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Abstract— Space-Time block codes (STBC) from Orthogonal
Designs (OD) and Co-ordinate Interleaved Orthogonal Designs
(CIOD) have been attracting wider attention due to their
amenability for fast (single-symbol) ML decoding, and full-rate
with full-rank over quasi-static fading channels. However, these
codes are instances of single-symbol decodable codes and it is
natural to ask, if there exist codes other than STBCs form ODs
and CIODs that allow single-symbol decoding?

In this paper, the above question is answered in the affirmative
by characterizing all linear STBCs, that allow single-symbol ML
decoding (not necessarily full-diversity) over quasi-static fading
channels-calling them single-symbol decodable designs (SDD).
The class SDD includes ODs and CIODs as proper subclasses.
Further, among the SDD, a class of those that offer full-diversity,
called Full-rank SDD (FSDD) are characterized and classified.

We then concentrate on square designs and derive the maximal
rate for square FSDDs using a constructional proof. It follows that
(i) except for N = 2, square Complex ODs are not maximal rate
and (ii) square FSDD exist only for 2 and 4 transmit antennas. For
non-square designs, generalized co-ordinate-interleaved orthogo-
nal designs (a superset of CIODs) are presented and analyzed.

Finally, for rapid-fading channels an equivalent matrix channel
representation is developed, which allows the results of quasi-
static fading channels to be applied to rapid-fading channels.
Using this representation we show that for rapid-fading channels
the rate of single-symbol decodable STBCs are independent of the
number of transmit antennas and inversely proportional to the
block-length of the code. Significantly, the CIOD for two transmit
antennas is the only STBC that is single-symbol decodable over
both quasi-static and rapid-fading channels.

Index Terms— Diversity, Fast ML decoding, MIMO, Orthog-
onal Designs, Space-time block codes.

I. INTRODUCTION

S
INCE the publication of capacity gains of MIMO systems

[1], [2] coding for MIMO systems has been an active

area of research and such codes have been christened Space-

Time Codes (STC). The primary difference between coded

modulation (used for SISO, SIMO) and space-time codes is

that in coded modulation the coding is in time only while in

space-time codes the coding is in both space and time and

hence the name. Space-time Codes (STC) can be thought of

as a signal design problem at the transmitter to realize the

capacity benefits of MIMO systems [1], [2], though, several

developments towards STC were presented in [3], [4], [5], [6],

[7] which combine transmit and receive diversity, much prior
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to the results on capacity. Formally, a thorough treatment of

STCs was first presented in [8] in the form of trellis codes

(Space-Time Trellis Codes (STTC)) along with appropriate

design and performance criteria,

The decoding complexity of STTC is exponential in band-

width efficiency and required diversity order. Starting from

Alamouti [12], several authors have studied Space-Time Block

Codes (STBCs) obtained from Orthogonal Designs (ODs)

and their variations that offer fast decoding (single-symbol

decoding or double-symbol decoding) over quasi-static fading

channels [9]-[20], [21]-[27]. But the STBCs from ODs are a

class of codes that are amenable to single-symbol decoding.

Due to the importance of single-symbol decodable codes,

need was felt for rigorous characterization of single-symbol

decodable linear STBCs.

Following the spirit of [11], by a linear STBC1 we mean

those covered by the following definition.

Definition 1 ( Linear STBC): A linear design, S, is a L×
N matrix whose entries are complex linear combinations of K
complex indeterminates xk = xkI + jxkQ, k = 0, · · · ,K − 1
and their complex conjugates. The STBC obtained by letting

each indeterminate to take all possible values from a complex

constellation A is called a linear STBC over A. Notice that

S is basically a “design”and by the STBC (S,A) we mean

the STBC obtained using the design S with the indeterminates

taking values from the signal constellation A. The rate of the

code/design2 is given by K/L symbols/channel use. Every

linear design S can be expressed as

S =

K−1∑

k=0

xkIA2k + xkQA2k+1 (1)

where {Ak}2K−1
k=0 is a set of complex matrices called weight

matrices of S. When the signal set A is understood from the

context or with the understanding that an appropriate signal

set A will be specified subsequently, we will use the terms

Design and STBC interchangeably.

Throughout the paper, we consider only those linear STBCs

that are obtained from designs. Linear STBCs can be decoded

using simple linear processing at the receiver with algorithms

like sphere-decoding [38], [39] which have polynomial com-

plexity in, N , the number of transmit antennas. But STBCs

from ODs stand out because of their amenability to very

simple (linear complexity in N ) decoding. This is because the

ML metric can be written as a sum of several square terms,

1Also referred to as a Linear Dispersion code [36]
2Note that if the signal set is of size 2b the throughput rate R in bits per

second per Hertz is related to the rate of the design R as R = Rb.
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each depending on at-most one variable for OD. However, the

rates of ODs is restrictive; resulting in search of other codes

that allow simple decoding similar to ODs. We call such codes

“single-symbol decodable”. Formally

Definition 2 (Single-symbol Decodable (SD) STBC): A

Single-symbol Decodable (SD) STBC of rate K/L in K
complex indeterminates xk = xkI + jxkQ, k = 0, · · · ,K − 1
is a linear STBC such that the ML decoding metric can be

written as a square of several terms each depending on at

most one indeterminate.

Examples of SD STBCs are STBCs from Orthogonal Designs

of [9].

In this paper, we first characterize all linear STBCs that

admit single-symbol ML decoding, (not necessarily full-rank)

over quasi-static fading channels, the class of Single-symbol

Decodable Designs (SDD). Further, we characterize a class of

full-rank SDDs called Full-Rank SDD (FSDD).

Fig. 1 shows the various classes of SD STBCs identified in

this paper. Observe that the class of FSDD consists of only

• an extension of Generalized Linear Complex Orthogonal

Design (GLCOD3) which we have called Unrestricted

Full-rank Single-symbol Decodable Designs (UFSDD)

and

• a class of non-UFSDDs called Restricted Full-rank

Single-symbol Decodable Designs (RFSDD)4.

The rest of the material of this paper is organized as follows:

In section II the channel model and the design criteria for both

quasi-static and rapid-fading channels are reviewed. A brief

presentation of basic, well known results concerning GLCODs

is given in Section III. In Section IV we characterize the

class SDD of all SD (not necessarily full-rank) designs and

within the class of SDD the class FSDD consisting of full-

diversity SDD is characterized. Section V deals exclusively

with the maximal rate of square designs and construction of

such maximal rate designs.

In Section VI we generalize the construction of square

RFSDDs given in Subsection IV-B, and give a formal defini-

tion for Co-ordinate Interleaved Orthogonal Designs (CIOD)

and its generalization, Generalized Co-ordinate Interleaved

Orthogonal Designs (GCIOD). This generalization is basically

a construction of RFSDD; both square and non-square and

results in construction of various high rate RFSDDs. The

signal set expansion due to co-ordinate interleaving is then

highlighted and the coding gain of GCIOD is shown to be

equal to what is defined as the generalized co-ordinate product

distance (GCPD) for a signal set. A special case of GCPD,

the co-ordinate product distance (CPD) is derived for lattice

constellations. We then show that, for lattice constellations,

3GLCOD is the same as the Generalized Linear Processing Complex
Orthogonal Design of [9]-the word “Processing” has nothing to be with the
linear processing operations in the receiver and means basically that the entries
are linear combinations of the variables of the design. Since we feel that it
is better to drop this word to avoid possible confusion we call it GLCOD.
GLCOD is formally defined in Definition 3

4The word “Restricted” reflects the fact that the STBCs obtained from
these designs can achieve full diversity for those complex constellations that
satisfy a (trivial) restriction. Likewise, “Unrestricted” reflects the fact that the
STBCs obtained from these designs achieve full diversity for all complex
constellations.

GCIODs have higher coding gain as compared to GLCODs.

Simulation results are also included for completeness. The

maximum mutual information (MMI) of GCIODs is then

derived and compared with that of GLCODs to show that,

except for N = 2, CIODs have higher MMI. In short, this

section shows that, except for N = 2 (the Alamouti code),

CIODs are better than GLCODs in terms of rate, coding gain

and MMI.

In section VII, we study STBCs for use in rapid-fading

channels by giving a matrix representation of the multi-antenna

rapid-fading channels. The emphasis is on finding STBCs that

allow single-symbol decoding for both quasi-static and rapid-

fading channels as BER performance such STBCs will be

invariant to any channel variations. Therefore, we characterize

all linear STBCs that allow single-symbol ML decoding when

used in rapid-fading channels. Then, among these we identify

those with full-diversity, i.e., those with diversity L when the

STBC is of size L × N, (L ≥ N), where N is the number

of transmit antennas and L is the length of the code. The

maximum rate for such a full-diversity, SD code is shown to

be 2/L from which it follows that rate-one is possible only for

2 Tx. antennas. The co-ordinate interleaved orthogonal design

(CIOD) for 2 Tx (introduced in Section IV) is shown to be

one such rate-one, full-diversity and SD code. (It turns out that

Alamouti code is not SD for rapid-fading channels.) Finally,

Section VIII consists of some concluding remarks and a couple

of directions for further research.

II. CHANNEL MODEL

In this section we present the channel model and review the

design criteria for both quasi-static and rapid-fading channels.

Let the number of transmit antennas be N and the number of

receive antennas be M . At each time slot t, complex signal

points, sit, i = 0, 1, · · · , N − 1 are transmitted from the N
transmit antennas simultaneously. Let hijt = αijte

jθijt denote

the path gain from the transmit antenna i to the receive antenna

j at time t, where j =
√
−1. The received signal vjt at the

antenna j at time t, is given by

vjt =

N−1∑

i=0

hijtsit + njt, (2)

j = 0, · · · ,M − 1; t = 0, · · · , L− 1. Assuming that perfect

channel state information (CSI) is available at the receiver, the

decision rule for ML decoding is to minimize the metric

L−1∑

t=0

M−1∑

j=0

∣
∣
∣
∣
∣
vjt −

N−1∑

i=0

hijtsit

∣
∣
∣
∣
∣

2

(3)

over all codewords. This results in exponential decoding

complexity, because of the joint decision on all the symbols sit
in the matrix S. If the throughput rate of such a scheme is R in

bits/sec/Hz, then 2RL metric calculations are required; one for

each possible transmission matrix S. Even for modest antenna

configurations and rates this could be very large resulting in

search for codes that admit a simple decoding while providing

full diversity gain.
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A. Quasi-Static Fading Channels

For quasi-static fading channels hijt = hij and (2) can be

written in matrix notation as,

vjt =

N−1∑

i=0

hijsit+njt, j = 0, · · · ,M−1; t = 0, · · · , L−1.

(4)

In matrix notation,

V = SH+W (5)

where V ∈ C
L×M (C denotes the complex field) is the

received signal matrix, S ∈ CL×N is the transmission matrix

(codeword matrix), H ∈ CN×M denotes the channel matrix

and W ∈ CL×M has entries that are Gaussian distributed

with zero mean and unit variance and also are temporally and

spatially white. In V,S and W time runs vertically and space

runs horizontally. The channel matrix H and the transmitted

codeword S are assumed to have unit variance entries. The

ML metric can then be written as

M(S) = tr
(
(V − SH)H(V − SH)

)
. (6)

This ML metric (6) results in exponential decoding complexity

with the rate of transmission in bits/sec/Hz.

1) Design Criteria for STC over quasi-static fading chan-

nels: The design criteria for STC over quasi-static fading

channels are [8]:

• Rank Criterion: In order to achieve diversity of rM , the

matrix B(S, Ŝ) , S− Ŝ has to be full rank for any two

distinct codewords S, Ŝ. If B(S, Ŝ) has rank N , then the

STC achieves full-diversity.

• Determinant Criterion:After ensuring full diversity the

next criteria is to maximize the coding gain given by,

Λ(S, Ŝ) = min
S,Ŝ

|(S− Ŝ)(S− Ŝ)H |1/r+ (7)

where |A|+ represents the product of the non-zero eigen

values of the matrix A.

2) Design Criteria for STC over Rapid-Fading Channels::

We recall that the design criteria for rapid-fading channels are

[8]:

• The Distance Criterion : In order to achieve the diversity

rM in rapid-fading channels, for any two distinct code-

word matrices S and Ŝ, the strings s0t, s1t, · · · , s(N−1)t

and ŝ0t, ŝ1t, · · · , ŝ(N−1)t must differ at least for r values

of 0 ≤ t ≤ L − 1. (Essentially, the distance criterion

implies that if a codeword is viewed as a L length vector

with each row of the transmission matrix viewed as a

single element of CN , then the diversity gain is equal to

the Hamming distance of this L length codeword over

CN .

