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Abstract

Crowdsourcing has been used to address computational challenges in systems biology and assess 

translation of findings across species. Sub-challenge 2 of the sbv IMPROVER Systems Toxicology 

Challenge was designed to determine whether a common set of genes can be used to identify 

exposure to cigarette smoke in both human and mouse. Participating teams used a training set of 

human and mouse blood gene expression data to derive parsimonious models (up to 40 genes) that 

classify subjects into exposure groups: smokers, former smokers, and never-smokers. Teams were 

ranked based on two classification performance metrics evaluated on a blinded test dataset. 

Prediction of current exposure to cigarette smoke in human and mouse by a common prediction 

model was achieved by the top ranked team (Team 219) with 89% balanced accuracy (BAC), 

while past exposure was predicted with only 57% BAC. The prediction model of the top ranked 

team was a random forest classifier trained on sets of genes that appeared best for each species 

separately with no overlap between species. By contrast, Team 264, ranked second (tied with 

Team 250), selected genes that were simultaneously predictive in both species and achieved 80% 
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and 59% BAC when predicting current and past exposure, respectively. These performance values 

were lower than the 96.5% and 61% BAC estimates for current and past exposure, respectively, 

obtained by Team 264 (top ranked in sub-challenge 1) when using only human data. Unlike past 

exposure, current exposure to cigarette smoke can be accurately assessed in both human and 

mouse with a common prediction model based on blood mRNAs. However, requiring a common 

gene signature to be predictive in both species resulted in a substantial decrease in balanced 

accuracy for prediction of current exposure to cigarette smoke (from 96.5% to 80%), suggesting 

species-specific responses exist.

Keywords

Systems toxicology; computational challenge; species-translatable gene signature; smoking 

biomarker; predictive modeling

Introduction

The assumption at the basis of many omics experiments in animal models is that biological 

insight is translatable to humans. An important requirement to ensure translatability of 

findings is the use of robust analytical approaches in the analysis of omics data. 

Computational challenges in the area of omics data analysis have been addressed using 

crowdsourcing[1], as a way to both: i) explore existing approaches and identify those that 

work best and ii) test the robustness of omics-based findings by comparing signatures 

derived from a training dataset to an analyst-blinded independent test dataset. An example of 

a crowdsourcing-based initiative to test the rodent to human translatability assumption is the 

sbv IMPROVER[2] Species Translation Challenge (2013), which aimed at determining to 

what extent biological processes perturbed by various stimuli in human cells can be inferred 

from omics data collected in rodents[3]. Similarly, sub-challenge 2 of the sbv IMPROVER 

Systems Toxicology Challenge (2106), which is the subject of this article, was designed to 

test whether exposure to cigarette smoke can be detected/predicted in both mouse and 

human by a parsimonious common set of blood mRNAs. The ability to translate the impact 

of such toxicants from animals to humans is key in systems toxicology[4-6], which is 

enabled by the ability to profile tens of thousands of molecules (e.g. mRNAs) in biological 

samples using omics technologies such as gene expression microarrays [7]. While sub-

challenge 1 of the Systems Toxicology Challenge showed that microarray gene expression 

data generated from human blood samples allowed confident discrimination of current 

smokers from former and never-smokers, it was not known whether the same genes were 

implicated in both rodent and human. The challenge organizers provided a training gene 

expression dataset derived from mouse and human blood samples for current, former, and 

never cigarette smoke exposed individuals and ranked participating teams based on the 

performance of their models in predicting the exposure status on a new set of samples (test 

dataset). The aim of this article is to describe the approaches and results of the top three 

teams that participated in this sub-challenge, focusing on key aspects of the methodologies 

that might explain the similarity and differences in the cigarette smoke-exposure 

classification models that they developed.
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Methods

Challenge organization

The human training dataset that was made available to participating teams was based on the 

Queen Ann Street Medical Center (QASMC) clinical case–control study conducted at the 

Heart and Lung Centre (London, UK) (see ClinicalTrials.gov, ID: NCT01780298) and 

included gene expression data from 109 smokers, 57 former smokers, and 58 never-smokers. 

