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Abstract

Action recognition in unconstrained videos is one of the most important challenges in computer

vision. In this paper, we propose sparsity-inducing dictionaries as an effective representation for

action classification in videos. We demonstrate that features obtained from sparsity based repre-

sentation provide discriminative information useful for classification of action videos into various

action classes. We show that the constructed dictionaries are distinct for a large number of action

classes resulting in a significant improvement in classification accuracy on the HMDB51 dataset.

We further demonstrate the efficacy of dictionaries and sparsity based classification on other large

action video datasets like UCF50.

Keywords: Action Classification, Dictionary Learning, Sparse Representation, Action Bank

features

1. Introduction

Action recognition is the process of extracting human action patterns from real video streams.

It can be used in diverse applications like automated video indexing of huge on-line video repos-

itories like Youtube & Vimeo, analysing video surveillance systems in public places, human-

computer interaction, sports analysis etc. Actions are defined as single-person activities like

”walking”, ”waving”, ”punching” etc. If the action video contains only one distinct human ac-

tion, the task is to classify the video into one of the different categories. It has been shown in

[1] that both spatial and temporal information are important for action representation. However,

features which are shared across action classes are not suitable to build discriminative dictionar-

ies. For example, “running” is a part of both “cricket bowling” and “soccer penalty”. In such a

case, the main action (bowling / penalty taking) occupies a small fraction of the entire duration

of the video. Hence, it is difficult with just spatio-temporal descriptors to classify such actions

with high credibility. Action bank [2] captures the similarity of the video with the class it belongs
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to and dissimilarity with other classes. Since, running occurs before bowling(or penalty taking),

this temporal dependence can be exploited to produce a more unique representation for “cricket

bowling” (or soccer penalty) which is useful for classification.

In this work, we construct sparsity-inducing dictionaries built specifically for action classifi-

cation. Such a sparse dictionary based representation highlights discriminative information about

various action classes. Also, these dictionaries distinctly represent the different action classes of

HMDB51 dataset. Since dictionary learning has no strict convergence criteria, the dictionaries are

trained until reasonable classification performance is obtained. On the HMDB51 dataset which

contains many diverse and challenging views of human actions, dictionaries achieve very low

mis-classification rate.

The rest of the paper is organized as follows. In section 2 we provide an overview of the various

feature descriptors and sparsity based methods which have been applied for action classification.

In section 3, we present the proposed sparsity based classification scheme in detail. In section 4,

we describe the performance of the proposed approach on two large action datasets - UCF50 and

HMDB51. Finally, section 5 gives the conclusion for this work.

2. Related Work and Analysis

The challenges in action recognition have been studied with great interest in the computer

vision community. Schuldt et al. [3] introduced the KTH [4] dataset which consists of six action

categories. A support vector machine (SVM) was used for classfication with local space-time

features. In [5], Kläser et al. presented the histogram of oriented 3D spatio-temporal gradients

which is essentially a collection of quantized 2D histograms collected from each frame of the

video. Kuehne et al. [6] introduced the HMDB51 dataset [7] for action recognition. Features such

as histogram of oriented gradients (HOG), histogram of optical flow (HOF) and C2 were extracted

and then a radial basis SVM was used for classification. Kliper et al. [8] proposed the use of

motion interchange patterns i.e the change of one motion leading to another to describe a distinct

action.

Solmaz et al. [9] presented the idea of gist, a global video descriptor which essentially com-

putes the 3-D discrete Fourier transform of a given video clip using 68 3-D Gabor filters placed in

37 and 31 orientations. A trajectory based local descriptor TrajMF was proposed by Jiang et al.

[10] which works on top of local feature descriptors like HOG, HOF etc. and captures global and

local reference points to characterize motion information. Wang et al. [1] employed the idea of

dense trajectories by estimating human motion, accurate camera motion estimation and removing

inconsistent matches. In [11], Wu et al. denoted each action class as an event and assigned a latent

variable to it. The crucial motion patterns in each event were then captured using latent models.

These latent models were then used to construct latent structural SVMs, max-margin hidden con-

ditional random fields and latent SVMs. Using a latent spatio-temporal compositional model in

[12], actions were simplified in terms of spatio-temporal And-Or Graphs.