• The Product Criterion : Let V(S, Ŝ) be the indices of the

non-zero rows of S− Ŝ and let|st − ŝt|2 =
∑N−1

i=0 |sit −
ŝit|2, where st is the t-th row of S, 0 ≤ t ≤ L− 1. Then

the coding gain is given by

min
s 6=ŝ

∏

t∈V(s,̂s)

|st − ŝt|2.

The product criterion is to maximize the coding gain.

III. GENERALIZED LINEAR COMPLEX ORTHOGONAL

DESIGNS (GLCOD)

The class of GLCOD was first discovered and studied in

the context of single-symbol decodable designs by coding

theorists in [9], [11], [19], [17], [51]. It is therefore proper

to recollect the main results concerning GLCODs before

the characterization of SSD. In this section we review the

definition of GLCOD and summarize important results on

square as well as non-square GLCODs from [9], [11], [19],

[17], [51].

Definition 3 (GLCOD): A Generalized Linear Complex

Orthogonal Design (GLCOD) in k complex indeterminates

x1, x2, · · · , xk of size N and rate R = k/p, p ≥ N is a

p×N matrix Θ, such that

• the entries of Θ are complex linear combinations of

0,±xi, i = 1, · · · , k and their conjugates.

• ΘHΘ = D, where D is a diagonal matrix whose entries

are a linear combination of |xi|2, i = 1, · · · , k with all

strictly positive real coefficients.

If k=N=p then Θ is called a Linear Complex Orthogonal

Design (LCOD). Furthermore, when the entries are only from

{0,±x1,±x2, · · · ,±xk}, their conjugates and multiples of j

then Θ is called a Complex Orthogonal Design (COD). STBCs

from ODs are obtained by replacing xi by si and allowing si
to take all values from a signal set A. A GLCOD is said to

be of minimal-delay if N = p.

Actually, according to [9] it is required that D =
∑k

i=1 |xi|2I , which is a special case of the requirement

that D is a diagonal matrix with the conditions in the

above definition. In other words, we have presented a

generalized version of the definition of GLCOD of [9]. Also

we say that a GLCOD satisfies Equal-Weights condition if

D =
∑k

i=1 |xi|2I .

The Alamouti scheme [12], which is of minimal-delay, full-

rank and rate-one is basically the STBC arising from the size

2 COD.

Consider a square GLCOD5, S =
∑K−1

k=0 xkI A2k +
xkQA2k+1. The weight matrices satisfy,

AH
k Ak = D̂k, k = 0, · · · , 2K − 1 (8)

AH
l Ak +AH

k Al = 0, 0 ≤ k 6= l ≤ 2K − 1. (9)

where D̂k is a diagonal matrix of full-rank for all k. Define

Bk = AkD̂−1/2
k . Then the matrices Bk satisfy (using the

results shown in [51])

BH
k Bk = IN , k = 0, · · · , 2K − 1 (10)

BH
l Bk +BH

k Bl = 0, 0 ≤ k 6= l ≤ 2K − 1 (11)

and again defining

Ck = BH
0 Bk, k = 0, · · · , 2K − 1, (12)

we end up with C0 = IN and

CH
k = −Ck, k = 1, · · · , 2K − 1 (13)

CH
l Ck + CH

k Cl = 0, 1 ≤ k 6= l ≤ 2K − 1. (14)

5A rate-1, square GLCOD is referred to as complex linear processing
orthogonal design (CLPOD) in [9].
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The above normalized set of matrices {C1, · · · , C2K−1} con-

stitute a Hurwitz family of order N [28]. Let H (N)−1 denote

the number of matrices in a Hurwitz family of order N , then

the Hurwitz Theorem can be stated as

Theorem 1 (Hurwitz [28]): If N = 2ab, b odd and a, b >
0 then

H (N) ≤ 2a+ 2.

Observe that H (N) = 2K . An immediate consequence of the

Hurwitz Theorem are the following results:

Theorem 2 (Tarokh, Jafarkhani and Calderbank [9]):

A square GLCOD of rate-1 exists iff N = 2.

Theorem 3 (Trikkonen and Hottinen [11]): The

maximal rate, R of a square GLCOD of size N = 2ab, b odd,

satisfying equal weight condition is

R =
a+ 1

N
.

This result was generalized to all square GLCODs in [51]

using the theorem:

Theorem 4 (Khan and Rajan [51]): With the Equal-

Weights condition removed from the definition of GLCODs,

an N × N square (GLCOD), Ec in variables x0, · · · , xK−1

exists iff there exists a GLCOD Lc such that

LH
c Lc = (|x0|2 + · · ·+ |xK−1|2)I. (15)

Hence we have the following corollary.

Corollary 5 (Khan and Rajan [51]): Let N = 2ab where

b is an odd integer and a = 4c + d, where 0 ≤ d < c and

c ≥ 0. The maximal rate of size N , square GLROD without

the Equal-Weights condition satisfied is 8c+2d

N and of size N ,

square GLCOD without the Equal-Weights condition satisfied

is a+1
N .

An intuitive and simple realization of such GLCODs based on

Josefiak’s realization of the Hurwitz family, was presented in

[19] as

Construction 3.1 (Su and Xia [19]): Let G1(x0) = x0I1,

then the GLCOD of size 2K , G2K (x0, x1, · · · , xK), can be

constructed iteratively for K = 1, 2, 3, · · · as

G2K (x0, x1, · · · , xK) =
[
G2K−1(x0, x1, · · · , xK−1) xKI2K−1

−x∗
KI2K−1 GH

2K−1(x0, x1, · · · , xK−1)

]

. (16)

While square GLCODs have been completely characterized

non-square GLCODs are not well understood. The main results

for non-square GLCODs are due to Liang and Xia. The

primary result is

Theorem 6 (Liang and Xia [16]): A rate 1 GLCOD ex-

ists iff N = 2.

This was further, improved later to,

Theorem 7 (Su and Xia [19]): The maximum rate of

GCOD (without linear processing) is upper bounded by 3/4.

Xue bin-Liang [17] gave the construction of maximal rates

GCOD

Theorem 8 (Liang [17]): The maximal rate of a GCOD

for N ∈ N transmit antennas is given by R = m+1
2m where

m = ⌊N/2⌋.

The maximal rate and the construction of such maximal rate

non-square GLCODs for N > 2 remains an open problem.

IV. SINGLE-SYMBOL DECODABLE DESIGNS

In the first part of this section we characterize all STBCs

that allow single-symbol ML decoding in quasi-static fading

channel and using this characterization define Single-symbol

Decodable Designs (SDD) in terms of the weight matrices and

discuss several examples of such designs. In the second part,

we characterize the class FSDD and classify the same.

A. Characterization of SD STBCs

Consider the matrix channel model for quasi-static fading

channel given in (5) and the corresponding ML decoding

metric (6). For a linear STBC with K variables, we are

concerned about those STBCs for which the ML metric (6) can

be written as sum of several terms with each term involving

at-most one variable only and hence SD.

The following theorem characterizes all linear STBCs, in

terms of the weight matrices, that will allow single-symbol

decoding.

Theorem 9: For a linear STBC in K variables, S =
∑K−1

k=0 xkIA2k + xkQA2k+1, the ML metric, M(S) defined

in (6) decomposes as M(S) =
∑K−1

k=0 Mk(xk) + Mc where

Mc = −(K − 1)tr
(
V HV

)
is independent of all the variables

and Mk(xk) is a function only of the variable xk, iff6

AH
k Al +AH

l Ak = 0

{
∀l 6= k, k + 1 if k is even

∀l 6= k, k − 1 if k is odd
. (17)

Proof: From (6) we have

M(S) = tr
(
VHV

)
− tr

(
(SH)HV

)
− tr

(
VHSH)

)

+tr
(
SHSHHH) .

Observe that tr
(
VHV

)
is independent of S. The next two

terms in M(S) are functions of S, SH and hence linear in

xkI , xkQ. In the last term,

SHS =

K−1∑

k=0

(AH
2kA2kx

2
kI +AH

2k+1A2k+1x
2
kQ)

+
K−1∑

k=0

K−1∑

l=k+1

(AH
2kA2l +AH

2lA2k)xkIxlI

+

K−1∑

k=0

K−1∑

l=k+1

(AH
2k+1A2l+1 +AH

2l+1A2k+1)xkQxlQ

+

K−1∑

k=0

K−1∑

l=0

(AH
2kA2l+1 +AH

2l+1A2k)xkIxlQ. (18)

(a) Proof for the “if part”: If (17) is satisfied then (18) reduces

6The condition (17) can also be given as

AkA
H

l + AlA
H

k = 0

{
∀l 6= k, k + 1 if k is even
∀l 6= k, k − 1 if k is odd

due to the identity tr
{

(V − SH)H(V − SH)
}

=

tr
{
(V − SH)(V − SH)H

}
when S is a square matrix.
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to

SHS =
K−1∑

k=0

(
AH

2kA2kx
2
kI +AH

2k+1A2k+1x
2
kQ

+
(
AH

2kA2k+1 +AH
2k+1A2k

)
xkIxkQ

)

=

K−1∑

k=0

TH
k Tk, where (19)

Tk = A2kxkI +A2k+1xkQ (20)

and using linearity of the trace operator, M(S) can be written

as

M(S) = tr
(
VHV

)
−

K−1∑

k=0

{
tr
(
(TkH)HV

)

−tr
(
VHTkH

)
+ tr

(
Tk

HTkHHH)}

=
∑

k

‖V − (A2kxkI +A2k+1xkQ)H‖2
︸ ︷︷ ︸

Mk(xk)

+Mc(21)

where Mc = −(K − 1)tr
(
V HV

)
and ‖.‖ denotes the

Frobenius norm.

(b) Proof for the “only if part”: If (17) is not satisfied for

any Ak1
, Al1 , k1 6= l1 then

M(S) =
∑

k

||V − (A2kxkI +A2k+1xkQ)H||2

+tr
(
(AH

k1
Al1 +AH

l1Ak1
)HHH

)
y +Mc(22)

where

y =







x(k1/2)Ix(l1/2)I if both k1, l1 are even

x((k1−1)/2)Qx((l1−1)/2)Q if both k1, l1 are odd

x((k1−1)/2)Qx(l1/2)I if k1 odd, l1 even.

Now, from the above it is clear that M(S) can not be

decomposed into terms involving only one variable.

It is important to observe that (17) implies that it is not

necessary for the weight matrices associated with the in-phase

and quadrature-phase of a single variable (say k-th) to satisfy

the condition AH
2k+1A2k+AH

2kA2k+1 = 0. Since AH
2k+1A2k+

AH
2kA2k+1 is indeed the coefficient of xkIxkQ in SHS, this

implies that terms of the form xkIxkQ can appear in SHS
without violating single-symbol decodability. An example of

such a STBC is given in Example 4.1.

Example 4.1: Consider

S(x0, x1) =

[
x0I + jx1I x0Q + jx1Q

x0Q + jx1Q x0I + jx1I

]

. (23)

The corresponding weight matrices are given by

A0 =

[
1 0
0 1

]

, A1 =

[
0 1
1 0

]

,

A2 =

[
j 0
0 j

]

, A3 =

[
0 j

j 0

]

and it is easily verified that (17) is satisfied and AH
2k+1A2k +

AH
2kA2k+1 6= 0 for k = 0 as well as k = 1. Explicitly,

AH
0 A1 +AH

1 A0 6= 0 (24)

AH
2 A3 +AH

3 A2 6= 0 (25)

AH
0 A2 +AH

2 A0 = 0 (26)

AH
0 A3 +AH

3 A0 = 0 (27)

AH
1 A2 +AH

2 A1 = 0 (28)

AH
1 A2 +AH

2 A1 = 0. (29)

Remark 10: However note that for the SD STBC in Exam-

ple 4.1,

det
{

(S − Ŝ)H(S − Ŝ)
}

=
[
(△x0I −△x0Q)

2 +

(△x1I −△x1Q)
2
] [
(△x0I +△x0Q)

2 + (△x1I +△x1Q)
2
]

where xi− x̂i = △xiI+ j△xiQ. If we set △x1I = △x1Q = 0
we have

det
{

(S − Ŝ)H(S − Ŝ)
}

=
[
(△2x0I −△2x0Q)

2
]

(30)

which is maximized (without rotation of the signal set) when

either △2x0I = 0 or △2x0Q = 0, i.e. the k-th indeterminate

should take values from a constellation that is parallel to

the “real axis” or the “imaginary axis”. Such codes are

closely related to Quasi-Orthogonal Designs (QOD) and the

maximization of the corresponding coding gain with signal set

rotation has been considered in [58], [59].

