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Abstract

Conditionspectrum measures the computational stability of solving a linear system.

In this paper, ten comparative results involving e-conditionspectrum are presented.

All these theorems generalize a well known eigenvalue theorem and simultaneously

compare with an appropriate pseudospectra result.
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The idea of condition spectrum was conceived while trying to realize pseudospectra

as a special case of generalized spectra defined by Ransford in Ref. [7]. The

axiomatic approach of his study compelled S. H. Kulkarni and the author in Ref. [3],

to modify slightly the underlying basic set so as to satisfy the axioms of Ransford.

The newly defined condition spectrum in itself has interesting properties which were

published in Refs. [2–5]. In this article, its connections with the usual spectrum

(eigenvalue) and pseudospectrum are discussed. Only those results on condition

spectrum that have exemplary analogy with the other two spectra are chosen for

presentation.

Each theorem is arranged in triplet, labeled with the same number followed by

relevant suffix. The first part is a result about the usual spectrum. The second part is

a generalization of the first result using pseudospectrum, while the third part, the

main contribution of this article, generalizes the first part result in terms of condition
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spectrum. For example, Theorem 1, 1K and 1r, denotes the first theorem for usual

spectrum, pseudospectrum and condition spectrum respectively. This arrangement

lets the reader compare and comprehend the results conveniently.

Our organizing principle is that each condition spectrum result precisely reduces

to the corresponding eigenvalue theorem when e ¼ 0. Note that all the K and r

theorems reduce to corresponding usual spectrum (eigenvalue) theorem, as e tends

to zero. The format of each condition spectrum result is similar to the

pseudospectrum result for easy comparison. This arrangement of results essentially

follows the article [1].

1 Introduction

Let A be an N � N matrix with complex entries., ie A 2 MNðCÞ. Let k and z denote

complex numbers.

Definition 1.1 (Condition spectrum) Let 0\e\1. The e-condition spectrum of a

matrix A is defined as

reðAÞ :¼ z 2 C : z� A is not invertible or ðz� AÞ�1
�� �� z� Ak k� 1

e

� �
:

Equivalently we can write it as reðAÞ :¼ z 2 C : ðz� AÞ�1
�� �� z� Ak k� 1

e

n o

with the convention that ðz� AÞ�1
�� �� z� Ak k ¼ 1 when z� A is not invertible.

The name of the spectrum and the range of e are justified from the definition, as it

related to the condition number of A� z.

For the sake of completeness we give the definition of pseudospectrum which is

used to understand the behavior of non-normal matrices. The properties and

applications are available in Ref. [9].

Definition 1.2 (Pseudospectrum) Let e[ 0. The e-pseudospectrum of a matrix A is

defined as

KeðAÞ :¼ z 2 C : z� A is not invertible or ðz� AÞ�1
�� ��� 1

e

� �
:

Consider solving the system of equations Ax� kx ¼ b. The eigenvalues of A are

the points in the complex plane at which A� k is not invertible and hence deal with

the uniqueness of the solution. The pseudospectra of A convey the points at which

ðA� kÞ�1
�� �� becomes very large and hence deal with the computational aspects of

the solution. The condition spectra capture the points in the complex plane at which

the condition number A� kk k ðA� kÞ�1
�� �� becomes huge and hence elaborate the

computational stability aspect of deriving the solution.

It is proved in Ref. [3] that the condition spectrum is a non empty, compact,

perfect set (no isolated points) and always contains the usual spectrum. In Ref. [4], a

sufficient condition for a function to be almost multiplicative is given using
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conditionspectrum. Here we list two results which will be referred often

subsequently. The interested reader can refer [3] for the proofs.

Lemma 1.3 For every 0\e\1, rðAÞ � reðAÞ.

Lemma 1.4 For every 0\e\1, reðAÞ is compact.
The above results are proved in a general setting, when A is a Banach algebra

element. In contrast, the proof of the following equivalent conditions mainly relies

on finite dimensionality.

Theorem 1.5 Let A 2 MNðCÞ. The following sets are equal (and hence equal to the

condition spectrum).

