinearity by construction [39].

From (1) and (2), we observe that the selection of input

features x(t) is crucial for continuous QoE prediction. The

selected input features should be such that they effectively cap-

ture and integrate various influences governing QoE evolution

through the LSTM states. Hence, we discuss the constitution

of the input feature vector x(t) in the following subsection.

B. Feature Selection

Due to their demonstrated efficiency, we employ the follow-

ing three features for QoE prediction in the proposed LSTM-

QoE [5], [33]:

1) Short Time Subjective Quality (STSQ): STSQ refers to the

perceptual quality of the video segment currently being

rendered to the user. STSQ can be measured using off-

the-shelf video quality assessment (VQA) metrics such

as STRRED [23], MS-SSIM [30]. STSQ as a feature has

been successfully employed for QoE prediction in [5] and

[33].

2) Playback Indicator (PI): A binary indicator variable PI

to indicate whether the video is currently in the playback

state or in the rebuffering state. The playback status indi-

cator has been shown to be effective for QoE prediction in

the earlier approaches such as NARX [5] and SVR-QoE

[4].

3) Time elapsed since last rebuffering (TR): Since, the user

QoE is heavily influenced by the occurrence of rebuffer-

ing events, we employ TR, a variable to keep track of the

time elapsed since the occurrence of the last rebuffering

event. TR has been used for QoE prediction in [33].

We subsequently show that the proposed model driven by

these features is powerful enough to provide superior pre-

diction that significantly outperforms the state-of-the-art QoE

prediction models. We discuss the performance evaluation of

LSTM-QoE over continuous QoE databases in the following

section.

IV. PERFORMANCE EVALUATION OF LSTM-QOE

In this section, we consider the performance evaluation of

the proposed model over continuous QoE databases. We first

describe the databases and the evaluation procedure, followed

by a discussion on the performance measures. We then explain

the selection of the parameters l and d in the proposed

LSTM-QoE network. Further, we discuss the efficacies of the

individual features for QoE prediction. Using the best network

configuration and the best performing feature set, we present

the performance evaluation of the proposed model for QoE

prediction.



A. Database Description

We employ four publicly available continuous QoE

databases for evaluation. The details of these databases along

with the training and the test procedures followed in the

study are described as follows.

1) LIVE Netflix Database [7]: The database provides

112 videos of which 56 videos have compression

(encoding) artifacts only and the remaining 56 videos

have compression artifacts and rebuffering combined

together. In this database, 112 videos are constructed

out of 14 videos that are distinct in content with 8

videos per content. Each of these 8 videos has a unique

playout pattern. The videos in the database have a

resolution of 1920×1080. The continuous QoE scores

of the videos in the database have a dynamic range

of [-2.26, 1.52]. Lower the score values, lower is the QoE.

We employ the standard training and test procedure with

a training-test split as described in [5]. Accordingly,

in each training-test split, one video in the database is

considered in each test set. The model is trained on the

set of videos that do not have the same content and

the playout pattern as those of the video in the test

set. This excludes 21 videos (14 with the same playout

pattern and 7 with the same content) from the training

process for each test video. Thus, in each training-test

split, the training set consists of 91 videos out of a

total of 112 videos in the database. This procedure

is employed in order to ensure a fair evaluation of

the trained model. This process is carried out for all

the videos in the database. Hence, there are 112 test

evaluations corresponding to each of the videos.

2) LFOVIA QoE Database [4]: The database consists of

36 distorted videos derived from 18 reference videos,

each having a duration of 120 seconds. These 36 videos

contain a combination of time varying quality and

rebuffering distortions. In this database, 18 of the 36

videos are at full-HD (1920×1080) resolution, while the

other 18 videos are at ultra-HD (3840×2160) resolution.

The QoE scores obtained for the videos in the database

are in the range [0, 100], with score 0 being the worst

and 100 being the best.

We employ a training-test split procedure similar to that

employed for the LIVE Netflix Database, wherein, there

is only one video in each test set. The training set is

constituted by the videos that do not contain the playout

pattern as that of the video in the test set. In other words,

the videos in the database having the same playout pattern

as that of the test video are excluded from training.

Accordingly, 25 of 36 videos are chosen for training

the model for each test video. Thus, there are 36 test

evaluations corresponding to each of the videos in the

database.