Henceforth, we consider only those STBCs S =
∑K−1

k=0 xkIA2k + xkQA2k+1, which have the property that

the weight matrices of the in-phase and quadrature com-

ponents of any variable are orthogonal, that is

AH
2kA2k+1 +AH

2k+1A2k = 0, 0 ≤ k ≤ K − 1 (31)

since all known STBCs satisfy (31) and we are able to

tract and obtain several results concerning full-rankness,

coding gain and existence results with this restriction.

Theorem 9 for this case specializes to:

Theorem 11: For a linear STBC in K complex variables,

S =
∑K−1

k=0 xkIA2k + xkQA2k+1 satisfying the necessary

condition AH
2kA2k+1 + AH

2k+1A2k = 0, 0 ≤ k ≤ K − 1, the

ML metric, M(S) defined in (6) decomposes as M(S) =
∑K−1

k=0 Mk(xk) +Mc where Mc = −(K − 1)tr
(
V HV

)
, iff

AH
k Al +AH

l Ak = 0, 0 ≤ k 6= l ≤ 2K − 1. (32)

We also have

Proposition 12: For a linear STBC in K complex variables,

S =
∑K−1

k=0 xkI A2k + xkQA2k+1 satisfying the necessary

condition AH
2kA2k+1+AH

2k+1A2k = 0, 0 ≤ k ≤ K−1, the ML

metric, M(S) defined in (6) decomposes as M(S) =
∑K−1

k=0

Mk(xk) +Mc where Mc = −(K − 1)tr
(
V HV

)
, iff

tr
(
AkHHHAH

l +AlHHHAH
k

)
= 0, 0 ≤ k 6= l ≤ 2K−1.

(33)

If, in addition, S is square (N = L), then (33) is satisfied if

and only if

AkA
H
l +AlA

H
k = 0, 0 ≤ k 6= l ≤ 2K − 1. (34)

Proof: Using the identity,

tr
(

(V − SH)H(V − SH)
)

= tr
(
(V − SH)(V − SH)H

)
,
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(6) can be written as

M(S) = tr
(
VVH)− tr

(
(SH)VH)− tr

(
V(SH)H

)

+tr
(
SHHHSH) .

Observe that tr
(
VVH) is independent of S. The next two

terms in M(S) are functions of S, SH and hence linear in

xkI , xkQ. In the last term,

SHHHSH =
K−1∑

k=0

(B2kB
H
2kx

2
kI +B2k+1B

H
2k+1x

2
kQ)

+

K−1∑

k=0

K−1∑

l=k+1

(B2kB
H
2l +A2lHHHAH

2k)xkIxlI

+

K−1∑

k=0

K−1∑

l=k+1

(B2k+1B
H
2l+1 +B2l+1B

H
2k+1)xkQxlQ

+

K−1∑

k=0

K−1∑

l=0

(B2kB
H
2l+1 +B2l+1B

H
2k)xkIxlQ (35)

where Bk = AkH (a) Proof for the “if part”: If (33) is satisfied

then (35) reduces to

SHS =

K−1∑

k=0

(
A2kHHHAH

2kx
2
kI +A2k+1HHHAH

2k+1x
2
kQ

)

=

K−1∑

k=0

TkT
H
k , where (36)

Tk = (A2kxkI +A2k+1xkQ)H (37)

and using linearity of the trace operator, M(S) can be written

as

M(S) = tr
(
VVH)−

K−1∑

k=0

{
tr
(
TkV

H) − tr
(
VTk

H)

+tr
(
TkTk

H)

=
∑

k

‖V − (A2kxkI +A2k+1xkQ)H‖2
︸ ︷︷ ︸

Mk(xk)

+Mc(38)

where Mc = −(K − 1)tr
(
V HV

)
and ‖.‖ denotes the

Frobenius norm.

(b) Proof for the “only if part”: If (33) is not satisfied for

any Ak1
, Al1 , k1 6= l1 then

M(S) =
∑

k

||V − (A2kxkI +A2k+1xkQ)H||2

+ tr
(
(Ak1

HHHAH
l1 +Al1HHHAH

k1
)
)
y +Mc

where

y =







x(k1/2)Ix(l1/2)I if both k1, l1 are even

x((k1−1)/2)Qx((l1−1)/2)Q if both k1, l1 are odd

x((k1−1)/2)Qx(l1/2)I if k1 odd, l1 even.

Now, from the above it is clear that M(S) can not be

decomposed into terms involving only one variable.

For square S, (33) can be written as

tr
(
HHH {AkA

H
l +AlA

H
k

})
= 0, 0 ≤ k 6= l ≤ 2K − 1

(39)

which is satisfied iff AkA
H
l + AlA

H
k = 0, 0 ≤ k 6= l ≤

2K − 1.

Examples of SD STBCs are those from OD, in-particular

the Alamouti code. The following example gives two STBCs

that are not obtainable as STBCs from ODs.

Example 4.2: For N = K = 2 consider

S =

[
x0I + jx1Q 0

0 x1I + jx0Q

]

. (40)

The corresponding weight matrices are given by

A0 =

[
1 0
0 0

]

, A1 =

[
0 0
0 j

]

,

A2 =

[
0 0
0 1

]

, A3 =

[
j 0
0 0

]

.

Similarly, for N = K = 4 consider the design given in (41).

The corresponding weight matrices are

A0 =







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






, A1 =







0 0 0 0
0 0 0 0
0 0 j 0
0 0 0 −j






,

A2 =







0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0






, A3 =







0 0 0 0
0 0 0 0
0 0 0 j

0 0 j 0






,

A4 =







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1






, A5 =







j 0 0 0
0 −j 0 0
0 0 0 0
0 0 0 0






,

A6 =







0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0






, A7 =







0 j 0 0
j 0 0 0
0 0 0 0
0 0 0 0






.

It is easily seen that the two codes of the above example

are not covered by GLCODs and satisfy the requirements of

Theorem 11 and hence are SD. These two STBCs are instances

of the so called Co-ordinate Interleaved Orthogonal Designs

(CIOD), which is discussed in detail in Section VI and a

formal definition of which is Definition 7. These codes apart

from being SD can give STBCs with full-rank also when the

indeterminates take values from appropriate signal sets- an

aspect which is discussed in detail in Subsection IV-B and in

Section VI.

B. Full-rank SDD

In this subsection we identify all full-rank designs with in

the class of SDD that satisfy (32), calling them the class of

Full-rank Single-symbol Decodable Designs (FSDD), charac-

terize the class of FSDD and classify the same. Towards this

end, we have for square (N = L) SDD

Proposition 13: A square SDD S =
∑K−1

k=0 xkIA2k +
xkQA2k+1, exists if and only if there exists a square SDD,

Ŝ =
∑K−1

k=0 xkI Â2k + xkQÂ2k+1 such that

ÂH
k Âl + ÂH

l Âk = 0, k 6= l, and ÂH
k Âk = Dk, ∀k,
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S =






x0I + jx2Q x1I + jx3Q 0 0
−x1I + jx3Q x0I − jx2Q 0 0

0 0 x2I + jx0Q x3I + jx1Q

0 0 −x3I + jx1Q x2I − jx0Q




 . (41)

where Dk is a diagonal matrix.

Proof: Using (32) and (34) repeatedly we get

AH
k AkA

H
l Al = AH

k (−AlA
H
k )Al = (AH

l Ak)A
H
k Al

= AH
l Ak(−AH

l Ak) = AH
l (AlA

H
k )Ak,

which implies that the set of matrices {AH
k Ak}2K−1

k=0 forms

a commuting family of Hermitian matrices and hence can be

simultaneously diagonalized by a unitary matrix, U . Define

Âk = AkU
H, then Ŝ =

∑K−1
k=0 xkI Â2k+xkQÂ2k+1 is a linear

STBC such that ÂH
k Âl+ÂH

l Âk = 0, ∀k 6= l, ÂH
k Âk = Dk, ∀k,

where Dk is a diagonal matrix. For the converse, given Ŝ,

S = ŜU where U is a unitary matrix.

Therefore for square SDD, we may, without any loss of

generality, assume that SHS is diagonal. To characterize non-

square SDD, we use the following

Property 4.1 (Observation 7.1.3 of [65]): Any non-

negative linear combination of positive semi-definite matrices

is positive semi-definite.

Property 4.1 when applied to a SDD yields

Property 4.2: For a SDD, S =
∑K−1

k=0 xkIA2k +
xkQA2k+1, the matrix SHS is positive semi-definite and

AH
k Ak, ∀k are positive semi-definite.

Using property 4.2, we have the following necessary condition

for a SDD to have full-diversity.

Proposition 14: If an SDD, S =
∑K−1

k=0 xkIA2k +
xkQA2k+1, whose weight matrices Ak satisfy

AH
k Al +AH

l Ak = 0, ∀k 6= l (42)

achieves full-diversity then AH
2kA2k+AH

2k+1A2k+1 is full-rank

for all k = 0, 1, · · · ,K − 1. In addition if S is square then

the requirement specializes to D2k + D2k+1 being full-rank

for all k = 0, 1, · · · ,K − 1, where the diagonal matrices Di

are those given in Proposition 13.

Proof: The proof is by contradiction and in two parts

corresponding to whether S is square or non-square.

Part 1: Let S be a square SDD then by Proposition 13, without

loss of generality, AH
k Ak = Dk, ∀k. Suppose D2k + D2k+1,

for some k ∈ [0,K − 1], is not full-rank. Then SHS =
∑K−1

k=0 D2kx
2
kI + D2k+1x

2
kQ. Now for any two transmission

matrices S, Ŝ that differ only in xk, the difference matrix

B(S, Ŝ) = S−Ŝ, will not be full-rank as BH(S, Ŝ)B(S, Ŝ) =
D2k(xkI − x̂kI)

2 +D2k+1(xkQ − x̂kQ)
2 is not full-rank.

Part 2: The proof for non-square SDD, S, is similar to

the above except that BH(S, Ŝ) B(S, Ŝ) = AH
2kA2k(xkI −

x̂kI)
2 +AH

2k+1A2k+1(xkQ − x̂kQ)
2 where AH

k Ak are positive

semi-definite. Since a non-negative linear combination of

positive semi-definite matrices is positive semi-definite, for

full-diversity it is necessary that AH
2kA2k + AH

2k+1A2k+1 is

full-rank for all k = 0, 1, · · · ,K − 1.

Towards obtaining a sufficient condition for full-diversity,

we first introduce

Definition 4 (Co-ordinate Product Distance (CPD)): The

Co-ordinate Product Distance (CPD) between any two signal

points u = uI + juQ and v = vI + jvQ, u 6= v, in the signal

set A is defined as

CPD(u, v) = |uI − vI ||uQ − vQ| (43)

and the minimum of this value among all possible pairs is

defined as the CPD of A.

Remark 15: The idea of rotating QAM constellation was

first presented in [60] and the term “co-ordinate interleaving”

as also “Co-ordinate Product Distance” was first introduced by

Jelicic and Roy in [42], [43] in the context of TCM for fading

channels. This concept of rotation of QAM constellation was

extended to multi-dimensional QAM constellations in [61],

[62] at the cost of the decoding complexity. However, for

the two-dimensional case there is no increase in the decoding

complexity as shown in [40], [41].

Theorem 16: A SSD, S =
∑K−1

k=0 xkIA2k+xkQA2k+1

where xk take values from a signal set A, ∀k, satisfying the

necessary condition of Proposition 14 achieves full-diversity

iff

(i) either AH
k Ak is of full-rank for all k or (ii) the

CPD of A 6= 0.

Proof: Let S be a square SDD satisfying the

necessary condition given in Theorem 14. We have

BH(S, Ŝ)B(S, Ŝ)=
∑K−1

k=0 D2k+1 (xkI−x̂kI )
2+D2k+1(xkQ−

x̂kQ)
2. Observe that under both these conditions the difference

matrix B(S, Ŝ) is full-rank for any two distinct S, Ŝ. Con-

versely, if the above conditions are not satisfied then for exist

distinct S, Ŝ such that B(S, Ŝ) is not full-rank. The proof is

similar when S is a non-square design.