Recent works like [13] and [14] indicate that self-learned features can be as competitive as

manually generated features for action classification. These works focus on convolutional neural

networks (CNN) and CNN-based recurrent neural networks (RNN). In [13], consecutive frames
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of a video were processed through separate CNNs and then the outputs are fused in various con-

figurations to obtain the best possible discriminative representation. Ng et al. [14] combined the

outputs of CNNs from 15 or more subsequent frames into a RNN using long short term memory

units (LSTM) to obtain a temporal representation. The performance was slighty better than im-

proved dense trajectory features on the UCF101 dataset. A deep parsing based CNN network was

proposed in [15] to build an end-to-end relation between the input human image and the structured

outputs for human parsing. In [16], images representing humans actions are classified and local-

ized using multiple regions for training a region-based CNN (R-CNN). Lin et al.[17] developed

a deep structural model for 3D action recognition. Traditional CNNs were fused with a latent

temporal model for representing temporal variation. Regularization was introduced in the form of

radius-margin bound for better generalization. A similar architecture is presented in [18]. In [19],

handcrafted features were augmented with CNN outputs learnt from various input sources using

multiplicative fusion to classify actions. From the literature it can be seen that CNNs can provide

a good representation of human actions.

Action bank features are useful for semantic representation of videos proposed by Sadanand

and Corso [2]. This representation of videos is achieved by applying 73 spatio-temporal volume

detectors on a video clip. There are 205 action templates having an average spatial resolution of

approximately 50 × 120 pixels and a temporal length of 40 − 50 frames. This contributes to a

14965-dimensional feature vector for each video clip under consideration. The templates perform

classification by detection and give a global description of videos. Action bank produces a single

feature vector for an entire video clip which is larger (14965 × 1) as compared to the number of

video clips per class in any of the standard datasets (≈ 100). The resultant matrix is a ”fat” matrix

(14965 × 100) which gives rise to an under-complete dictionary learning setting. In this work, we

explore sparsity-inducing dictionaries to achieve a discriminative representation of human actions.

Dictionaries have been previously used in literature for action classification. In [20], infor-

mation maximization was used for building discriminative dictionaries. These dictionaries were

used to represent action attributes to classify images representing human actions. Sparse modeling

for motion analysis was proposed by Castrodad et al. [21] . Using highly redundant features, a

two-level pipeline was built to distinguish human actions. An evaluation of three different dic-

tionary types - shared, class-specific and concatenated for the KTH, Weizmann and Hollywood2

datasets was done in [22]. The study found that the class-specific dictionaries perform better on

an average than the shared and concatenated types. In [23], a sparse dictionary was constructed

in an on-line manner for each incoming frame. In case of normal activity, consequent frames are

related to each other and dictionary update is minimal. However, any abnormal activity would

cause a major change in the dictionary. A new descriptor known as locally weighted word context

was introduced in [24] which is a context-aware spatio-temporal descriptor. A sparse dictionary

based on the descriptor was constructed using the joint ℓ2,1-norm where each action category share

similar atoms in the dictionary.

In [25], feature encoding methods like vector quantization (VQ), Fisher vector (FV), locality-

constrained linear coding (LLC) and soft assignment (SA) were evaluated in the context of sparse

coding. Fisher vector was found to be the most suitable representation to forms sparse dictionar-

ies using improved dense trajectory (IDT) features [1] on HMDB51 and UCF101 datasets. Lu

et al. [26] proposed a new sparse coding scheme in which optimized local pooling was used
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to form discriminative dictionaries. A multilevel branch-and-bound approach was developed to

achieve action localization on videos. This extensive review of sparsity-based dictionary learning

methods for action recognition showed that dictionaries can be effectively used for action clas-

sification. In [27], the dictionary learning phase and feature encoding phase (e.g. fisher vector

with GMM) were studied separately for action recognition. Various features like spatio-temporal

interest points (STIP), cuboids and IDT were used to construct discriminative dictionaries. These

dictionaries were formed using GMM, k-means, orthogonal matching pursuit and sparse coding.

They found that the efficacy of dictionaries was not dependant on different feature encoding tech-

niques. In [28], the authors proposed a representation for action recognition based on high-order

statistics of the interaction among regions of interest in actions called action-gons. These action-

gons were extracted using IDT features and served as discriminative dictionaries. Hence, it can be

observed from the literature that dictionaries are able to provide a robust representation of actions

on different kinds of features.