3) LIVE QoE Database [20]: The database consists of 15

time varying quality videos generated from 3 pristine

reference videos. Each video is of length 300 seconds

with a resolution 1280×720. The QoE scores obtained

for the videos in the database are in the range [0, 100],

with score 0 being the worst and 100 being the best.

For the LIVE QoE Database, we employ the leave

p-out cross validation methodology for performance

evaluation, with a value of p = 5. A similar methodology

for evaluation has also been employed in [20] and

[46]. Accordingly, for the evaluation of each test video,

the training is performed using those 10 videos that

differ in the video content as well as the time varying

quality pattern as compared to those of the test video.

Accordingly, 10 out of 15 videos in the database are

employed for training in each training-test split. The

videos in this database have only time varying quality

artifacts and no rebufferings. Hence, we employ STSQ

as the only input feature in the proposed model for this

database. A similar setting has been employed for QoE

prediction in [6]. Alternately, the feature PI can be set to

1 meaning ‘ON’ and TR constant throughout the video

duration in our proposed model for this database.

4) LIVE Mobile Video Stall Database-II [47]: The database

consists of 174 videos with rebuffering events occurring

at various locations in the video playback. The database

investigates the continuous evaluation of QoE due to

rebuffering events only.

In the LIVE Mobile Video Stall Database-II, the distor-

tion patterns are randomly distributed across the videos.

Hence, we employ a slightly different evaluation method-

ology on the lines similar to that employed for LIVE

Netflix and LFOVIA QoE databases. Accordingly, we

create 174 test sets corresponding to each of 174 videos

in the database. For each test set, we randomly choose

80% videos from the remaining 173 videos for training

the model and perform evaluation over the test video.

The various measures employed for quantifying the QoE

prediction performance are explained next.

B. Performance Evaluation Measures

The performance of QoE prediction using the proposed

model is quantified using the following four measures: 1)

Linear Correlation Coefficient (LCC), 2) Spearman Rank

Order Correlation Coefficient (SROCC), 3) Normalized Root

Mean Squared Error (RMSEn), and 4) Outage Rate (OR) [20],

[4].

The LCC and SROCC provide a quantification of the

correlation between the predicted QoE scores and the ground

truth QoE scores. The RMSEn and OR measure the closeness

between the predicted scores and the ground truth scores. The

QoE databases considered in our evaluation have different QoE

score ranges. Hence, we normalize the actual RMSE values to

obtain the normalized RMSE ‘RMSEn’. Since the predicted

scores are continuous, it is insufficient to assess the perfor-

mance using any of these metrics alone [4], [46]. Therefore, we
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Fig. 3: QoE prediction performance of various LSTM-QoE network configurations.
Figs. 3a, 3b, 3c, and 3d illustrate the QoE prediction performance for different LSTM units and layers upon the LIVE Netflix [7] and the

LFOVIA QoE [4] Databases in terms of LCC and OR measures.
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(b) LFOVIA QoE Database [4].

Fig. 4: QoE prediction performance of various feature combinations.
Figs. 4a and 4b illustrate the QoE prediction performance for various feature combinations upon the LIVE Netflix [7] and the LFOVIA
QoE [4] Databases, respectively. The various feature combinations are as follows: (a) STSQ, (b) PI, (c) TR, (d) STSQ+PI, (e) PI+TR, (f)

STSQ+TR, and (g) STSQ+PI+TR. Dotted red box indicates the best performing feature combination.

consider all the aforementioned measures, i.e., LCC/SROCC

and RMSEn/OR jointly to assess the performance of the QoE

prediction model. A good performing model is characterized

by high LCC/SROCC (closer to 1) and low RMSEn/OR (closer

to 0). We next discuss the parameter selection for the LSTM-

QoE network.

C. Parameter Selection for LSTM-QoE Network

In this subsection, we investigate the effect of the number

of layers and the number of units in the proposed LSTM

network for QoE prediction. We vary the number of layers

and the number of LSTM units for examining the prediction

performance using the features STSQ, PI, and TR on the

LIVE Netflix and the LFOVIA QoE Databases. We consider

STRRED [23] for STSQ in this investigation. We begin with

the performance investigation of a single LSTM unit and

subsequently increase the number of units and layers in the

LSTM network. Fig. 3 illustrates the prediction performance

for various configurations of LSTM units and layers. We ob-

serve that there is a significant improvement in the prediction

performance in terms of LCC and OR with the addition of

LSTM units and layers to the network. For network configu-

rations involving 2 layers and above, there is a steady increase

in the performance upto 10 LSTM units after which the LCC

performance begins to saturate. The prediction performance

in terms of OR continues to show an improvement beyond 10

units and the improvement begins to saturate beyond 22 LSTM

units. Although the addition of LSTM layers beyond 2 gives

a marginal improvement, we observe that the performance

starts diminishing for configurations beyond 5 LSTM layers.