Examples of FSDD are the GLCODs and the STBCs of

Example 4.2.

Note that the sufficient condition (i) of Theorem 16 is

an additional condition on the weight matrices whereas the

sufficient condition (ii) is a restriction on the signal set A and

not on the weight matrices Ak. Also, notice that the FSDD that

satisfy the sufficient condition (i) are precisely an extension of

GLCODs; GLCODs have an additional constraint that AH
k Ak

be diagonal.

An important consequence of Theorem 16 is that there can

exist designs that are not covered by GLCODs offering full-

diversity and single-symbol decoding provided the associated

signal set has non-zero CPD. It is important to note that

whenever we have a signal set with CPD equal to zero, by

appropriately rotating it we can end with a signal set with

non-zero CPD. Indeed, only for a finite set of angles of

rotation we will again end up with CPD equal to zero. So,

the requirement of non-zero CPD for a signal set is not at

all restrictive in real sense. In Section VI we find optimum

angle(s) of rotation for lattice constellations that maximize the

CPD.
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For the case of square designs of size N with rate-one it is

shown in Section V that FSDD exist for N = 2, 4 and these

are precisely the STBCs of Example 4.2 and the Alamouti

code.

For a SDD, when AH
k Ak is full-rank for all k, corresponding

to Theorem 16 with the condition (i) for full-diversity satisfied,

we have an extension of GLCOD in the sense that the STBC

obtained by using the design with any complex signal set

for the indeterminates results in a FSDD. That is, there is no

restriction on the complex signal set that can be used with

such designs. So, we define,

Definition 5 (Unrestricted FSDD (UFSDD)): A FSDD is

called an Unrestricted Full-rank Single-symbol Decodable De-

sign (UFSDD) if AH
k Ak is of full-rank for all k = 0, · · · , 2K−

1.

Remark 17: Observe that for a square UFSDD S, AH
k Ak =

Dk is diagonal and hence UFSDD reduces to square GLCOD.

For non-square designs, GLCOD is a subset of UFSDD.

Also the above extension of the definition of GLCODs was

hinted in [19] where they observe that AH
k Ak can be positive

definite. However it is clear from our characterization that

such a generalization does not result in any gain for square

designs. For non-square designs existence of UFSDDs that are

not GLCODs or unitarily equivalent to GLCODs is an open

problem.

The FSDD that are not UFSDDs are such that AH
2kA2k and/or

AH
2k+1A2k+1 is not full-rank for at least one k. (The CIOD

codes of Example 4.2 are such that D2k +D2k+1 is full-rank

∀k and Dk is not full-rank for all k.) We call such FSDD

codes Restricted Full-rank Single-symbol Decodable Designs

(RFSDD), since any full-rank design within this class can be

there only with a restriction on the complex constellation from

which the indeterminates take values, the restriction being that

the CPD of the signal set should not be zero. Formally,

Definition 6 (Restricted FSDD (RFSDD)): A Restricted

Full-rank Single-symbol Decodable Designs (RFSDD) is a

FSDD such that AH
k Ak is not full-rank for at least one k

where k = 0, · · · , 2K − 1 and the signal set, from which the

indeterminates take values from, has non-zero CPD.

Observe that the CIODs are a subset of RFSDD. Figure 1

shows all the classes discussed so far, viz., SDD, FSDD,

RFSDD, UFSDD. In Section V we focus on the square

RFSDDs as square UFSDD have been discussed in Section

III.

V. EXISTENCE OF SQUARE RFSDDS

The main result in this section is that there exists square

RFSDDs with the maximal rate 2a
2a for N = 2a antennas

whereas only rates up to a+1
2a is possible with square

GLCODs with the same number of antennas. The other

results are: (i) rate-one square RFSDD of size N exist, iff

N = 2, 4 and (ii) a construction of RFSDDs with maximum

rate from GLCODs.

Let S =
∑K−1

k=0 xkIA2k + xkQA2k+1 be a square RFSDD.

We have,

AH
k Ak = Dk, k = 0, · · · , 2K − 1 (44)

AH
l Ak +AH

k Al = 0, 0 ≤ k 6= l ≤ 2K − 1 (45)

where Dk, k = 0, · · · , 2K−1 are diagonal matrices with non-

negative entries such that D2k + D2k+1 is full-rank ∀k. First

we show that for a rate-one RFSDD, N = 2, 4 or 8.

Theorem 18: If S is a size N square RFSDD of rate-one,

then N = 2, 4 or 8.

Proof: Let Bk = A2k + A2k+1, k = 0, · · · ,K − 1,
then

BH
k Bk = D̂k = D2k +D2k+1, k = 0, · · · ,K − 1 (46)

BH
l Bk +BH

k Bl = 0, 0 ≤ k 6= l ≤ K − 1. (47)

Observe that D̂k is of full-rank for all k. Define Ck =
BkD̂−1/2

k . Then the matrices Ck satisfy

CH
k Ck = IN , k = 0, · · · ,K − 1 (48)

CH
l Ck + CH

k Cl = 0, 0 ≤ k 6= l ≤ K − 1. (49)

Define

Ĉk = CH
0 Ck, k = 0, · · · ,K − 1, (50)

then Ĉ0 = IN and

ĈH
k = −Ĉk, k = 1, · · · ,K − 1 (51)

ĈH
l Ĉk + ĈH

k Ĉl = 0, 1 ≤ k 6= l ≤ K − 1. (52)

The normalized set of matrices {Ĉ1, · · · , ĈK−1} constitute a

Hurwitz family of order N [28] and for N = 2ab, b odd and

a, b > 0 the number of such matrices K − 1 is bounded by

[28]

K ≤ 2a+ 2.

For rate-one, RFSDD (K = N), the inequality can be satisfied

only for N = 2, 4 or 8.

Therefore the search for rate-one, square RFSDDs can be

restricted to N = 2, 4, 8. The rate 1, RFSDDs for N = 2, 4
have been presented in Example 4.2. We will now prove that

a rate-one, square RFSDD for N = 8 does not exist. Towards

this end we first derive the maximal rates of square RFSDDs.

Theorem 19: The maximal rate, R, achievable by a square

RFSDD with N = 2ab, b odd (where a, b > 0) transmit

antennas is

R =
2a

2ab
(53)

Proof: Let S =
∑K−1

k=0 xkIA2k+xkQA2k+1 be a square

RFSDD. Define the RFSDD

S′ =
K−1∑

k=0

xkI C
H
0 A2kD̂−1/2

0
︸ ︷︷ ︸

A′
2k

+xkQ CH
0 A2k+1D̂−1/2

0
︸ ︷︷ ︸

A′
2k+1

where Ck and D̂k are defined in the proof of the previous

theorem. Then the set of matrices {C′
k = A′

2k + A′
2k+1} is

such that C′
0 = IN and {C′

k, k = 1, · · · ,K − 1} is a family

of matrices of order N such that

C′H
k C′

k = D̂−1
0 D̂k, 1 ≤ k ≤ K − 1, (54)

C′H
l C′

k + C′H
k C′

l = 0, 0 ≤ k 6= l ≤ K − 1, (55)

where D̂−1
0 D̂k is diagonal and full-rank for all k. Then we

have

A′
0 +A′

1 = C′
0 = IN . (56)
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It is easily that the set of matrices {A′
k} satisfy (44) and

(45). Also, at least one A′
k is not full-rank. Without loss of

generality we assume that A′
0 is of rank r < N (if this not

so then exchange the indeterminates and/or the in-phase and

quadrature components so that this is satisfied). As A′
0 is of

rank r, due to (44), n − r columns of A′
0 are zero vectors.

Assume that first r columns of A′
0 are non-zero (If this is not

the case, we can always multiply all the weight matrices with

a Permutation matrix such that A′
0 is of this form) i.e.

A′
0 =

[
B′

0 0
]

(57)

where B′
0 ∈ CN×r. Applying (45) to A′

0 and A′
1 and using

from (56) and (57), we have

A′H
0 (IN −A′

0) + (IN −A′H
0 )A′

0 = 0 (58)

⇒ A′H
0 +A′

0 = 2D′
0 (59)

⇒
[

B′H
0

0

]

+
[
B′

0 0
]
= 2D′

0 (60)

⇒ B′
0 =

[
B′

11

0

]

(61)

where B′
11 is a r × r matrix and full-rank and A′H

k A′
k =

D′
k, k = 0, · · · , 2K − 1. Therefore the matrices A′

0, A
′
1 are

of the form

A′
0 =

[
B′

11 0
0 0

]

, A′
1 =

[
Ir −B′

11 0
0 IN−r

]

. (62)

Let

D1 =

[
D11 D12

D21 D22

]

be a matrix such that

A′H
i D1 +DH

1 A′
i = 0, i = 0, 1 (63)

where D11 ∈ Cr×r, D22 ∈ CN−r×N−r. Substituting the

structure of A′
0 we have

A′H
0 D1 +DH

1 A′
0 = 0 (64)

⇒
[

B′H
11 D11 +DH

11B
′
11 B′H

11 D12

DH
12B

′
11 0

]

= 0. (65)

As B′
11 is full-rank it follows that D12 = 0. Substituting the

structure of A′
1 we have

[
(Ir −B′H

11 )D11 +DH
11(Ir −B′

11) DH
21

D21 D22 +DH
22

]

= 0 (66)

⇒ D21 = 0. (67)

It follows that D1 is block diagonal and consequently all the

A′
k, 2 ≤ k ≤ 2K − 1 are block diagonal of the form D1 as

they satisfy (63). Consequently, C′
k = A′

2k +A′
2k+1, k =

1, · · · ,K − 1 are also block diagonal of the form C′
k =[

C′
k1 0
0 C′

k2

]

where C′
k1 ∈ Cr×r, C′

k2 ∈ CN−r×N−r.

Also, from (65), (66) we have

D11 = −DH
11, D22 = −DH

22. (68)

Now, in addition to this block diagonal structure the matrices

A′
k, 2 < k ≤ K − 1 have to satisfy (45) among themselves.

It follows that the two sets of square matrices {C′
k1, k =

0, . . . ,K − 1} and {C′
k2, k = 0 . . . ,K − 1} satisfy

C′2
ki = −Dki, k = 1, · · · ,K − 1, i = 1, 2; (69)

C′
kiC

′
li = −C′

liC
′
ki, 1 ≤ k 6= l ≤ K − 1, i = 1, 2,(70)

where −Dki are diagonal and full-rank ∀k, i. Define

Ĉki = C′
kiD

−1/2
ki , k = 1, · · · ,K − 1, i = 1, 2; (71)

then from Theorem 4,

Ĉ2
ki = −I, k = 1, · · · ,K − 1, i = 1, 2; (72)

ĈkiĈli = −ĈliĈki, 1 ≤ k 6= l ≤ K − 1, i = 1, 2.(73)

and the sets of square matrices {Ĉk1, k = 1, 2, . . . ,K − 1}
and {Ĉk2, k = 1, 2, . . . ,K − 1} constitute Hurwitz families

of order r,N − r corresponding to i = 1, 2 respectively. Let

H (N)− 1 be the maximum number of matrices in a Hurwitz

family of order N , then from the Hurwitz Theorem [28] ,

N = 2ab, b odd and

H (N) = 2a+ 2. (74)

Observe that due to the block diagonal structure of C′
k, K =

min{H (ri) , H (N − ri)}. Following the Hurwitz Theorem it

is sufficient to consider both r,N − r to be of the form 2a,

say 2a1 , 2a2 respectively. It follows that K is maximized iff

r = N − r = 2a
′ ⇒ N = 2a

′+1. It follows that the maximum

rate of RFSDD of size N = 2a (a = a′ + 1) is

R =
2a

2a
. (75)

An important observation regarding square RFSDDs is sum-

marized in the following Corollary:

Corollary 20: A maximal rate square RFSDD, S =
∑K−1

k=0 xkIA2k + xkQA2k+1 exists iff both D2k and D2k+1

are not full-rank for all k.

Proof: Immediate from the proof of above theorem.

An immediate consequence of this characterization of maximal

rate RFSDDs is:

Theorem 21: A square RFSDD of rate-one, exists iff N =
2, 4.

Proof: From (75) R = 1 iff N = 2, 4
It follows that

Theorem 22: The maximal rate, R, achievable by a square

FSDD with N = 2ab, b odd (where a, b > 0) transmit antennas

is

R =
2a

2ab
. (76)

Furthermore square GLCODs are not maximal rate FSDD

except for N = 2.