The test dataset was obtained by expression profiling blood samples from a banked 

repository (BioServe Biotechnologies Ltd., Beltsville, MD, USA) and included samples 

from 27 smokers, 26 former smokers, and 28 never-smokers. After total RNA extraction, 

hybridization was performed on Affymetrix GeneChip® Human Genome U133 Plus 2.0 

arrays.

The mouse training dataset was based on a 7-month cigarette smoke inhalation study 

conducted with C57BL/6 mice and included three groups of animals: exposed to smoke for 7 

months (equivalent to a human current smoker), exposed to smoke for 2 months followed by 

exposure to air (equivalent to a human former smoker) and mice continuously exposed to air 

(equivalent to human never-smoker) [8]. The mouse test dataset was based on an 8-months 

inhalation study conducted with Apoe−/− mice and involved similar groups as the training 

dataset. After total RNA extraction, hybridization was performed on GeneChip® Mouse 

Genome 430 2.0 arrays.

Raw gene expression data (CEL files) were background corrected, normalized, and 

summarized into one expression value per Entrez gene ID using frozen robust microarray 

analysis (fRMA)[9]. Mouse genes were mapped to human genes using the NCBI/HCOP 

search tool [10]. See the technical document from the challenge organizers [11] as well as 

Belcastro et al. in this issue for more details.

Participating teams were requested to develop a prediction rule that classifies human and 

rodent expression profiles into exposure groups using training data and then apply it on the 

test data. For each test sample, the teams provided a confidence value (probability ranging 

from 0 to 1) that a sample was taken from a smoker (pS) as opposed to a non-current smoker 

(former smoker or never-smoker (1−ps). For samples assigned to the non-current smoker 

group (ps ≤0.5) a second classification was requested to determine whether the sample came 

from a former smoker (pfs) or from a never-smoker (1−pfs). Of note, teams that wrongly 

classified non-current smokers (former smokers or never-smokers) as smokers were 

penalized twice by imputing the missing confidence values for those subjects with the worst-

case scenario confidence values (e.g., pfs for a former smoker misclassified as smoker was 

set to 0.0 instead of the ideal 1.0). To enable a direct comparison of the prediction 

performance between the two classification tasks (smoker vs non-current smoker and former 

smoker vs never-smoker), predictions for all test samples obtained with former smoker vs 

never-smoker prediction models were requested post-challenge for top three teams discussed 

in this article.

The submissions from the different teams were then ranked by computing the area under the 

precision recall curve (AUPR)[12] and the Matthew’s correlation coefficient (MCC)[13] for 
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both classification tasks (smoker vs non-current smoker and former smoker vs never-

smoker) on the test dataset. The sum of ranks of each team based on four statistics (two 

metrics × two classification tasks) was used to rank the teams. To determine whether or not 

the performance metric (AUPR or MCC) of a given team was better than expected by 

chance, the empirical distribution of AUPR and MCC statistics were determined as 

described in Belcastro et al. in this issue. The top three teams were invited to contribute to 

this manuscript.

Approach of first-ranked team (Team 219)—The team ranked first in this challenge 

(OSS, ATB, ISB, Team ID 219) relied on a classifier development pipeline based on the 

selection of a set of features/genes for each classification task, followed by fitting a 

classification model. All modeling decisions were based solely on the prediction 

performance assessed on the training data via 10-fold cross-validation. Performance metrics 

that were considered were accuracy and area under the ROC curve. LASSO regression[14] 

and random forest[15] algorithms implemented in the corresponding R packages glmnet[16] 

and randomForest[17] were tested. Both these methods can be used for feature selection and 

classification, and therefore can be seen as embedded feature selection methods. LASSO is a 

sparse linear estimator that selects only the most relevant features among all features used as 

input via a regularization term in the optimization function. Random forest classifiers rely on 

multiple binary classification trees and can be used to evaluate the importance of features by 

determining their frequency of selection among 1,000 decision trees built with different 

bootstrap samples of the training set starting with a random set of features among all 

available.