(1) reðAÞ ¼ fz 2 C : ðz� AÞ�1
�� �� z� Ak k� e�1g

(2) B ¼ fz 2 C : 9 u 2 C
N with uk k ¼ 1 s.t ðz� AÞuk k� e ðz� AÞk kg

(3) C ¼ fz 2 C : z 2 rðAþ EÞ for someEwith Ek k� e ðz� AÞk kg

Proof First observe that eigenvalues of A are there in all the three sets. For that,

suppose z is an eigenvalue then

• z 2 reðAÞ by the convention z� Ak k ðz� AÞ�1
�� �� ¼ 1.

• z 2 B by taking u as any normalized eigenvector corresponding to the eigenvalue

z.

• z 2 C by taking E ¼ 0.

As eigenvalues belongs to all sets, it is enough to prove, the elements of one set

(excluding eigenvalues) belongs to other sets. The following three implications

together establish the proof of the theorem.

ð1 ) 2Þ: Suppose z 2 reðAÞ and z 62 rðAÞ then z� Ak k ðz� AÞ�1
�� ��� e�1. Since

unit sphere in finite dimensional space is compact, there exists an element u 2 C
N

such that uk k ¼ 1 and

ðz� AÞ�1
u

�� �� ¼ ðz� AÞ�1
�� ��

Define

eu ¼ ðz� AÞ�1
u;

so that euk k ¼ ðz� AÞ�1
�� �� and ðz� AÞeu ¼ u. Let bu ¼ eu

euk k, then

ðz� AÞbuk k ¼ ðz� AÞeuk k
euk k ¼ uk k

euk k ¼ 1

ðz� AÞ�1
�� �� � e z� Ak k

and hence z 2 B.

ð2 ) 3Þ: Suppose z 2 B then there exists u 2 C
N with uk k ¼ 1 such that

ðz� AÞuk k� e ðz� AÞk k:
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Let v 2 C
N be a unit vector satisfying ðA� zÞu ¼ êv with ê� e z� Ak k. Let w be a

vector with wk k ¼ 1 such that w�u ¼ 1. With such a w we can write

zu ¼ Au� êvw�u ¼ ðA� êvw�Þu

which means that z 2 rðAþ EÞ for E ¼ �êvw� satisfying Ek k� ê.

ð3 ) 1Þ: Suppose z 2 rðAþ EÞ for some E with Ek k� e ðz� AÞk k. Then there

exists a unit vector v 2 C
N such that ðAþ EÞv ¼ zv. By rearranging and inverting

zv ¼ Avþ Ev

ðz� AÞv ¼ Ev

v ¼ ðz� AÞ�1
Ev

and thus we have

1 ¼ vk k ¼ ðz� AÞ�1
Ev

�� ��� ðz� AÞ�1
�� �� Ek k� ðz� AÞ�1

�� ��e ðz� AÞk k;

implies that ðz� AÞ�1
�� �� ðz� AÞk k� e�1 and hence z 2 reðAÞ. h

2 Results

Ten results that are generalizing the theorems of usual spectrum are given. Only

proofs of conditionspectrum results, that is theorems with the suffix r, are given.

Proofs of the usual spectrum are available in any standard book on linear algebra

and the proofs of pseudospectra results are available in Ref. [1]. Note that each

condition spectrum result tends to the corresponding eigenvalue theorem in the

limiting case as e tends to 0. Throughout this section, A be an N � N matrix with

complex entries, i.e. A 2 MNðCÞ.
Theorem 1 A is singular () 0 2 rðAÞ.

Theorem 1 K A�1
�� ��� e�1 () 0 2 KeðAÞ when A is not singular.

Theorem 1 r Ak k A�1
�� ��� e�1 () 0 2 reðAÞ when A is not singular.

Proof Follows from definition of condition spectrum. h

The bounds for the spectral radius of the condition spectrum.

Theorem 2 k 2 rðAÞ ) kj j � Ak k

Theorem 2 K k 2 KeðAÞ ) kj j � Ak k þ e

Theorem 2 r k 2 reðAÞ ) kj j � 1þ e

1� e
Ak k
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Proof Let k 2 reðAÞ. If kj j � Ak k, then clearly kj j � 1þ e

1� e
Ak k.