Next we give a construction of square RFSDD that achieves

the maximal rates obtained in Theorem 19.

Theorem 23: A square RFSDD S, of size N , in variables

xi, i = 0, · · · ,K−1 achieving the rate of Theorem 19 is given

by

S =








Θ(x̃0, · · · , x̃K/2)
︸ ︷︷ ︸

Θ1

0

0 Θ(x̃K/2, · · · , x̃K−1)
︸ ︷︷ ︸

Θ2








(77)
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where Θ(x0, · · · , xK/2−1) is a maximal rate square GLCOD

of size N/2 [11], [19], x̃i = Re{xi}+ jIm{x(i+K/2)K} and

where (a)K denotes a (mod K).
Proof: The proof is by direct verification. As the maximal

rate of square GLCOD of size N/2 is a
2a−1b [11], [19] the rate

of S in (77) is 2 a
2ab = 2a

2ab and hence S is maximal rate. Next

we show that S is a RFSDD. Consider

SHS =

[
ΘH

1 Θ1 0
0 ΘH

2 Θ2

]

,

by construction, the sum of weight matrices of x2
kI , x

2
kQ for

any symbol xk is IN and (44)-(45) are satisfied as Θ is a

GLCOD. Therefore S is a RFSDD.

Other square RFSDDs can be constructed from (77) by

applying some of the following

- permuting rows and/or columns of (77),

- permuting the real symbols {xkI , xkQ}K−1
k=0 ,

- multiplying a symbol by -1 or ±j

- conjugating a symbol in (77).

Following [11, Theorem 2] we have

Theorem 24: All square RFSDDs can be constructed from

RFSDD S of (77) by possibly deleting rows from a matrix of

the form

S′ = USV (78)

where U, V are unitary matrices, up to permutations and

possibly sign change in the set of real and imaginary parts

of the symbols.

Proof: This follows from the observation after (69) that

the pair of sets {C′
ki}K−1

k=0 , i = 1, 2 constitute a Hurwitz family

and Theorem 2 of [11] which applies to Hurwitz families.

It follows that the CIODs presented in Example 4.2 are unique

up to multiplication by unitary matrices. Moreover, observe

that the square RFSDDs of Theorem 23 can be thought of as

designs combining co-ordinate interleaving and GLCODs. We

therefore, include such RFSDDs in the class of co-ordinate

interleaved orthogonal designs (CIODs), studied in detail in

the next section.

VI. CO-ORDINATE INTERLEAVED ORTHOGONAL DESIGNS

In the Section IV we characterized SDDs in terms of the

weight matrices. Among these we characterized a class of full-

rank SDD called FSDD and classified it into UFSDD and

RFSDD. In the previous section we derived and constructed

maximal rate FSDDs. However, we have not been able to

derive the coding gain of the either the class SDD or FSDD

in general; the coding gain of GLCODs is well-known. This

section is devoted to an interesting class of RFSDD ⊂ FSDD

called Co-ordinate Interleaved Orthogonal Designs (CIODs)

for which we will not only be able to derive the coding gain

but also the Maximum Mutual Information.

We first give an intuitive construction of the CIOD for two

transmit antennas and then formally define the class of Co-

ordinate Interleaved Orthogonal Designs (CIODs) comprising

of only symmetric designs and its generalization, Generalized

CIOD (GCIOD) which includes both symmetric and non-

symmetric (as special cases) designs in Sub-section VI-A.

Also, we show that rate-one GCIODs exist for 2, 3 and 4

transmit antennas and for all other antenna configurations the

rate is strictly less than 1. A construction of GCIOD is then

presented which results in rate 6/7 designs for 5 and 6 transmit

antennas, rate 4/5 designs for 7 and 8 transmit antennas and

rate
2(m+1)
3m+1 GCIOD for N = 2m−3, 2m−2 ≥ 8 correspond-

ing to whether N is odd or even. In Subsection VI-A.2 the

signal set expansion associated with the use of STBC from

any co-ordinate interleaving when the uninterleaved complex

variables take values from a signal set is highlighted and the

notion of co-ordinate product distance (CPD) is discussed.

The coding gain aspects of the STBC from CIODs constitute

Subsection VI-B and we show that, for lattice constellations,

GCIODs have higher coding gain as compared to GLCODs.

Simulation results are presented in Subsection VI-C. The

Maximum Mutual Information (MMI) of GCIODs is discussed

in Subsection VI-D and is compared with that of GLCODs to

show that, except for N = 2, CIODs have higher MMI. In

a nutshell this section shows that, except for N = 2 (the

Alamouti code), CIODs are better than GLCODs in terms

of rate, coding gain, MMI and BER.

A. Co-ordinate Interleaved Orthogonal Designs

We begin from an intuitive construction of the CIOD for two

transmit antennas before giving a formal definition (Definition

7). Consider the Alamouti code

S =

[
x0 x1

−x∗
1 x∗

0

]

.

When the number of receive antennas M = 1, observe that the

diversity gain in the Alamouti code is due to the fact that each

symbol sees two different channels h0 and h1 and the low ML

decoding complexity is due to the use of the orthogonality of

columns of signal transmission matrix, by the receiver, over

two symbol periods to form an estimate of each symbol.

Alternately, diversity gain may still be achieved by trans-

mitting quadrature components of each symbol separately on

different antennas. More explicitly, consider that the in-phase

component, x0I , of a symbol, x0 = x0I + jx0Q, is transmitted

on antenna zero and in the next symbol interval the quadrature

component, x0Q, is transmitted from antenna one as shown in

Table I.

It is apparent that this procedure is similar to that of co-

ordinate interleaving (see Remark 15 for references) and that

the symbol has diversity two if the difference of the in-phase

and quadrature components is not-zero, but the rate is half.

This loss of rate can be compensated by choosing two symbols

and exchanging their quadrature components so that one co-

ordinate of each symbol is transmitted on one of the antennas

as shown in Table II.

As only one antenna is used at a time for transmission, the

only operation required at the receiver to decouple the symbols

is to exchange the quadrature components of the received

signals for two symbol periods after phase compensation.

The CIOD for four antennas is linked to the CIOD for two

antennas in a simple manner. The CIOD for two antennas uses

complex symbols and uses antenna cycling between antennas

0 and 1. For four antennas consider antennas 0 and 1 as one set
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and antennas 2 and 3 as another set. Using two antennas and

complex symbols, we can transmit a quaternion symbol (four

co-ordinates) rather than a complex symbol (two co-ordinates).

After interleaving the co-ordinates of the quaternion symbol

we cycle between the first and second set of antennas.

That the decoding is single-symbol decoding with the in-

phase and quadrature-phase components having got affected

by noise components of different variances for any GCIOD

is shown in Subsection VI-A.1. In the same subsection the

full-rankness of GCIOD is also proved. If we combine, the

Alamouti scheme with co-ordinate interleaving we have the

scheme for 4 transmit antennas of Example 4.2,and whose

receiver structure is explained in detail in Example 6.2. Now,

a formal definition of GCIODs follows:

Definition 7 (GCIOD): A Generalized Co-ordinate Inter-

leaved Orthogonal Design (GCIOD) of size N1 × N2 in

variables xi, i = 0, · · · ,K − 1 (where K is even) is a L×N
matrix S(x0, · · · , xK−1), such that

S =

[
Θ1(x̃0, · · · , x̃K/2−1) 0

0 Θ2(x̃K/2, · · · , x̃K−1)

]

(79)

where Θ1(x0, · · · , xK/2−1) and Θ2(xK/2, · · · , xK−1) are

GLCODs of size L1 × N1 and L2 × N2 respectively, with

rates K/2L1,K/2L2 respectively, where N1 + N2 = N ,

L1 + L2 = L, x̃i = Re{xi} + jIm{x(i+K/2)K} and (a)K
denotes a (mod K). If Θ1 = Θ2 then we call this design a

Co-ordinate interleaved orthogonal design(CIOD)7.

Naturally, the theory of CIODs is simpler as compared to

that of GCIOD. Note that when Θ1 = Θ2 and N = L we

have the construction of square RFSDDs given in Theorem

23. Examples of square CIOD for N = 2, 4 were presented

in Example 4.2.

Example 6.1: An example of GCIOD, where Θ1 6= Θ2 is

S(x0, · · · , x3)

S =







x0I + jx2Q x1I + jx3Q 0
−x1I + jx3Q x0I − jx2Q 0

0 0 x2I + jx0Q

0 0 −x3I + jx1Q







(80)

where Θ1 is the rate-one Alamouti code and Θ2 is the trivial,

rate-one, GLCOD for N = 1 given by

Θ2 =

[
x0

−x∗
1

]

.

Observe that S is non-square and rate-one. This code can also

be thought of as being obtained by dropping the last column

of the CIOD in (41). Finally, observe that (80) is not unique

and we have different designs as we take

Θ2 =

[
x0

x1

]

,

[
x0

−x1

]

etc. for the second GLCOD.

7These designs were named as Co-ordinate interleaved orthogonal design
(CIOD) in [47], [48] since two different columns are indeed orthogonal.
However, the standard dot product of different columns may be different
whereas in conventional GLCODs apart from orthogonality for two different
columns, all the columns will have the same dot product.

1) Coding and Decoding for STBCs from GCIODs: First,

we show that every GCIOD is a RFSDD and hence is SD and

achieves full diversity if the indeterminates take values from

a signal set with non-zero CPD.

Theorem 25: Every GCIOD is an RFSDD.

Proof: Let S be a GCIOD defined in (79). We have

SHS =

[
ΘH

1 Θ1 0
0 ΘH

2 Θ2

]

(81)

=

[
akIN1

0
0 bkIN2

]

(82)

where ak =
(
∑K/2−1

k=0 x2
kI + x2

(k+K/2)KQ

)

and bk =
(
∑K−1

k=K/2 x
2
kI + x2

(k+K/2)KQ

)

. Observe that there are no

terms of the form xkIxkQ, xkIxlQ etc. in SHS, and therefore

S is a SDD (this is clear from (22)). Moreover, by construc-

tion, the sum of weight matrices of x2
kI and x2

kQ for any

symbol xk is IN and hence S is a FSDD. Furthermore, for

any given k, 0 ≤ k ≤ K − 1 the weight matrices of both

x2
kI , x

2
kQ are not full-rank and therefore, by Definition 6, S is

a RFSDD.

The transmission scheme for a GCIOD, S(x0, · · · , xK−1)
of size N , is as follows: let Kb bits arrive at the encoder in

a given time slot. The encoder selects K complex symbols,

si, i = 0, · · · ,K − 1 from a complex constellation A of size

|A| = 2b. Then setting xi = si, i = 0, · · · ,K−1, the encoder

populates the transmission matrix with the complex symbols

for the corresponding number of transmit antennas. The cor-

responding transmission matrix is given by S(s0, · · · , sK−1).
The received signal matrix (5) is given by,

V = SH+W. (83)

Now as every GCIOD is a RFSDD (Theorem 25), it is SD and

the receiver uses (21) to form an estimate of each si resulting

in the ML rule for each si, i = 0, · · · ,K − 1, given by

min
si∈A

Mi(si) = min
si∈A

‖V − (A2isiI +A2i+1siQ)H‖2 . (84)

Remark 26: Note that forming the ML metric for each vari-

able in (84), implicitly involves co-ordinate de-interleaving, in

the same way as the coding involves co-ordinate interleaving.

Also notice that the components siI and siQ (i.e., the weight

matrices that are not full-rank) have been weighted differently

- something that does not happen for GLCODs. We elaborate

these aspects of decoding GCIODs by considering the decod-

ing of rate-one, CIOD for N = 4 in detail.
Example 6.2 (Coding and Decoding for CIOD for N = 4):

Consider the CIOD for N = 4 given in (41). If the signals
s0, s1, s2, s3 ∈ A are to be communicated, their interleaved
version as given in Definition 7 are transmitted. The signal
transmission matrix, S,

S =











s0I + js2Q
︸ ︷︷ ︸

s̃0

s1I + js3Q
︸ ︷︷ ︸

s̃1

0 0

−s1I + js3Q s0I − js2Q 0 0

0 0 s2I + js0Q
︸ ︷︷ ︸

s̃2

s3I + js1Q
︸ ︷︷ ︸

s̃3

0 0 −s3I + js1Q s2I − js0Q











(85)
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is obtained by replacing xi in the CIOD by si where each

si, i = 0, 1, 2, 3 takes values from a signal set A with 2b

points.