3. Sparsity-inducing dictionaries for action classification

In this section, a detailed discussion of the proposed method is presented. The classification

scheme in typical dictionary learning consists of two phases - dictionary construction from training

examples (training) and sparsity based evaluation of test clip (testing). The detailed block diagram

of the entire approach is given in figure 1. In the training phase, dictionaries are constructed

for each class using online dictionary learning (ODL) and then concatenated to form a single

dictionary. Testing phase comprises of computing the sparsity of a test clip with the concatenated

dictionary based on the ℓ1-norm. The class assigned to the video is the one having largest ℓ1-norm

for the given test clip.

3.1. Dictionary based representation

The aim of dictionary learning is to represent dense features in form of a representative dic-

tionary. This dictionary induces a sparse notation for the dense feature while retaining the infor-

mation contained in the feature. Given a set of m-dimensional features {xi}
n
i=1

, the K-SVD based

dictionary learning method [29] finds an optimal dictionary Dm×k and a sparse matrix Φk×n which

best represent the features, as follows:

arg min
D,Φ
‖V − DΦ‖2F (1)

subject to

‖φi‖0 ≤ T0∀i, (2)

where φi represents ith column of the sparse matrix Φ , X is the matrix whose columns are

xi, and T0 is the sparsity parameter. Here, ‖A‖F denotes the Fröbenius norm which is defined

as ‖A‖F =
√

∑

i j A2
i j. The K-SVD algorithm alternates between sparse coding (finding Φ) and

dictionary update (finding D) steps.

On-line dictionary learning (ODL) is an on-line version of k-SVD algorithm proposed by

Mairal et al. [30]. The sparse stage in ODL is a Cholesky-based implementation of LARS-lasso
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Figure 1: Flowchart of the proposed approach

algorithm which is similar to k-SVD (equation 1) but with a different sparsity constraint based on

the ℓ1-norm of φ as given in equation 3. The sparse vector for the tth incoming feature, φt is found

using the optimization function :

arg min
D,Φ
‖V − DΦ‖22 + λ‖φt‖1 (3)

In the dictionary update stage, to avoid tuning the learning rate, block coordinate descent is used.

It learns one example at a time giving the on-line nature similar to on-line stochastic approxi-

mation algorithms. This feature is particularly useful for large datasets. The dictionary Dt after

incorporating the tth example, is calculated with respect to the previous dictionary Dt−1 as :

arg min
D∈C

1

t

t
∑

i=1

1

2
‖V − Dt−1Φt−1‖

2
2 + λ‖φi‖1, (4)

where C determines the action classes to be trained for.
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3.2. Sparsity based classification

Suppose we have N classes, C1,C2, ...,CN consisting of K1,K2, . . . ,KN number of training

features, respectively. The features belonging to the same class Ci lie approximately close to each

other in a low-dimensional subspace [31]. Let b be a input feature belonging to the pth class, then

it is represented as a linear combination of the training samples belonging to class p:

b = Dpφp, (5)

where Dp is a m × Kp dictionary whose columns are the training samples in the pth class and φp is

a sparse vector for the same class.

In the classification process, the sparse vector φ j is found for the test feature b j using the

dictionaries of training samples D = [D1, . . . ,DN] by solving the following optimization problem:

arg min
φ

1

2
‖b j − Dφ j‖

2
2 (6)

subject to

‖φ j‖1 ≤ T (7)

and

î = arg max
i
‖δi(φ j)‖1, i = 1, · · · ,N (8)

where δi is a characteristic function that selects the coefficients for class Ci, T represents the

sparsity threshold. A test clip b j is assigned to class Ci if the absolute sum of sparsity coefficients

associated with the ith dictionary is maximum among other classes. This criteria was chosen

instead of counting the number of non-zero coefficients as it was found to be better at classification.

The reason for using sparsity as classification is that while forming a dictionary for a class, we

admit the sparsest representation of features belonging to that class. So, if a test feature belongs

to a certain class, it should ideally admit the sparsest representation with respect to that class

dictionary and no other.

4. Results and Evaluation

In this section, a critical evaluation of the proposed method is presented. The main goal is

to establish the robustness of sparse representation on large datasets like HMDB51 and UCF50.