Suppose kj j[ Ak k then k� A is invertible and ðk� AÞ�1
�� ��� 1

kj j � Ak k. Using

this in the definition of condition spectrum we have

1� e ðk� aÞ�1
�� �� k� ak k� e

kj j þ Ak k
kj j � Ak k :

On simplification,

kj j � 1þ e

1� e
Ak k:

h

Theorem 3 A has N distinct eigenvalues ) A is diagonalizable.

Theorem 3 K KeðAÞ has N distinct components ) A is diagonalizable.

Theorem 3 r reðAÞ has N distinct components ) A is diagonalizable.

Proof Refer [3] for a proof. h

There are two components in condition number. One is norm of the matrix and

the other is norm of its inverse. The following inequality estimates the norm of the

inverse.

Lemma 2.1 Let A be a Banach algebra. Let a; b 2 A. If a is invertible in A and

b is not invertible, then

1

a�1k k � a� bk k: ð1Þ

The next result gives a relation between the norm of the resolvent with condition

spectrum.

Theorem 4 ðz� AÞ�1
�� ��� 1

dðz; rðAÞÞ

Theorem 4 K ðz� AÞ�1
�� ��� 1

dðz;KeðAÞÞ þ e

Theorem 4 r ðz� AÞ�1
�� ��� 1

dðz; reðAÞÞ þ 2e
1�e

Ak k

Proof If z 2 rðAÞ then the inequality is immediate from the definition of condition

spectrum. So assume z 62 rðAÞ that is z� A is invertible. Since reðAÞ is compact, we

can choose k 2 reðAÞ such that k� zj j ¼ dðz; reðAÞÞ. As k 2 reðAÞ there exist a

matrix E such that Ek k� e k� Ak k such that k 2 rðAþ EÞ. This implies k� A� E

is not invertible and so z� ðAþ E þ z� kÞ also. Now letting a ¼ z� A and b ¼
z� ðAþ E þ z� kÞ in Lemma 2.1, we get
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1

ðz� AÞ�1
�� ��� z� A� ½z� ðAþ E þ z� kÞ	k k ¼ E þ z� kk k

� z� kj j þ Ek k

� dðz; reðAÞÞ þ e k� Ak k� dðz; reðAÞÞ þ
2e

1� e
Ak k

Hence it establishes the required inequality. h

The spectrum is invariant under similarity transformation. Similarly the condition

spectrum is also preserved under certain similarity transformation. This result will

be helpful in the computational designing of conditionspectra. We use the standard

notation jðSÞ ¼ Sk k S�1
�� �� to denote the condition number of a matrix S.

Theorem 5 A ¼ SBS�1 ) rðAÞ ¼ rðBÞ

Theorem 5 K A ¼ SBS�1 ) KeðAÞ � KjðSÞeðBÞ

Theorem 5 r A ¼ SBS�1 ) reðAÞ � rjðSÞ2 eðBÞ whenever jðSÞ
2
e\1.

Proof Let z 2 reðAÞ then
1

e
� z� Ak k ðz� AÞ�1

�� �� ¼ zSS�1 � SBS�1
�� �� ðzSS�1 � SBS�1Þ�1

�� ��

� Sk k S�1
�� ��� �2

z� Bk k ðz� BÞ�1
�� ��

� jðSÞ2 z� Bk k ðz� BÞ�1
�� ��

h

From this it is clear that similarity transformation through a matrix S with

condition number 1, that is jðSÞ ¼ 1, preserves the condition spectrum, (since

reðAÞ � reðBÞ and reðBÞ � reðAÞ). In particular, similarity transformation through

orthogonal and unitary matrices preserves the condition spectrum.

The next two results calculate the transient behavior of A from the knowledge of

its condition spectrum. If one of the eigenvalue is bigger than 1 then the powers of

A blows up to infinity. Condition spectrum also behaves in the same way.