This could be due to the fact that the network gets deeper

with increase in the number of LSTM units and layers and

training such a larger network could be less effective due

to potential over-fitting. Based on a careful examination of

LCC and OR performances, we find that the configuration

with 2 LSTM layers and 22 units is the optimal choice of

the LSTM network for QoE prediction, i.e., l = 2 and d =

22. Using this configuration, we evaluate the performance of

the proposed model on the remaining two databases in the

following subsections. We next discuss the contribution of the

individual features for QoE prediction.

D. Feature Contribution

We empirically investigate the contribution of the individual

features for QoE prediction. Specifically, we feed the features

to the LSTM-QoE network in combination of their subsets and

evaluate for their QoE prediction performance on the LIVE

Netflix and the LFOVIA QoE Databases. The LSTM network

with 2 layers and 22 units is employed with STRRED [23] for

STSQ. Fig. 4 illustrates the prediction performance of various
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Fig. 5: QoE prediction performance of the LSTM-QoE model over the LIVE Netflix Database [7] with STRRED as the

STSQ metric.
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Fig. 6: QoE prediction performance of the LSTM-QoE model over the LFOVIA QoE Database [4] with NIQE as the STSQ

metric.
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Fig. 7: QoE prediction performance of the LSTM-QoE model over the LIVE QoE Database [20] with STRRED as the STSQ

metric.
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Fig. 8: QoE prediction performance of the proposed LSTM-QoE model over the LIVE Mobile Video Stall Database-II [47].

feature combinations in terms of LCC and OR. A combination

that yields a higher LCC and lower OR is desired. It is

observed that the best LCC and OR performance is obtained

when all the features are employed for QoE prediction. Hence,

in our evaluations, we employ all the features, i.e., STSQ,

PI, and TR for QoE prediction. We describe the evaluation

of LSTM-QoE and discuss its performance in the following

subsection.

E. LSTM-QoE Evaluation

We train the proposed LSTM-QoE network as described

in Section IV-A for evaluation over each database using Keras

[49]. In all our evaluations, we employ the best LSTM network

configuration as determined in Section IV-C. We employ all

the three features, i.e., STSQ, PI and TR for QoE prediction as

discussed in Section IV-D. We investigate three VQA metrics

for STSQ: 1) STRRED [23], a reduced-reference metric, 2)

MS-SSIM [30], a full-reference metric, and 3) NIQE [48], a

no-reference metric. During training, the data is fed to the



TABLE I: QoE prediction performance of the LSTM-QoE

model over the LIVE Netflix Database [7]. The best

performing results are indicated in bold.

QoE
VQA LCC SROCC RMSEn(%) OR(%)

Model

LSTM-QoE
STRRED [23] 0.802 0.714 7.78 27.39
MS-SSIM [30] 0.745 0.689 10.21 40.99

NIQE [48] 0.683 0.609 10.86 44.12

NLSS-QoE [33]
STRRED [23] 0.655 0.483 16.09 69.16
MS-SSIM [30] 0.583 0.420 18.22 73.74

NIQE [48] 0.527 0.300 14.50 53.33

NARX [5]
STRRED [23] 0.621 0.557 8.52 23.84

MS-SSIM [30] 0.598 0.549 10.27 25.95
NIQE [48] 0.605 0.537 9.82 30.66

TABLE II: QoE prediction performance of the LSTM-QoE

model over the LFOVIA QoE Database [4]. The best

performing results are indicated in bold.

QoE
VQA LCC SROCC RMSEn(%) OR(%)

Model

LSTM-QoE
STRRED [23] 0.800 0.730 9.56 13.72
MS-SSIM [30] 0.786 0.712 9.21 12.34

NIQE [48] 0.858 0.808 8.64 11.34

NLSS-QoE [33]
STRRED [23] 0.767 0.685 7.59 8.47
MS-SSIM [30] 0.781 0.680 7.37 6.78

NIQE [48] 0.825 0.794 6.97 6.51

SVR-QoE [4]
STRRED [23] 0.686 0.648 10.44 22.87
MS-SSIM [30] 0.737 0.683 9.48 18.25

NIQE [48] 0.797 0.750 8.32 13.64

TABLE III: QoE prediction performance of the proposed

model over the LIVE QoE Database [20]. The best

performing results are indicated in bold.