Further evaluation is done to determine the optimal dictionary size with respect to classification

accuracy.

4.1. HMDB51

The HMDB51 dataset is a very large human action dataset containing 51 action categories,

with at least 101 clips for each category. The dataset includes a total of 6,766 video clips extracted

from movies, the Prelinger archive, Youtube and Google videos. Such a variety of sources which

have contributed to this database make it very realistic and challenging. Three distinct training

and testing splits have been selected from the dataset as provided in [7], with 70 training and 30

testing clips for each category. Some of the sample actions are shown in figure 2.
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Figure 2: Sample actions from HMDB51 dataset

4.2. UCF50

The UCF50 dataset was introduced in [32], consists of 50 sport action categories and all the

videos denoting the actions were collected from YouTube. The dataset consists of more than 100

video clips for each category and gives plenty of variety in terms of camera motion, object appear-

ance and pose, object scale, viewpoint, cluttered background, illumination conditions, etc. The

official train/test splits are available at [33] and were used in this paper to maintain comparability

with the previous literature on these datasets.

4.3. Performance Evaluation

A summary of the classification performance of previous approaches in literature applied on

HMDB51 is presented in Table 1. It can be observed from the table that single frame based features

like HOG/HOF[6], C2[6] , motion interchange patterns [8] demonstrate high mis-classification as

they do not consider temporal context while describing action. On the other hand, trajectory

features [11], [1], [28] which consider multiple frames to provide temporal description of the

motion perform better than single frame based features. Action bank is also one such represen-

tation which uses a spatio-temporal volume across multiple frames but performs slightly better

than single frame based features. However, representing action bank features in terms of sparsity-

inducing dictionaries improves the performance significantly as shown in table 1. It can be noticed

that a similar dictionary transformation of improved dense trajectory features [27] betters the per-

formance only slightly (57.2 to 59.7%). This shows the suitability of action bank features for

sparse dictionary based representation. Further, it is also evident from table 1 that the proposed

method demonstrates significantly higher classification accuracy than CNN and CNN based RNN

networks presented in [19], [39], [37], [34] and [38].

Also, we conducted experiments with 3D-scale invariant feature transform (SIFT) features

[42] for learning sparse dictionaries. Table 2 presents a comparison of classification performance

among various features used for learning dictionaries on the HMDB51 dataset. As reported in table

2, the best classification performance of 22.08% was obtained for 3D-SIFT features with a dictio-

nary of size 80. Other features previously used for building dictionaries include IDT features[27]
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Table 1: Comparison of classification performance on the HMDB51 action dataset

Method Feature Accuracy (%)

Single-frame based feature

Kuehne et al. [6] HOG/HOF 20.20

Kuehne et al. [6] C2 23.18

Kliper-Gross et al. [8] Motion Interchange Patterns 29.17

Multiple-frame based feature

Solmaz et al. [9] Frequency based
29.20

3D spatio-temporal features

Jiang et al. [10] Trajectory on motion
40.70

reference points

Srivastava et al. [34] RNN with LSTM 44.1

Wang et al. [1] Dense trajectory 44.75

Wu et al. [11] Dense trajectory-aligned 49.46

Liu et al. [35] Multiple features 49.95

Lan et al. [36] Local handcrafted features 52.4

Park et al. [37] Multiple CNNs 54.9

Wang et al. [1] IDT 57.20

Wang et al. [28] Action-gons +
58

Sparse Dictionaries

Sun et al. [19] Factorized Spatio-Temporal CNNs 59.1

Simonyan et al. [38] Two stream CNNs 59.4

Wang et al. [39] Temporal Pyramid Pooling
59.7

based CNN

Peng et al. [27] IDT + Sparse Dictionaries 59.7

Lan et al. [40] Space-time Extended Descriptor 62.1

Lan et al. [41] Long short term motion 63.7

Sadanand et al. [2] Action bank 26.90

Proposed approach
Action bank +

99.87
Sparse Dictionaries

and action-gons[28]. All these representations are based on spatio-temporal interest points but

yield lower performance than action bank. This shows that features that highlight similarities or

dissimilarities across classes enhances the dictionary representation providing higher classification

performance.