Theorem 6

max
k2rðAÞ

kj j[ 1 ) sup
k� 0

Ak
�� �� ¼ 1

Theorem 6 K

max
k2KeðAÞ

kj j[ 1þMe ) sup
k[ 0

Ak
�� ��

[M

Theorem 6 r

max
k2reðAÞ

kj j[ 1þM2e

1�Me
) sup

k� 0

Ak
�� ��

[M whenever M\
1

e
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Proof It is easy to establish the result for two simple and extreme cases. First one is

the case when M\1. Here the result is immediate as A0
�� �� ¼ 1. The other case is

when there is an eigenvalue k of A with kj j[ 1. Since k is an eigenvalue of A, kk is

an eigenvalue of Ak for all k 2 N and hence kk
�� ��� Ak

�� �� for all k. This implies

supk� 0 Ak
�� �� is infinity and hence the result.

Now, excluding the above mentioned simple cases, we prove the theorem by

negation. That is, assume M� 1 and no eigenvalue of A has absolute value greater

than 1. Suppose supk� 0 Ak
�� ���M, we will prove

max
k2reðAÞ

kj j � 1þM2e

1�Me
:

Let k 2 reðAÞnrðAÞ. It is clear that if kj j � 1 then kj j � 1þM2e
1�Me

whenever M\ 1
e
.

When kj j[ 1, as k� A is invertible, we get

ðk� AÞ�1
�� ��� 1

kj j
X1

k¼0

Ak
�� ��

kj jk
� M

kj j
X1

k¼0

1

kj jk
¼ M

kj j
1

1� 1

kj j

0
BB@

1
CCA ¼ M

kj j � 1
:

Combining the above inequality with k 2 reðAÞ gives
1

e k� Ak k � M

kj j � 1
. On

simplification, kj j � 1þM2e

1�Me
provided M\

1

e
. As k is arbitrary in reðAÞnrðAÞ

max
k2reðAÞ

kj j � 1þM2e

1�Me
;

and that proves the claim. h

Theorem 7 k 2 rðAÞ ) Ak
�� ��� kj jk for all k

Theorem 7 K k 2 KeðAÞ ) Ak
�� ��� kj jk� ke Ak kk�1

1� ke= Ak k for all k such that ke\ Ak k

Theorem 7 r k 2 reðAÞ ) Ak
�� ��� kj jk� ks Ak kk�1

1� ks= Ak k for all k such that ð2k þ

1Þe\1 where s ¼ 2e

1� e
Ak k

Proof Let k 2 reðAÞ. Pick Ek k� e k� Ak k such that k 2 rðAþ EÞ. Then

kk
�� ��� ðAþ EÞk

���
��� which implies
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Ak kk � kj jk�
k

1

� 	
Ak kk�1

Ek k �
k

2

� 	
Ak kk�2

Ek k2� � � �

� kj jk�k Ak kk�1
e k� Ak k 1þ ke k� Ak k

Ak k þ ke k� Ak k
Ak k

� 	2

þ � � �
 !

:

Provided ke k� Ak k� Ak k, the series in this last equation converges, giving

Ak kk � kj jk� k Ak kk�1
e k� Ak k

1� ke k�Ak k
Ak k

� kj jk� ks Ak kk�1

1� ks
Ak k

with s ¼ 2e

1� e
Ak k. Also note that ð2k þ 1Þe\1 implies ke k� Ak k� Ak k by

Theorem 2r. h

The following result is analogous with Gerschgorin’s theorem which locate the

spectrum in the complex plane. In our case it locates the condition spectrum. We

denote the closed ball with center a and radius r by D(a, r). Let dj be the diagonal

entry ajj of A and rj ¼
PN

i¼1&i6¼j aji
�� ��.

Theorem 8 For A 2 MNðCÞ, rðAÞ �
SN

j¼1 Dðdj; rjÞ

Theorem 8 K For A 2 MNðCÞ, KeðAÞ �
SN

j¼1 Dðdj; rj þ
ffiffiffiffi
N

p
eÞ

Theorem 8 r For A 2 MNðCÞ, reðAÞ �
SN

j¼1 D dj; rj þ
ffiffiffiffi
N

p
2e
1�e

Ak k
� �

Proof By equivalent definition, k 2 reðAÞ if and only if k 2 rðAþ EÞ for some

E with Ek k� e k� Ak k. Applying the Greschgorin’s theorem to Aþ E we get

k 2
[

j

D dj þ ejj; rj þ
X

k 6¼j

ejk
�� ��

 !