QoE
VQA LCC SROCC RMSEn(%) OR(%)

Model

LSTM-QoE
STRRED [23] 0.892 0.893 4.55 8.69
MS-SSIM [30] 0.344 0.417 10.44 42.78

NIQE [48] 0.473 0.475 8.44 38.80

NLSS-QoE [33]
STRRED [23] 0.723 0.707 7.04 26.22
MS-SSIM [30] 0.883 0.871 4.58 11.36

NIQE [48] 0.211 0.189 9.23 43.47

HW [20]
STRRED [23] 0.742 0.732 7.40 32.02
MS-SSIM [30] 0.727 0.705 6.70 29.11

NIQE [48] 0.511 0.509 8.34 36.02

TABLE IV: QoE prediction performance of the proposed

model over the LIVE Mobile Video Stall Database-II [47].

The best performing results are indicated in bold.

QoE
LCC SROCC RMSEn(%) OR(%)

Model

LSTM-QoE 0.878 0.862 7.08 30.89

NLSS-QoE [33] 0.680 0.590 9.52 42.40

TABLE V: QoE prediction performance comparison of

LSTM-QoE against TV-QoE [6] over the Vs set videos of

the LIVE Netflix Database [7] with 80/20 split. The best

performing results are indicated in bold.

QoE
LCC SROCC RMSE OR(%)

Model

LSTM-QoE 0.947 0.853 0.238 6.849

TV-QoE [6] 0.891 0.806 0.300 –

TABLE VI: QoE prediction performance comparison of

LSTM-QoE against TV-QoE [6] over the Vc set videos of

the LIVE Netflix Database [7] with 80/20 split. The best

performing results are indicated in bold.

QoE
LCC SROCC RMSE OR(%)

Model

LSTM-QoE 0.770 0.787 0.279 18.397

TV-QoE [6] 0.673 0.578 0.396 –

TABLE VII: QoE prediction performance comparison of

LSTM-QoE against TV-QoE [6] over the LIVE Mobile

Video Stall Database-II [47] with 80/20 split. The best

performing results are indicated in bold.

QoE
LCC SROCC RMSE OR(%)

Model

LSTM-QoE 0.939 0.936 5.702 14.870

TV-QoE [6] 0.960 0.944 4.424 –

network through an input layer with appropriate timesteps as

depicted in Fig. 2. In the training process, we set timestep = 4

motivated by the III-order temporal dependency employed in

NLSS-QoE in [33]. While testing, the QoE ŷ(t) is predicted

with a granularity of 1 second. Hence, during testing, we

perform the prediction every timestep, i.e., timestep = 1 at

the end of the last layer, i.e., the time distributed dense layer.

Figs. 5, 6, 7, and 8 illustrate the QoE prediction on

the considered databases using the proposed LSTM-QoE ap-

proach. The mean QoE prediction performance results for each

database are tabulated in the Tables I, II, III, and IV. These

Tables also depict the performance of the state-of-the-art QoE

models over the respective databases. In comparison with the

existing models such as NARX on the LIVE Netflix Database

[5], SVR-QoE on the LFOVIA QoE Database [4], and HW

on the LIVE QoE Database [20], which are the QoE models

proposed on the respective databases, we observe that the

proposed LSTM-QoE model provides a superior prediction

performance. From Table I, we observe that LSTM-QoE

outperforms NLSS-QoE and NARX models in terms of LCC,

SROCC and RMSEn and yields a competitive performance in

terms of OR against NARX. We also observe that STRRED

is the best performing VQA metric for measuring STSQ.

From Table II, we observe that NIQE emerges as the best

performing VQA metric for STSQ, with LSTM-QoE providing

superior performance in terms of LCC and SROCC. However,

it should be noted that the performance with STRRED as

the STSQ metric is not too inferior as compared to that

of NIQE. From Tables III and IV, it can be seen that the

LSTM-QoE outperforms the existing QoE models across all

the performance measures.