After testing LASSO regression, random forests, and random forests with preselected genes 

by LASSO regression, the last option was determined to be best (87%, 81%, and 91% 

accuracy, respectively) for the smoker vs non-current smoker classification. The same 

approach was then used in the former smoker vs never-smoker classification. The second 

modeling decision was whether to select features using both human and mouse data at the 

same time or select features separately for human and mouse datasets and then use the union 

of these features in the classifier. Selecting predictors for each species separately resulted in 

95% accuracy compared with 91% accuracy obtained when feature selection was performed 

on combined sets at the same time.

Approach of (tied) second-ranked team (Team 250)—One of the teams ranked 

second (in a tie) in this challenge (RK, SKD Team ID 250) used a pipeline that included 

feature selection followed by classification by multiple algorithms. For feature selection, the 

WEKA (version 3.6.13) platform[18] was used to apply the BestFirst algorithm in the 

forward direction to build a combination of features predictive of the outcome. The BestFirst 

algorithm searches the space of attribute subsets by forward inclusion of the features that 

maximize the classification performance followed by backward deletion of the feature that 

decreases the performance by the smallest amount. The same algorithm was applied for both 

classification tasks selecting the maximum allowed number of predictor (40) genes that 

showed best correlation with the outcome and minimum inter-correlation with other 

predictor genes.
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Several machine-learning techniques including support vector machines (SVM), artificial 

neural networks (ANN), K-nearest neighbor (KNN), Naïve Bayes classifier, and random 

forests were considered (see[19] for a review). The different approaches were compared in 

terms of their accuracy and mean absolute error estimated by 10-fold cross-validation on the 

training dataset. The random forest classifiers were selected as the best alternative for both 

classification tasks. Random forests provide a probability that a given sample belongs to the 

positive class (e.g. smoker class in the smoker vs non-current smoker classification task) 

based on the votes of individual trees in the random forest.

Approach of (tied) second-ranked team (Team 264)—The approach of the other 

second ranked team (ALT and RR, Team ID 264) was similar to the one used in previous sbv 

IMPROVER Challenges[20,21] but was modified to use a common gene signature for 

mouse and human. The approach was applied in the same manner to both classification tasks 

(i.e., smoker vs non-current smoker, and former smoker vs never-smoker and involved the 

following steps:

1. Fit a linear model to gene expression data including the exposure indicator 

variable (e.g., smoker vs non-current smoker) and the species (mouse vs human) 

as covariate. The goal was to find genes that changed with the exposure status 

regardless of the species and hence relevant for both human and mouse 

simultaneously.

2. Rank genes by moderated t-test[22] p-values of the exposure group coefficient 

and select the first NF candidate genes as those with p <0.05 and fold change in 

expression between groups greater than a given fold change threshold (FCT). If 

there were no such NF genes, use (or complement with) top genes ranked solely 

by p-values.

3. Implement a 3-fold cross-validation repeated 10 times to estimate the cross-

validated performance (PCV) of a linear discriminant analysis (LDA) model 

using d genes as predictors, d=1,2, …, NF. The optimal value of d will be the 

value that maximizes the average performance over the 3×10 cross-validation 

test sets.