where eij are the entries of E. The above balls are contained in balls centered at dj

with radius rj þ
PN

k¼1 ejk
�� ��. Now note that

XN

k¼1

ejk
�� ��� Ek k1 �

ffiffiffiffi
N

p
Ek k2:

Alternatively one can deduce the above inequality by considering Ej as a matrix

whose jth row is same as jth row of E and remaining rows are zero and observing

XN

k¼1

ejk
�� ��� Ej

�� ��
1 �

ffiffi
ð

p
NÞ Ej

�� ��
2
�

ffiffiffiffi
N

p
Ek k2:

We know that Ek k� e k� Ak k� e 1þe
1�e

Ak k þ Ak k
� �

� 2e
1�e

Ak k. Hence using this

information and the previous inequality we get
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k 2
[

j

D dj; rj þ
ffiffiffiffi
N

p 2e

1� e
Ak k

� 	

Since k is arbitrary, this proves the required result.

reðAÞ �
[

j

D dj; rj þ
ffiffiffiffi
N

p 2e

1� e
Ak k

� 	

h

Numerical range is equally explored like spectrum because of its computability.

The next result connects numerical range and condition spectrum. We write

conv(S) for the convex hull in C of a set S � C. The notion S n e-border means the

set of points z 2 C such that Dðz; eÞ � S

Theorem 9 WðAÞ 
 convðrðAÞÞ

Theorem 9 K WðAÞ 
 convðKeðAÞÞ n e�border

Theorem 9 r WðAÞ 
 convðreðAÞÞ n e1�border, here e1 ¼ 2e
1�e

Ak k.

Proof We first prove the following claim:

convðreðAÞÞ � WðAÞ þ B 0;
2e

1� e
Ak k

� 	
:

If k 2 C and dðk;WðAÞÞ[ 0, then k� A is invertible and (see [8, Theorem 6.2-A],

also Ex. 27.7, p. 501, [6])

ðkI � AÞ�1
�� ��� 1

dðk;WðAÞÞ :

Let k 2 reðAÞ. If k 2 WðAÞ, then the conclusion is obvious. Next, if

k 2 reðAÞnWðAÞ, then

dðk;WðAÞÞ� 1

ðk� AÞ�1
�� ��� e ðk� AÞk k� eð kj j þ Ak kÞ

� e
1þ e

1� e
Ak k þ Ak k

� 	
¼ 2e

1� e
Ak k:

Thus

reðAÞ � WðAÞ þ B 0;
2e

1� e
Ak k

� 	
:

Since the right hand side is a convex set we have established the claim. As

convðreðAÞÞ and W(A) are convex sets we get the required result. h
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Spectral mapping theorem describes the behavior of the spectrum under certain

transformation. The following result belongs to that kind. It gives a precise

information about the condition spectrum under linear transformation.

Theorem 10 rðaþ bAÞ ¼ aþ brðAÞ for all a; b 2 C

Theorem 10 K Ke bj jðaþ bAÞ ¼ aþ bKeðAÞ for all a; b 2 C

Theorem 10 r reðaþ bAÞ ¼ aþ breðAÞ for all a; b 2 C

Proof For the case b ¼ 0 follows from the fact reðaÞ ¼ fag. Consider b 6¼ 0,

z� ðaþ bAÞk k ðz� ðaþ bAÞÞ�1
�� �� ¼ b

ðz� aÞ
b

� bA

����
���� b

ðz� aÞ
b

� bA

� 	�1
�����

�����

¼ ðz� aÞ
b

� A

����
����

ðz� aÞ
b

� A

� 	�1
�����

�����

h

The above results analyse the similarity between condition spectra and

pseudospectra. The results in Refs. [3, 4] presents basic properties of condition

spectrum and its connection with other areas. All these results together demonstrate

the potential of condition spectrum and the need for further investigation. The

computational aspect of this spectrum is yet to be investigated. There are other

results in Ref. [1] for which, at present, the generalizations in conditionspectrum are

unknown.
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