We also compare the median QoE prediction performances

obtained by the proposed LSTM-QoE model with that of TV-

QoE [6] on the LIVE Netflix [7] and the LIVE Mobile Video

Stall-II [47] Databases. For a fair comparison, we employ a

training-test split of 80/20 as considered in [6] for evaluation

over both these databases. Upon the LIVE Netflix Database,

we conduct the evaluation on two sets separately, as performed

in [6]: 1) Vc: the set of videos having compression artifacts



only and 2) Vs: the set of videos having both compression

and stalling (rebuffering) artifacts. The median QoE prediction

performances on Vs and Vc video sets are tabulated in Tables V

and VI, respectively. A superior QoE prediction performance

of LSTM-QoE over TV-QoE [6] can be observed from these

Tables. Moreover, the prediction performance is consistently

superior across LCC, SROCC, and RMSE measures. The

median performance of LSTM-QoE on the LIVE Mobile

Video Stall Database-II is tabulated in Table VII. Although

the performance of LSTM-QoE on the LIVE Mobile Video

Stall Database-II is slightly inferior, it is highly competitive

as compared to the TV-QoE [6]. On the other side, the TV-

QoE provides relatively inferior performance over both Vc and

Vs sets of the LIVE Netflix Database as compared to that of

LSTM-QoE.

For the proposed model, while STRRED as the STSQ

measure performs the best on the LIVE Netflix and the LIVE

QoE Databases, NIQE emerges as the best performing VQA

metric on the LFOVIA QoE Database. It must be noted that the

LFOVIA QoE Database consists of videos at FHD and UHD

resolutions. Although the VQA performance of STRRED

has been demonstrated over the resolution 768×432 [23], its

performance at higher resolutions such as FHD and UHD is

not well studied. NIQE being a no-reference image quality

assessment (IQA) metric is applied frame-by-frame on videos

to measure the video quality. The better performance provided

by NIQE can be attributed due to its better quality prediction

capabilities at higher resolutions. Hence, we hypothesize that

the difference in the QoE performance across different STSQ

measures is due to the dependency of the STSQ metrics on

the video resolution. This indicates that there is a scope for

more efficient VQA algorithms that work consistently well

across resolutions. Nevertheless, from the Tables I, II, and III,

it can be inferred that STRRED can serve as a good metric

for STSQ measurement. Furthermore, the proposed model

provides the flexibility to choose the appropriate VQA for QoE

prediction. The results also demonstrate the effectiveness of

the chosen features for QoE prediction. Further, we would like

to highlight that the best performing STSQ metrics observed

in the proposed model concur with those of the QoE models

reported over the respective databases [4], [5], [20].

We would also like to note that while testing, the QoE

computation using the proposed LSTM network is performed

in a feedforward fashion, similar to as performed in the

state-of-the-art QoE models such as NARX [5] and SVR-

QoE [4]. The QoE computational complexity in these models

is determined by the computational complexity of STSQ,

which is in turn determined by the VQA method employed

for computing STSQ. However, for applications such as on-

demand video streaming, the STSQs can be computed offline

and can be readily made available in order to facilitate QoE

computation in real time.

In summary, the QoE prediction performance offered by the

proposed model is superior and consistent across databases.

The results illustrate that the proposed LSTM-QoE network

is capable of capturing the complex temporal dependencies

involved in the QoE process, thereby demonstrating its efficacy

in modeling the non-Markovian QoE dynamics. Thus, we infer

that the LSTM-QoE is a highly efficient and an effective model

for QoE prediction.

We next review the proposed approach from the perspective

of state space and discuss the connection between them.