In the steps above, the prediction performance was the average over five different metrics 

used in previous sbv IMPROVER challenges: belief confusion metric, correct class 

enrichment metric, area under the ROC curve, AUPR, and balanced accuracy described in 

detail elsewhere [23]. The optimal values for FCT and NF (leading to highest PCV) were 

chosen by trial and error over a set of pre-specified FCT values (1.25, 1.5, 2.0) and NF 

values (5, 6, …, 25). Let p denote the optimal number of predictor genes determined using 

the optimal value of FCT and NF as described in steps 1 and 2 above. A p-genes final model 

was fitted using the entire training dataset and then applied to the test data to compute the 

posterior probability that a given sample belongs to a class of interest (e.g., to the smoker 

group for smoker vs non-current smoker, or to the former smoker group for former smoker 

vs never-smoker). All analysis was performed using the R statistical language[24] (version 

3.2.2) as well as specialized packages limma (version 3.24.15) (for linear model fitting), and 

MASS (version 7.3-45) (for LDA model fitting).
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Results

Prediction performance in the sbv IMPROVER Systems Toxicology sub-challenge 2

Of the 15 international teams that provided submissions in sub-challenge 2, only six met all 

the criteria to be included in the final ranking. Participating teams submitted confidence 

levels (ranging from 0 to 1) for classifying human samples from 27 smokers, 26 former 

smokers, and 28 never-smokers, and mouse samples from 12, 8, and 13 animals from 

corresponding exposure groups. Samples were classified first as smoker vs non-current 

smoker (task 1) and then as former smoker vs never-smoker (task 2). After ranking teams by 

AUPR and MCC for each classification task, the sum of ranks was computed for all teams 

(see Table 1 and Figure 1). Based on principal components analysis using the genes selected 

as predictors by each of the top three teams, the main source of variability in the combined 

dataset was determined to be the species/microarray platform, captured by the first principal 

component, as depicted in Figure S1. The variability in gene expression due to exposure 

status was captured by the second principal component.

The classification of subjects (mouse and human) into smoker vs non-current smoker (or 

equivalent for mouse) was performed with high accuracy. The top team achieved an AUPR 

of 0.93, MCC of 0.78 (Table 1), and sensitivity of 85% at 93% specificity (Table 2). Notably, 

the prediction performance was, in general, higher for the mouse samples than for the 

human samples for all teams (mouse/human MCC and AUPR: 0.99/0.93 and 0.87/0.78 

(Team 219); 0.75/0.79 and 0.96/0.65 (Team 250); 0.81/0.79 and 0.96/0.6 (Team 264)).

Additional information about the quality of the classifications not directly captured by the 

AUPR and MCC statistics is presented in Figure 2 as the distribution of confidence values 

for the predictions of the top three teams. The first-ranked team (Team 219) classified both 

actual smokers and non-current smokers correctly with higher confidence (paired Wilcoxon 

test p <0.00001) than Team 250 but with lower confidence (p <0.00001) than Team 264 

(Figure 2A). This is because neither the MCC nor AUPR statistics that were used to rank the 

teams, reward this qualitative aspect of predictions, which was considered important in 

previous sbv IMPROVER Challenges.

The classification of subjects into former smoker vs never-smoker was more difficult. The 

top team for this classification task, Team 264, achieved an AUPR of 0.54, MCC of 0.20 

(Table 1), and sensitivity of 85% at 32% specificity (74% sensitivity at 40% specificity for 

Team 219, which was ranked best overall, Table 2). The interquartile range of confidence 

values that a given subject was a former smoker overlapped between the actual former 

smokers and never-smokers for all teams (Figure 2, right panel).

Analysis of the predictor genes identified by top three ranked teams

For the classification of subjects into smoker vs non-current smoker, the number of predictor 

genes used in the models of Teams 264, 219, and 250 were 25, 34, and 40, respectively. 

AHRR, COX6B2, DSC2, LRRN3, P2RY6, and SASH1 were among the genes chosen as 

predictors by two of the three teams. A post-challenge analysis revealed that of the 89 genes 

selected by at least one team in this comparison, F2R was the only one that reached a false 

discovery rate adjusted p-value (q-value) of <0.1 significance based on moderated t-tests[22] 
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in both the training and test datasets of both human and mouse. Another eight genes, AHRR, 

KLRG1, PGRMC1, TBX21, WDFY1, GUCY1B3, PF4, and SYTL4, met this significance 

criterion in three of the four datasets. All these nine genes were down-regulated in the blood 

samples from current smokers compared with non-current smokers.