The received signals at the different time slots, vjt, t =
0, 1, 2, 3 and j = 0, 1, · · · ,M − 1 for the M receive antennas

are given by

vj0 = h0j s̃0 + h1j s̃1 + nj0;

vj1 = −h0j s̃
∗
1 + h1j s̃

∗
0 + nj1;

vj2 = h2j s̃2 + h3j s̃3 + nj2;

vj3 = −h2j s̃
∗
3 + h3j s̃

∗
2 + nj3 (86)

where nji , i = 0, 1, 2, 3 and j = 0, · · · ,M − 1 are complex

independent Gaussian random variables.

Let Vj = [vj0, v∗j1, vj2, v∗j3]
T , S̃ = [s̃0, s̃1, s̃2, s̃3]

T ,

Wj = [nj0, n∗
j1, nj2, n∗

j3]
T and

Hj =







h0j h1j 0 0
h∗
1j −h∗

0j 0 0
0 0 h2j h3j

0 0 h∗
3j −h∗

2j







where j = 0, 1, · · · ,M − 1. Using this notation, (86) can be

written as

Vj = HjS̃ +Wj . (87)

Let

Ṽj = [ṽj0, ṽj1, ṽj2, ṽj3]
T = HH

j Vj .

Then, we have

Ṽj =

[ (
|h0j |2 + |h1j |2

)
I2 0

0
(
|h2j |2 + |h3j|2

)
I2

]

S̃

+HH
j Wj . (88)

Rearranging the in-phase and quadrature-phase components

of ṽji’s, (which corresponds to deinterleaving) define, for i =
0, 1,

v̂i =

M−1∑

j=0

ṽji,I + jṽji+2,Q = asi,I + jbsi,Q + u0i (89)

v̂i+2 =
M−1∑

j=0

ṽji+2,I + jṽji,Q = bsi+2,I + jasi+2,Q + u1i (90)

where a =
∑M−1

j=0 {|h0j |2 + |h1j |2}, b =
∑M−1

j=0 {|h2j |2 +

|h3j |2} and u0i, u1i are complex Gaussian random variables.

Let W̃j = [ñj0 ñj1 ñj2 ñj3]
T = HH

j Wj . Then u0i =
∑M−1

j=0 ñji,I + jñji+2,Q and u1i =
∑M−1

j=0 ñji+2,I + jñji,Q

where i = 0, 1. Note that u00 and u01 have the same

variance and similarly u10 and u11. The variance of the in-

phase component of u00 is a and that of the quadrature-phase

component is b. The in-phase component of u10 has the same

variance as that of the quadrature-phase component of u00 and

vice versa. The ML decision rule for such a situation, derived

in a general setting is: Consider the received signal r, given

by

r = c1sI + jc2sQ + n (91)

where c1, c2 are real constants and sI , sQ are in-phase and

quadrature-phase components of transmitted signal s. The

ML decision rule when the in-phase, nI , and quadrature-

phase component, nQ, of the Gaussian noise, n have different

variances c1σ
2 and c2σ

2 is derived by considering the pdf of

n, given by

pn(n) =
1

2πσ2
√
c1c2

e
− n2

I
2c1σ2 e

−
n2
Q

2c2σ2 . (92)

The ML rule is: decide in favor of si, if and only if

pn(r/si) ≥ pn(r/sk), ∀ i 6= k. (93)

Substituting from (91) and (92) into (93) and simplifying we

have

c2|rI − asi,I |2 + c1|rQ − bsi,Q|2 ≤ c2|rI − ask,I |2

+c1|rQ − bsk,Q|2, ∀ i 6= k. (94)

We use this by substituting c1 = a and c2 = b, to obtain (95)

and c1 = b and c2 = a, to obtain (96). For v̂j , j = 0, 1,

choose signal si ∈ A iff

b|v̂j,I − asi,I |2 + a|v̂j,Q − bsi,Q|2 ≤ b|v̂j,I − ask,I |2

+ a|v̂j,Q − bsk,Q|2, ∀ i 6= k (95)

and for v̂j , j = 2, 3, choose signal si iff

a|v̂j,I − bsi,I |2 + b|v̂j,Q − asi,Q|2 ≤ a|v̂j,I − bsk,I |2

+b|v̂j,Q − ask,Q|2, ∀ i 6= k. (96)

From the above two equations it is clear that decoupling of the

variables is achieved by involving the de-interleaving operation

at the receiver in (89) and (90). Remember that the entire

decoding operation given in this example is equivalent to using

(84). We have given this example only to bring out the de-

interleaving operation involved in the decoding of GCIODs.

Next we show that rate-one, GCIODs (and hence CIODs)

exist for N = 2, 3, 4 only.

Theorem 27: A rate-one, GCIOD exists iff N = 2, 3, 4.

Proof: First observe from (79) that the GCIOD is rate-

one iff the GLCODs Θ1,Θ2 are rate-one. Following, Theorem

6, we have that a rate-one non-trivial GLCOD exist iff N = 2.

Including the trivial GLCOD for N = 1, we have that rate-one

GCIOD exists iff N = 1+ 1, 1+ 2, 2+ 2, i.e. N = 2, 3, 4.

Next we construct GCIODs of rate greater than 1/2 for N > 4.

Using the rate 3/4 GLCOD i.e. by substituting Θ1 = Θ2 by the

rate 3/4 GLCOD in (79), we have rate 3/4 CIOD for 8 transmit

antennas which is given in (97). Deleting one, two and three

columns from S we have rate 3/4 GCIODs for N = 7, 6, 5
respectively. Observe that by dropping columns of a CIOD we

get GCIODs and not CIODs. But the GCIODs for N = 5, 6, 7
are not maximal rate designs that can be constructed from the

Definition 7 using known GLCODs.

Towards constructing higher rate GCIODs for N = 5, 6, 7,

observe that the number of indeterminates of GLCODs Θ1,Θ2

in Definition 7 are equal. This is necessary for full-diversity

so that the in-phase or the quadrature component of each

indeterminate, each seeing a different channel, together see all

the channels. The construction of such GLCODs for N1 6= N2,

in general, is not immediate. One way is to set some of

the indeterminates in the GLCOD with higher number of
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S(x), · · · , x5) =

[
Θ4(x0I + jx3Q, x1I + jx4Q, x2I + jx5Q) 0

0 Θ4(x3I + jx0Q, x4I + jx1Q, x5I + jx2Q)

]

. (97)

indeterminates to zero, but this results in loss of rate. We next

give the construction of such GLCODs which does not result

in loss of rate.

Construction 6.1: Let Θ1 be a GLCOD of size L1 ×
N1, rate r1 = K1/L1 in K1 indeterminates x0, · · · , xK1−1

and similarly let Θ2 be a GLCOD of size L2 × N2, rate

r2 = K2/L2 in K2 indeterminates y0, · · · , yK2−1. Let K =
lcm(K1,K2), n1 = K/K1 and n2 = K/K2. Construct

Θ̂1 =










Θ1(x0, x1, · · · , xK1−1)
Θ1(xK1

, xK1+1, · · · , x2K1−1)
Θ1(x2K1

, x2K1+1, · · · , x3K1−1)
...

Θ1(x(n1−1)K1
, x(n1−1)K1+1, · · · , xn1K1−1)










(98)

and

Θ̂2 =










Θ2(y0, y1, · · · , yK2−1)
Θ2(yK2

, yK2+1, · · · , y2K2−1)
Θ2(y2K2

, y2K2+1, · · · , y3K2−1)
...

Θ2(y(n2−1)K2
, y(n2−1)K2+1, · · · , yn2K2−1)










.

(99)

Then Θ̂1 of size n1L1 ×N1 is a GLCOD in indeterminates

x0, x1, · · · , xK−1 and Θ̂2 of size n2L2 ×N2 is a GLCOD in

indeterminates y0, y1, · · · , yK−1. Substituting these GLCODs

in (79) we have a GCIOD of rate

R =
2K

n1L1 + n2L2

=
2lcm(K1,K2)

n1L1 + n2L2

=
2lcm(K1,K2)

lcm(K1,K2)(L1/K1 + L2/K2)

= H(r1, r2) (100)

where H(r1, r2) is the Harmonic mean of r1, r2 with N =
N1 +N2 and delay, L = n1L1 + n2L2.

We illustrate the Construction 6.1 by constructing a rate 6/7
GCIOD for six transmit antennas in the following example.

Example 6.3: Let

Θ1 =

[
x0 x1

−x∗
1 x∗

0

]

be the Alamouti code. Then L1 = N1 = K1 = 2. Similarly

let

Θ2 =







x0 x1 x2 0
−x∗

1 x∗
0 0 x2

−x∗
2 0 x∗

0 −x1

0 −x∗
2 x∗

1 x0






.

Then L2 = N2 = 4, K2 = 3 and the rate is 3/4. K =

lcm(K1,K2) = 6, n1 = K/K1 = 3 and n2 = K/K2 = 2.

Θ̂1 =





Θ1(x0, x1)
Θ1(x2, x3)
Θ1(x4, x5)



 =











x0 x1

−x∗
1 x∗

0

x2 x3

−x∗
3 x∗

2

x4 x5

−x∗
5 x∗

4











. (101)

Similarly,

Θ̂2 =















x0 x1 x2 0
−x∗

1 x∗
0 0 x2

−x∗
2 0 x∗

0 −x1

0 −x∗
2 x∗

1 x0

x3 x4 x5 0
−x∗

4 x∗
3 0 x5

−x∗
5 0 x∗

3 −x4

0 −x∗
5 x∗

4 x3















. (102)

The GCIOD for N = N1 + N2 = 6 is given in (103). The

rate of the GCIOD in (103) is 12
14 = 6

7 = 0.8571 > 3/4. This

increased rate comes at the cost of additional delay. While the

rate 3/4 CIOD for N = 6 has a delay of 8 symbol durations,

the rate 6/7 GCIOD has a delay of 14 symbol durations. In

other words, the rate 3/4 scheme is delay-efficient, while the

rate 6/7 scheme is rate-efficient8. Deleting one of the columns

we have a rate 6/7 design for 5 transmit antennas.

Similarly, taking Θ1 to be the Alamouti code and Θ2 to be the

rate 2/3 design of [17] in Construction 6.1, we have a CIOD

for N = 7 whose rate is given by

R =
2

3/2 + 1
=

4

5
= 0.8.

We have the following theorem:

Theorem 28: The maximal rate of GCIOD for N = n+2
antennas, R is lower bounded as R ≥ 2(m+1)

3m+1 where m = n/2
if n is even or m = (n+ 1)/2 if n is odd.

Proof: We need to prove that a GCIOD of rate R ≥
2(m+1)
3m+1 where m = n/2 if n is even or m = (n + 1)/2 if n

is odd exists.

Consider Construction 6.1. For a given N , Let Θ1 be the

Alamouti code. Then L1 = N1 = K1 = 2 and N2 = N − 2.

Let Θ2 be the GLPCOD for n = N−2 transmit antennas with

rate r2 = m+1
2m where m = n/2 if n is even or m = (n+1)/2

if n is odd [17]. The corresponding rate of the GCIOD is given

by

R =
2

2m
m+1 + 1

=
2(m+ 1)

3m+ 1
.

Significantly, there exist CIOD and GCIOD of rate greater

that 3/4 and less than 1, while no such GLCOD is known

to exist. Moreover for different choice of Θ1 and Θ2 we have

GCIODs of different rates. For example:

8Observe that we are not in a position to comment on the optimality of
both the delay and the rate.
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S =

























x0I + jx6Q x1I + jx7Q 0 0 0 0
−x1I + jx7Q x0I − jx6Q 0 0 0 0
x2I + jx8Q x3I + jx9Q 0 0 0 0
−x3I + jx9Q x2I − jx8Q 0 0 0 0
x4I + jx10Q x5I + jx11Q 0 0 0 0
−x5I + jx11Q x4I − jx10Q 0 0 0 0

0 0 x6I + jx0Q x7I + jx1Q x8I + jx2Q 0
0 0 −x7I + jx1Q x6I − jx0Q 0 x8I + jx2Q

0 0 −x8I + jx2Q 0 x6I − jx0Q −x7I − jx1Q

0 0 0 −x8I + jx2Q x7I − jx1Q x6I + jx0Q

0 0 x9I + jx3Q x10I + jx4Q x11I + jx5Q 0
0 0 −x10I + jx4Q x9I − jx3Q 0 x11I + jx5Q

0 0 −x11I + jx5Q 0 x9I − jx3Q −x10I − jx4Q

0 0 0 −x11I + jx5Q x10I − jx4Q x9I + jx3Q

























. (103)

Example 6.4: For a given N , Let Θ1 be the Alamouti code.