F. LSTM-QoE: A State Space Perspective

We have seen the excellent performance offered by the

proposed LSTM model for QoE prediction. Such a perfor-

mance is attributed to the capability of LSTMs in modeling

the non-Markovian QoE dynamics by capturing the long and

short-term dependencies through the dynamically evolving

internal states. In [45], it is shown that the LSTMs can be

modeled as a state space (referred as State Space LSTM

(SSL)) using Sequential Monte Carlo inference. The SSLs

provide a state space interpretation for modeling the nonlinear

non-Markovian dynamics of LSTMs. On the other hand, the

NLSS-QoE proposed in [33] is a nonlinear QoE prediction

model based on the conventional state space approach. It is

shown in [33] that the NLSS-QoE model provides superior

QoE prediction over the existing models on the LIVE Netflix

[7] and the LFOVIA QoE [4] Databases. Such a superior

performance is attributed to the model design wherein, the

non-Markovian QoE dynamics are captured explicitly through

the states. Further, the state space in NLSS-QoE is constituted

by subsets of states that are distinctly controlled by each

of the previous ‘r’ input features. The number of states in

each subset is determined by an empirically chosen order r

that explicitly models the non-Markovian dynamics. However,

such a fixed choice of the model order could be stringent

and may not effectively capture the dependencies and the

hysteresis effects involved in the QoE process. This drawback

of enforced temporal dependency in the NLSS-QoE model has

been overcome in the proposed LTSM-QoE model where the

LSTM network learns these dependencies during the training

process. Although there are a fixed number of states in LSTM-

QoE as determined by the size of the LSTM network, i.e.,

the parameters l and d, the LSTM latent states c(t) capture

the QoE dynamics implicitly through the state transitions as

described in (2). Further, we would like to note that the

LSTM-QoE does not need explicit state initialization for QoE

prediction, whereas, appropriate state initialization is crucial

for the NLSS-QoE model.

The efficacy of LSTM-QoE over NLSS-QoE for QoE pre-

diction can also be attributed to the cascaded LSTM nonlin-

earities in the LSTM network. In NLSS-QoE, a single input

nonlinearity drives the linear state space. Whereas, in LSTM-

QoE, the nonlinearities are imposed at multiple stages in each

LSTM unit before feeding the next unit. Such a capability of

modeling complex nonlinearities as well as the memory effects

through latent states makes the proposed LSTM-QoE highly

efficient for QoE prediction. This is evident from the LSTM-

QoE model’s performances illustrated in Tables I, II, III and IV

as compared to that of the NLSS-QoE. Nevertheless, based on

the effectiveness and the superior performance offered by the

NLSS-QoE and LSTM-QoE models over the existing models,

we infer that the state space approaches have immense poten-

tial and offer a promising direction for performing effective

continuous QoE prediction.



TABLE VIII: Predicting the overall QoE from the

continuous QoE scores using different pooling strategies.

Database Pooling LCC SROCC

LIVE Netflix [7]
mean 0.985 0.971

median 0.966 0.933

LFOVIA QoE [4]
mean 0.957 0.900

median 0.907 0.875

LIVE Mobile Video Stall-II [47]
mean 0.931 0.915

median 0.927 0.921

The prediction of overall QoE using the continuous QoE

scores is discussed in the following subsection.

G. Overall QoE Performance

In this subsection, we investigate whether the overall QoE

of the user can be predicted using the continuous QoE scores.

In addition to the continuous QoE scores, the continuous QoE

databases also provide the overall QoE obtained at the end of

each video during the subjective study. We use these scores

as the ground truth for validating the predicted overall QoE

scores. In this investigation, we consider the ground truth

continuous QoE scores and pool them to predict the overall

QoE. We explore two strategies for pooling the continuous

QoE scores for overall QoE prediction. They are 1) mean

pooling and 2) median pooling. The pooled continuous QoE

scores are correlated against the ground truth overall QoE

scores for prediction performance evaluation. The performance

results are tabulated in the Table VIII. It is observed that

the overall QoE prediction performance is good under both

the pooling strategies, with mean pooling performing slightly

better than the median pooling. Therefore, we infer that the

mean/median pooling strategies on the continuous QoE scores

can be effectively used to predict the overall QoE of the user.

It is interesting to note that the efficacy of the overall QoE

prediction depends on the effectiveness of the continuous QoE

prediction. Thus, the continuous QoE prediction is useful in

providing insights for understanding the overall experience of

the user at the end of a video session.

V. CONCLUSIONS

In this paper, we proposed LSTM-QoE, a novel method for

continuous video QoE evaluation. The proposed model con-

sists of an LSTM network for capturing the complex temporal

dependencies involved in the non-Markovian dynamics of the

QoE process. The QoE prediction using the proposed model

was performed using a set of carefully selected QoE deter-

mining features. A comprehensive evaluation of the proposed

model was conducted on four publicly available continuous

QoE databases and it was shown that the LSTM-QoE provides

an excellent prediction performance across all the databases. It

was also observed that the LSTM-QoE outperforms the state-

of-the-art QoE prediction models. Based on the performance

of LSTM-QoE and NLSS-QoE, we found that the state space

approaches are effective for QoE modeling and possess an

immense potential for efficient QoE prediction. Finally, an

overall QoE prediction performance analysis showed that the

mean and the median continuous QoE pooling strategies are

effective for quantifying the overall QoE of the users. In

future, we intend to develop a highly robust universal QoE

predictor that can provide an excellent prediction performance

on existing and upcoming QoE databases and across diverse

scenarios of video streaming.
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