Gene Ontology [25] functional profiling of the set of 89 predictor genes used by at least one 

of the top three teams revealed 11 biological processes (such as response to external biotic 

stimulus, and thrombin receptor signaling pathway) and three molecular functions (enzyme 

inhibitor activity, peptide receptor activity, and receptor activity) associated with current 

smoking (q-values <0.05, odds ratios 2.3–93.0). The neuroactive ligand-receptor interaction, 

Parkinson’s disease, and oxidative phosphorylation pathways from Kyoto Encyclopedia of 

Genes and Genomes (KEGG)[26] were also associated with current smoking (q-values <0.1, 

odds ratios 3.9–4.7).

For the comparison former smoker vs never-smoker, Teams 219 and 250 each selected 40 

predictor genes, while Team 264, which achieved the highest performance in this 

comparison, selected only eight predictor genes. Among the 85 unique genes chosen by at 

least one of the teams, CLDN19 was selected by all three teams, while CNTROB was 

selected by two of the teams, suggesting there was little overlap. None of these genes met 

the q-value of <0.1 significance level on any of the four datasets.

Discussion

The expectation that biological processes and pathways in human and animal models are 

perturbed in a similar manner by external stimuli is the assumption that underpins many 

animal model studies, with controversies occurring when lack of translatability of findings 

are reported [27]. After demonstrating that changes in protein phosphorylation status and 

gene set activation induced by cellular responses to 52 stimuli in human cells can be 

predicted to some extent given responses generated in rat cells[3,21,28], the crowdsourcing-

based initiative sbv IMPROVER, addressed the question of whether a common set of blood 

mRNAs can identify exposure to cigarette smoke in both mouse and human. According to 

the results of sub-challenge 1 of the sbv IMPROVER Systems Toxicology Challenge (see 

Tarca et al. in this issue), current smokers were distinguished from non-current smokers with 

96.5% balanced accuracy (BAC) (100% sensitivity at 93% specificity) (task 1), while former 

smokers were discriminated from never-smokers with only 61% BAC (65% sensitivity at 

57% specificity) (task 2). When a common set of genes was required, and the same 

analytical approach was used (Team 246) to predict both human and mouse exposure to 

cigarette smoke (sub-challenge 2), the BAC dropped to 80% (74% sensitivity at 85% 

specificity) for task 1 and 59% (85% sensitivity at 32% specificity) for task 2. Therefore, we 

concluded that although good prediction performances for current exposure to smoking can 

be achieved with a common gene signature for both species, the performance is lower than 

when a separate model is used for each species because species-specific changes also occur 

in blood mRNAs.

From a computation perspective, sub-challenge 2 can be seen as a classification problem 

involving a strata, in this case the species (mouse or human), where the goal was to design a 
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model to predict accurately the outcome/class (exposed vs non-exposed) in a new dataset 

containing samples (observations) from both strata using a common set of genes. Although 

the test datasets on which the different models were ranked were not balanced for the two 

strata (2.5 times more human than mouse samples), all three top teams trained their final 

model without weighting the samples to favor equally both species. Hence, by default, all 

models of the top three teams are expected to have favored the most dominant strata 

(human). However, there are fundamental differences in the way the predictor genes were 

selected and used by the prediction models of the three teams that can explain, at least in 

part, the higher accuracy of the Team 219 model compared with the models of Teams 250 

and 264.

The least computationally restrictive model, and hence the model that allowed for the best fit 

of the data, was developed by Team 219, which was deemed best overall in sub-challenge 2. 

The Team 219 model selected genes by LASSO regression based on human and mouse 

datasets separately with virtually no overlap between the optimal species-specific gene lists. 