Then L1 = N1 = K1 = 2 and N2 = N−2. Let Θ2 be the rate

1/2 GLPCOD for N − 2 transmit antennas (either using the

construction of [9] or [15]). Then r2 = 1/2. The corresponding

rate of the GCIOD is given by

R =
2

2 + 1
=

2

3
.

In Table III, we present the rate comparison between GLCODs

and CIODs-both rate-efficient and delay efficient; and in Table

IV, we present the delay comparison.

Observe that both in terms of delay and rate GCIODs are

superior to GLCOD.

2) GCIODs vs. GLCODs: In this subsection we summarize

the differences between the GCIODs and GLCODs with

respect to different aspects including signal set expansion,

orthogonality and peak to average power ratio (PAPR). Other

aspects like coding gain, performance comparison using simu-

lation results and maximum mutual information are presented

in subsequent sections.

As observed earlier, a STBC is obtained from the GCIOD by

replacing xi by si and allowing each si, i = 0, 1, · · · ,K − 1,

to take values from a signal set A. For notational simplicity we

will use only S for S(x0, · · · , xK−1) dropping the arguments,

whenever they are clear from the context.

The following list highlights and compares the salient

features of GCIODs and GLCODs:

• Both GCIOD and GLCOD are FSDD and hence STBCs

from these designs are SD.

• GCIOD is a RFSDD and hence STBCs from GCIODs

achieve full-diversity iff CPD of A is not equal to zero.

In contrast STBCs from GLCODs achieve full-diversity

for all A.

• Signal Set Expansion: For STBCs from GCIODs, it

is important to note that when the variables xi, i =
0, 1, · · · ,K − 1, take values from a complex signal set

A the transmission matrix have entries which are co-

ordinate interleaved versions of the variables and hence

the actual signal points transmitted are not from A but

from an expanded version of A which we denote by Ã.

Figure 2(a) shows Ã when A = {1,−1, j,−j} which

is shown in Figure 2(c). Notice that Ã has 8 signal

points whereas A has 4. Figure 2(b) shows Ã′ where

A′ is the four point signal set obtained by rotating

A by 13.2825 degrees counter clockwise i.e., A′ =
{ejθ,−ejθ, jejθ,−jejθ} where θ = 13.2825 degrees as

shown in Figure 2(d). Notice that now the expanded

signal set has 16 signal points (The value θ = 13.2825
has been chosen so as to maximize the parameter called

Co-ordinate Product Distance of the signal set which is

related to diversity and coding gain of the STBCs from

GCIODs, discussed in detail in Section VI-B). It is easily

seen that |A′| ≤ |A|2.

Now for GLCOD, there is an expansion of signal set,

but |A′| ≤ 2|A|. For example consider the Alamouti

scheme, for the first time interval the symbols are from

the signal set A and for the next time interval symbols

are from A∗, the conjugate of symbols of A. But for

constellations derived from the square lattice |A′| <<
2|A| and in particular for square QAM |A′| = |A|. So

the transmission is from a larger signal set for GCIODs

as compared to GLCODs.

• Another important aspect to notice is that for GCIODs,

during the first L/2 time intervals N1 < N of the N
antennas transmit and the remaining N2 = N − N1

antennas transmit nothing and vice versa. So, on an

average half of transmit antennas are idle.

• For GCIODs, S, is not an scaled orthonormal matrix but

is an orthogonal matrix while for square GLCODs, S, is

scaled orthonormal. For example when S is the CIOD

given by (85) for N = 4 transmit antennas,

• GCIODs out perform GLCODs for N > 2 both in terms

of rate and delay as shown in Tables III and IV.

• Due to the fact that at least half of the entries of GCIOD

are zero, the peak-to-average power ratio for any one

antenna is high compared to those STBCs obtained from

GLCODs. This can be taken care of by “power uni-

formization” techniques as discussed in [11] for GLCODs

with some zero entries.

B. Coding Gain and Co-ordinate Product Distance (CPD)

In this section we derive the conditions under which the

coding gain of the STBCs from GCIODs is maximized.

Recollect from Section IV that since GCIOD and CIOD are

RFSDDs, they achieve full-diversity iff CPD of A is non-

zero. Here, in Subsection VI-B.1 we show that the coding

gain defined in (7) is equal to a quantity, which we call,

the Generalized CPD (GCPD) which is a generalization of

CPD. In Subsection VI-B.2 we maximize the CPD for lattice
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SHS =







|x̃0|2 + |x̃1|2 0 0 0
0 |x̃0|2 + |x̃1|2 0 0
0 0 |x̃2|2 + |x̃3|2 0
0 0 0 |x̃2|2 + |x̃3|2






. (104)

constellations by rotating the constellation9. Similar results are

also obtained for the GCPD for some particular cases. We

then compare the coding gains of STBCs from both GCIODs

and GLCODs in Subsection VI-B.5 and show that, except

for N = 2, GCIODs have higher coding gain as compared

to GLCODs for lattice constellations at the same spectral

efficiency in bits/sec/Hz.

1) Coding Gain of GCIODs: Without loss of generality,

we assume that the GLCODs Θ1,Θ2 of Definition 7 are such

that their weight matrices are unitary. Towards obtaining an

expression for the coding gain of CIODs, we first introduce

Definition 8 (Generalized Co-ordinate Product Distance):

For arbitrary positive integers N1 and N2, the Generalized

Co-ordinate Product Distance (GCPD) between any two

signal points u = uI + juQ and v = vI + jvQ, u 6= v of

the signal set A is defined in (105) and the minimum of this

value among all possible pairs of distinct signal points of the

signal set A is defined as the GCPD of the signal set and will

be denoted by GCPDN1,N2
(A) or simply by GCPDN1,N2

when the signal set under consideration is clear from the

context.

Remark 29: Observe that

1) When N1 = N2, the GCPD reduces to the CPD defined

in Definition 4 and is independent of both N1 and N2.

2) GCPDN1,N2
(u, v) = GCPDN2,N1

(u, v) for any two

signal points u and v and hence GCPDN1,N2
(A) =

GCPDN2,N1
(A).

We have,

Theorem 30: The coding gain of a full-rank GCIOD with

the variables taking values from a signal set, is equal to the

GCPDN1,N2
of that signal set.

Proof: For a GCIOD in Definition 7 we have,

SHS =

[
aKIN1

0
0 bKIN2

]

, (106)

aK = |x̃0|2 + · · ·+ |x̃K/2−1|2,
bk = |x̃K/2|2 + · · ·+ |x̃K−1|2

where x̃i = Re{xi} + jIm{x(i+K/2)K} and where (a)K
denotes a (mod K). Consider the codeword difference matrix

B(S,S′) = S − S′ which is of full-rank for two distinct

codeword matrices S,S′. We have

BH(S,S′)B(S,S′) =

[
▽aKIN1

0
0 ▽bKIN2

]

,(107)

▽aK = |x̃0 − x̃′
0|2 + · · ·+ |x̃K/2−1 − x̃′

K/2−1|2),
▽bK = (|x̃K/2 − x̃′

K/2|2 + · · ·+ |x̃K−1 − x̃′
K−1|2)

9The optimal rotation for 2-D QAM signal sets is derived in [62] using
Number theory and Lattice theory. Our proof is simple and does not require
mathematical tools from Number theory or Lattice theory.

where at least one xk differs from x′
k , k = 0, · · · ,K − 1.

Clearly, the terms (|x̃0− x̃′
0|2+ · · ·+ |x̃K/2−1− x̃′

K/2−1|2) and

(|x̃K/2−x̃′
K/2|2+· · ·+|x̃K−1−x̃′

K−1|2) are both minimum iff

xk differs from x′
k for only one k. Therefore assume, without

loss of generality, that the codeword matrices S and S′ are such

that they differ by only one variable, say x0 taking different

values from the signal set A. Then, for this case,

Λ1 = det
{
BH(S,S′)B(S,S′)

}1/N

= |x0I − x′
0I |

2N1
N1+N2 |x0Q − x′

0Q|
2N2

N1+N2 .

Similarly, when S and S′ are such that they differ by only in

xK/2 then

Λ2 = det
{
BH(S,S′)B(S,S′)

}1/N

= |xK/2I − x′
K/2I |

2N2
N1+N2 |xK/2Q − x′

K/2Q|
2N1

N1+N2

and the coding gain is given by minx0,xK/2∈A {Λ1,Λ2} =
GCPDN1,N2

.

An important implication of the above result is,

Corollary 31: The coding gain of a full-rank STBC from

a CIOD with the variables taking values from a signal set, is

equal to the CPD of that signal set.

Remark 32: Observe that the CPD is independent of the

parameters N1, N2 and is dependent only on the elements of

the signal set. Therefore the coding gain of STBC from CIOD

is independent of the CIOD. In contrast, for GCIOD the coding

gain is a function of N1, N2.

The full-rank condition of RFSDD i.e. CPD 6= 0 can be

restated for GCIOD as

Theorem 33: The STBC from GCIOD with variables tak-

ing values from a signal set achieves full-diversity iff the

GCPDN1,N2
of that signal set is non-zero.

It is important to note that the GCPDN1,N2
is non-zero iff

the CPD is non-zero and consequently, this is not at all a

restrictive condition, since given any signal set A, one

can always get the above condition satisfied by rotating it.

In fact, there are infinitely many angles of rotations that

will satisfy the required condition and only finitely many

which will not. Moreover, appropriate rotation leads to

more coding gain also. From this observation it follows that

signal constellations with CPD = 0 and hence GCPD = 0
like regular M − ary QAM , symmetric M − ary PSK will

not achieve full-diversity. But the situation gets salvaged by

simply rotating the signal set to get this condition satisfied

as also indicated in [42], [43], [60]. This result is similar to

the ones on co-ordinate interleaved schemes like co-ordinate

interleaved trellis coded modulation [42], [43] and bit and

co-ordinate interleaved coded modulation [40]-[45], [55] for

single antenna transmit systems.

2) Maximizing CPD and GCPD for Integer Lattice con-

stellations: In this subsection we derive the optimal angle of
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GCPDN1,N2
(u, v) = min

{

|uI − vI |
2N1

N1+N2 |uQ − vQ|
2N2

N1+N2 , |uI − vI |
2N2

N1+N2 |uQ − vQ|
2N1

N1+N2

}

(105)

rotation for QAM constellation so that the CPD and hence

the coding gain of CIOD is maximized. We then generalize

the derivation so as to present a method to maximize the

GCPDN1,N2
.

3) Maximizing CPD: In the previous section we showed

that the coding gain of CIOD is equal to the CPD and

that constellations with non-zero CPD can be obtained by

rotating the constellations with zero CPD. Here we obtain the

optimal angle of rotation for lattice constellations analytically.

It is noteworthy that the optimal performance of co-ordinate

interleaved TCM for the 2-D QAM constellations considered

[42], [43], using simulation results was observed at 32◦;

analytically, the optimal angle of rotation derived herein is

θ = tan(2)/2 = 31.7175◦ for 2-D QAM constellations. The

error is probably due to the incremental angle being greater

than or equal to 0.5. We first derive the result for square QAM.

Theorem 34: Consider a square QAM constellation A,

with signal points from the square lattice (2k − 1 − Q)d +
j(2l − 1 − Q)d where k, l ∈ [1, Q] and d is chosen so that

the average energy of the QAM constellation is 1. Let θ be

the angle of rotation. The maximum CPD of A is obtained

at θopt =
arctan(2)

2 = 31.7175◦ and is given by

CPDopt =
4d2√
5
. (108)

Proof: The proof is in three steps. First we derive

the optimum value of θ for 4-QAM, denoted as θopt (the

corresponding CPD is denoted as CPDopt). Second, we

show that at θopt, CPDopt is in-fact the CPD for all other

(square) QAM. Finally, we show that for any other value of

θ ∈ [0, π/2], CPD < CPDopt completing the proof.