Dictionaries constructed for sample classes of HMDB51 and UCF50 are presented in figures

3 & 4, respectively. The variability in actions of HMDB51 in terms of body movement, posture

and overall appearance is adequately captured in the dictionaries. It is clearly evident that the

dictionaries formed for the classes of HMDB51 are indeed distinct from one another. This il-
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Table 2: Performance comparison of sparsity-based dictionaries using different features on the HMDB51 action

dataset

Feature Accuracy (%)

3D-SIFT 22.08

Action-gons [28] 58

Improved dense trajectory [27] 59.7

Action Bank 99.87

lustrates that features belonging to different classes do not share a sparse neighbourhood. These

distinct dictionaries contribute to better classification performance of dictionaries on the HMDB51

dataset. On the other hand, the dictionaries constructed for few of the classes of UCF50 bear strong

similarities. The dictionaries corresponding to classes such as “javelin throw”, “jumping jack”,

“kayaking”, “playing guitar”, “nunchunks”, “pole vault”, “pull ups” and “volleyball spiking” are

quite similar making it hard to discriminate these classes with sparsity-inducing dictionaries which

contributes to lower classification performance on the UCF50 dataset as can be seen in table 3.

In figure 5, the confusion matrix of the UCF50 dataset is presented. “Pole vault” is misclassi-

fied as “kayaking” and “biking” is misclassified as juggling balls. Similarly, “walking with dog”

is confused to be “tennis swing”. These confusions are due to the fact that their representative

dictionaries are almost identical as shown in figure 4. The results presented here are an extension

to the work presented in [43].

In table 3, we present the performance of the proposed method on the UCF50 dataset. It can be

see the dictionaries constructed from action bank features perform reasonably well as compared to

state-of-the-art but not as well as action bank features. This shows that original features are more

discriminative than the sparsity-inducing dictionaries. Further, it also illustrates that applying

sparsity constraints while constructing dictionaries may not always lead to better discriminative

representation.

Table 3: Classification performance on the UCF50 dataset

Method Accuracy (%)

Kliper-Gross et al. [8] 72.60

Solmaz et al. [9] 73.70

Reddy and Shah [32] 76.90

Todorovic et al. [44] 81.03

Sadanand et al. [2] (Action bank) 76.40

Proposed approach 72.46

4.4. Classification Performance vs. Dictionary Size

The primary objective of dictionary learning is reconstruction. However, over-fitted dictionar-

ies with perfect reconstruction are not desirable as variability in test examples cannot be handled
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effectively leading to more mis-classification. Table 4 portrays the variation of recognition accu-

racy in terms of dictionary size for HMDB51 and UCF50 datasets. For HMDB51, the maximum

performance is noted for dictionary size of 100 with sparsity (lambda value in SPAMS toolbox)

set at 2, after which the performance degrades with increase in the dictionary size. In case of

UCF50, best classification accuracy is obtained for dictionary size of 120 with sparsity set at 8

after which it degrades sharply. The reason could be that action bank features can be compressed

with great effect till the point where all the discriminating characteristics remain. Beyond that

point, increasing dictionary size leads to loss of information. This behavior is consistent across

datasets and smaller dictionary sizes can produce a fair idea on the average overall classification

performance. The only parameter to be tuned is sparsity. It also must be noted that optimal dic-

tionary size is based on the objective at hand and the number of examples available for each class.

In our case, the optimal dictionary size is reached where the reconstruction error is relatively low

while maintaining high discrimination.

Table 4: Effect of dictionary size on performance (in %)

Dictionary

Size
HMDB51 UCF50

60 92.33 51.6

80 98.11 60

100 99.87 63.9

120 99.51 72.46

140 98.23 69.6

160 97.56 69.6

5. CONCLUSION

The main goal of this work was to study dictionaries as an effective representation for action

classification in videos. Sparse representation of multi-frame based features was exploited to

obtain discriminative dictionaries. It was shown that these dictionaries distinctly represent the

different action classes. Further, it was also shown that dictionaries learned from action bank

features showed a four-fold improvement in classification accuracy over naı̈ve action bank features

on the HMDB51 dataset. However, we also found that class-wise dictionaries for some of the

classes of UCF50 were similar causing mis-classification among examples of those classes. Future

work would involve addressing the issue of classification among those classes whose dictionaries

are found to be similar.
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