Then, a random forest model was trained using a combined list of the predictor genes on the 

combined human and mouse datasets. The second least restrictive model was developed by 

Team 250 (ranked second) in which genes predictive of the outcome were selected based on 

the combined human and mouse training datasets. The selected genes were then used in a 

random forest classifier. The random forest classifiers used by Teams 219 and 250 could 

easily have leveraged systematic biases between the human and mouse data to determine 

internally the predictor genes to use for each species separately in the decision trees; hence, 

defying the goal of the sub-challenge of finding a common (consistent) gene expression 

signature (genes that were up- or down-regulated in both species at the same time). The 

accurate identification of the species was easily achievable even based on genes that were 

initially intended to be predictive for cigarette smoke exposure. Indeed, 68% and 38% of the 

predictor genes selected by Teams 219 and 250, respectively, for classification task 1 showed 

systematic differences between the two species (q-value <0.1 and fold change >1.5, 

consistent direction of change in both training and test datasets). The strong effect of species 

on overall expression data is depicted in Figure S1, because the first principal component 

captures differences between species and not between exposure groups.

The most restrictive approach (from a computational perspective), yet aligned most with the 

main aim of the challenge, was developed by Team 264, in which genes that appeared to be 

changing consistently with exposure in both strata were selected by adjusting for the species 

variable in a linear model fitting expression data as a function of the exposure status. Indeed, 

as can be seen in Figure S1, the gene predictors identified by Team 264 for the smoker vs 

non-current smoker comparison led to consistent separation of exposure groups in both the 

human and mouse training and test datasets based on the second principal component (which 

was not the case when predictor genes of Teams 219 and 250 were used in the principal 

components analysis). Therefore, a likely explanation for the high performance of the Team 

219 prediction model was more freedom (less restriction) in designing the model to fit the 

available expression data.

The main biological finding of sub-challenge 2 of the sbv IMPROVER Systems Toxicology 

Challenge was that exposure to cigarette smoke had a significant effect on the blood 
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transcriptome of both human and mouse and that this effect attenuated after one or more 

years (or equivalently two months for mouse) of exposure cessation. Exposure to cigarette 

smoke is known to have a broad and long-term impact on genome-wide methylation [29], 

and this epigenetic mechanism allows exposed species to respond to the environment 

through changes in gene expression [30]. Interestingly, AHRR, KLRG1, PGRMC1, TBX21, 

WDFY1, GUCY1B3, PF4, and SYTL4 mRNAs were all down-regulated with smoking in 

three or four of the human and mouse datasets used in this study. Moreover, the gene 

expression changes with current exposure to smoking reflected the perturbation of several 

biological processes and pathways.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Abreviations

IMPROVERIndustrial Methodology for PROcess VErification in Research

LDA Linear Discriminant Analysis

LASSO Least Absolute Shrinkage and Selection Operator

sbv systems biology verification
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Highlights

• Common blood mRNAs predict current exposure to cigarette smoke in mouse 

and human

• Organism specific signature is more accurate for prediction of current 

exposure

• Best predictive methods found in previous challenges are proven again to be 

robust
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Figure 1. Classification performance of the six teams with valid submissions in the sbv 
IMPROVER Systems Toxicology sub-challenge 2

Data shown represent the ranks (1–6, the smaller the better) for two prediction performance 

metrics (area under the precision-recall curve, AUPR, and Mathew’s correlation coefficient, 

MCC) in two classification tasks (smoker vs non-current smoker and former smoker vs 

never-smoker). The final team ranking is based on the sum of the four individual ranks.
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Figure 2. Classification confidence values for the top three teams in the sbv IMPROVER Systems 
Toxicology sub-challenge 2

Data shown represent the confidence (0.0–1.0) that blood gene expression profiles belonged 

to a smoker (left) or former smoker (right). Distribution boxplots are shown by actual 

smoking status. Thick horizontal lines in the boxes represent median values, while the boxes 

encompass the first and third quartile.
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