Step 1: Any point P(x, y) ∈ R2 rotated by an angle θ ∈
[0, 90◦] can be written as

[
xR

yR

]

=

[
cos θ sin θ
− sin θ cos θ

]

︸ ︷︷ ︸

R

[
x
y

]

. (109)

Let P1(x1, y1), P2(x2, y2) be two distinct points in A such

that △x = x1 − x2,△y = y1 − y2. Observe that △x,△y =
0,±2d, · · · ,±2(Q− 1)d. We may write △x = ±2md,△y =
±2nd,m, n ∈ [0, Q − 1] but both △x,△y cannot be zero

simultaneously, as P1, P2 are distinct points in A. Since,

rotation is a linear operation,
[

△xr

△yr

]

= R

[
△x
△y

]

, (110)

where △xr = x1R − x2R,△yr = y1R − y2R. The

CPD between points P1 and P2 after rotation, denoted by

CPD(P1r , P2r), is then given by

CPD(P1r , P2r) = |△xr||△yr| =
∣
∣
∣
∣
∣

△x△y cos(2θ)

+
(△x)2 − (△y)2

2
sin(2θ)

∣
∣
∣
∣
. (111)

For 4-QAM, possible values of CPD(P1r , P2r) are

CPD1(P1r, P2r) = 2d2| sin(2θ)|,
CPD2(P1r, P2r) = 4d2| cos(2θ)|. (112)

Fig. 3 shows the plots of both CPD1 and CPD2. As sine

is an increasing function and cosine a decreasing function

of θ in the first quadrant, equating CPD1, CPD2 gives the

optimal angle of rotation, θopt. Let CPD(θ) be the CPD
at angle θ and CPDopt = maxθ CPD(θ). It follows that

θopt = arctan(±2)
2 = 31.7175◦, 58.285◦ and CPDopt =

2d2 sin(2θopt) = 4d2 cos(2θopt) =
4d2

√
5

.

Step 2: Substituting the optimal values of

sin(2θopt), cos(2θopt) in (111) we have for any two

arbitrary points of a square QAM constellation,

CPD(P1r , P2r) =
4d2√
5

∣
∣±nm+ n2 −m2

∣
∣ where n,m ∈ Z

(113)

and both n,m are not simultaneously zero and Z is the set of

integers. It suffice to show that

| ± nm+ n2 −m2| ≥ 1 ∀n,m

provided both n,m are not simultaneously zero. We consider

the ± case separately. We have

|nm+ n2 −m2| =

∣
∣
∣
∣

(

n+
m

2

)2

−
(

1 +
1

4

)

m2

∣
∣
∣
∣

=
∣
∣
∣

(

n+
m

2
{1 +

√
5}
)

(

n+
m

2
{1−

√
5}
)∣
∣
∣ ,

Similarly,

| − nm+ n2 −m2| =
∣
∣
∣

(

n− m

2
{1−

√
5}
)

(

n− m

2
{1−

√
5}
)∣
∣
∣ .

The quadratic equation in n, | ± nm+ n2 −m2| = 0 has

roots

n =
m

2
{±1±

√
5}.

Since n,m ∈ Z, | ± nm+ n2 −m2| ∈ Z and is equal to zero

only if n = 0, m
2 {±1±

√
5}. Necessarily, |±nm+n2−m2| ≥

1 for n,m ∈ Z and both n,m are not simultaneously zero.

Therefore θopt and CPDopt continue to be the optimum values

of angle and the CPD for any square QAM.

Step 3: Next we prove that for all other values of θ ∈ [0, π2 ],
CPD(θ) < CPDopt. To this end, observe that for any value

of θ other than θopt either CPD1 or CPD2 is less than

CPDopt (see the attached plot of CPD1, CPD2 in Fig. 3).

It follows that

CPD(θ) ≤ CPDopt

with equality iff θ = θopt.
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Observe that Theorem 34 has application in all schemes where

the performance depends on the CPD such as those in [49],

[44], [45], [42], [43], etc. and the references therein.

Remark: The 4 QAM constellation in Fig. 2(c) is a rotated

version (45◦) of the QAM signal set considered in Theorem

34.

Next we generalize Theorem 34 to all integer lattice con-

stellations obtainable from a square lattice. We first find

constellations that have the same CPD as the square QAM

of which it is a subset. Towards that end we define,

Definition 9 (NILC ): A Non-reducible integer lattice con-

stellation (NILC) is a finite subset of the square lattice,

(2k)d + j(2l)d where k, l ∈ Z, such that there exists at least

a pair of signal points p1 = (2k1)d + j(2l1)d and p2 =
(2k2)d + j(2l2)d such that either |k1 − k2| = 1, |l1 − l2| = 0
or |l1 − l2| = 1, |k1 − k2| = 0.

We have,

Corollary 35: The CPD of a non-reducible integer lattice

constellation, A, rotated by an angle θ, is maximized at θ =
arctan(2)

2 = 31.7175◦ and is given by

CPDopt =
4d2√
5
. (114)

Proof: Since A is a subset of an appropriate square QAM

constellation, we immediately have from Theorem 34

CPDopt ≥
4d2√
5
. (115)

We only need to prove the equality condition. The CPD

between any two points NILC at θopt is given by (113)

CPD(P1, P2) =
4d2√
5

∣
∣±nm+ n2 −m2

∣
∣ where n,m ∈ Z.

(116)

Since for NILC there exists at least a pair of signal points

p1 = (2k1)d + j(2l1)d and p2 = (2k2)d + j(2l2)d such that

either |k1−k2| = 1, |l1−l2| = 0 or |l1−l2| = 1, |k1−k2| = 0,

we have CPD(p1, p2) =
4d2

√
5

.

In addition to the NILCs, the lattice constellations that are a

proper subset of the scaled rectangular lattices,(4k)d+ j(2l)d

and (2k)d + j(4l)d where k, l ∈ Z have CPD equal to 4d2

√
5

.

All other integer lattice constellations have CPD > 4d2

√
5

.

4) Maximizing the GCPD of the QPSK signal set: To derive

the optimal angles of rotation for maximizing the GCPD we

consider only QPSK, since the optimal angle is not the same

for any square QAM, as is the case with CPD.

Theorem 36: Consider a QPSK constellation A, with sig-

nal points (2k − 3)d + j(2l − 3)d where k, l ∈ [1, 2] and

d = 1/
√
2, rotated by an angle θ so as to maximize the

GCPDN1,N2
. The GCPDN1,N2

(A) is maximized at θopt =
arctan(x0) where x0 is the positive root of the equation

(

1− 1

x

)2N1

(1 + x)
2N2 = 1 (117)

where N1 > N2 and the corresponding GCPDN1,N2
(A) is

4d2

(

x

2N1
N1+N2
0

1+x2
0

)

.

Proof: Following the same notations as in Step 1 of

Theorem 34, we have

|△xr|N1 |△yr|N2 = |2dm cos(θ) + 2dn sin(θ)|N1

|−2dm sin(θ) + 2dn cos(θ)|N2 .(118)

The possible values of GCPD(N1,N2)(P1, P2) are

GCPD1 = 4d2 |sin(θ)− cos(θ)|
2N1

N1+N2

|sin(θ) + cos(θ)|
2N2

N1+N2 (119)

GCPD2 = 4d2 |sin(θ) + cos(θ)|
2N1

N1+N2

|sin(θ)− cos(θ)|
2N2

N1+N2 (120)

GCPD3 = 4d2 |sin(θ)|
2N1

N1+N2 |cos(θ)|
2N2

N1+N2 (121)

GCPD4 = 4d2 |cos(θ)|
2N1

N1+N2 |sin(θ)|
2N2

N1+N2 . (122)

Now by symmetry it is sufficient to consider θ ∈ [0, π/4).
In this range sin(θ) < cos(θ) ≤ 1 and accordingly, if

N1 > N2 then GCPD3 < GCPD4 and similarly GCPD1 <
GCPD2. Equating GCPD1, GCPD3 gives the optimal angle

of rotation, θopt. We have

GCPD1 = GCPD3

⇒
(sin(θopt)− cos(θopt))

2N1
N1+N2 (sin(θopt) + cos(θopt))

2N2
N1+N2

= (sin(θopt))
2N1

N1+N2 (cos(θopt))
2N2

N1+N2

⇒
(1− cot(θopt))

2N1
N1+N2 (1 + tan(θopt))

2N2
N1+N2 = 1.

Substituting tan(θopt) = x we have that x is the root of (117).

The GCPD1 and hence the GCPD at this value is

GCPD1 = 4d2 |sin(θopt)− cos(θopt)|
2N1

N1+N2

|sin(θopt) + cos(θopt)|
2N2

N1+N2

= 4d2
(x0 − 1)

2N1
N1+N2 (x0 + 1)

2N2
N1+N2

1 + x2
0

= 4d2




x

2N1
N1+N2

0

1 + x2
0



 . (123)

Table V gives the optimal angle of rotation for various values

of N = N1 + N2 along with the normalized GCPDN1,N2

(GCPDN1,N2
)/4d2). Observe that for any given N the coding

gain is large if N1, N2 are of the same size i.e., nearly equal.

Also observe that the optimal angle of rotation lies in the range

(26.656, 31.7175] and the corresponding normalized coding

gain varies from (0.2,0.4472].

Note that the infimum corresponds to the limit where

N1 = N , N2 = 0 and the maximum corresponds to N1 =
N2 = N/2. Unfortunately, the optimal angle varies with the

constellation size, unlike CPD. In the next proposition we find

upper and lower bounds on GCPDN1,N2
for rotated lattice

constellations.

Proposition 37: The GCPDN1,N2
for rotated NILC is

bounded as

CPD
2N2

N1+N2 ≤ GCPDN1,N2
≤ CPD, N2 > N1
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with equality iff N1 = N2.

Proof: Let p, q be two signal points such that

GCPDN1,N2
= GCPDN1,N2

(p, q). (124)

When N1 = N2 or △x = △y there is nothing to prove as the

inequality is satisfied.

Therefore let N1 6= N2 and △x 6= △y. When the signal

points are from the square lattice (2k)d+ j(2l)d where k, l ∈
Z and d is chosen so that the average energy of the QAM

constellation is 1, rotated by an angle θ then

GCPD(N1,N2)(p, q) = min
{

|△xr|
2N1

N1+N2 |△yr|
2N2

N1+N2 ,

|△xr|
2N2

N1+N2 |△yr|
2N1

N1+N2

}

= 4d2 |m cos(θ) + n sin(θ)|
2N1

N1+N2

|−m sin(θ) + n cos(θ)|
2N2

N1+N2 ,(125)

where m,n ∈ Z. For a NILC the GCPDN1,N2
is upper

bounded by the GCPDN1,N2
for QPSK and is given by (123).

Now the root of (117), x0, is such that x0 ∈ (0.5, 1) and

N2 > N/2 and we immediately have

4d2
x

2N2
N1+N2

0

(1 + x2
0)

< 4d2
x0

(1 + x2
0)

(126)

completing GCPDN1,N2
≤ CPD. For the second part

observe that, for N2 > N1, |m cos(θ) + n sin(θ)|N2 <
|m cos(θ) + n sin(θ)|N1 as |m cos(θ) + n sin(θ)| < 1. Sub-

stituting this in (125) we have the lower bound.

In Proposition 37, if we use θ = arctan(2) for rotating the

NILC then the GCPD is bounded as

CPD
2N2

N1+N2

opt ≤ GCPDN1,N2
≤ CPDopt, N2 > N1, (127)

⇒
(
4d2√
5

) 2N2
N1+N2

≤ GCPDN1,N2
≤
(
4d2√
5

)

, N2 > N1.(128)

Remark 38: It is clear from Table V and the above in-

equalities on GCPD that the value of GCPD decreases as the

QAM constellation size increases and also as the difference

between N1, N2 increases. Therefore, while Construction 6.1

gives high-rate designs, the coding gain decreases for QAM

constellations.

5) Coding gain of GCIOD vs that of GLCOD: In this

subsection we compare the coding gains of GCIOD and

GLCOD for the same number of transmit antennas and the

same spectral efficiency in bits/sec/Hz-for same total transmit

power. For the sake of simplicity we assume that both GCIOD

and GLCOD use square QAM constellations.

6) The number of transmit antennas N=2: The total trans-

mit power constraint is given by tr
(
SHS

)
= L = 2. If the

signal set has unit average energy then the Alamouti code

transmitted is

S =
1√
2

[
x0 x1

−x∗
1 x∗

0

]

where the multiplication factor is for power normalization. For

the same average transmit power the rate-one CIOD is

S =

[
x0I + jx1Q 0

0 x1I + jx0Q

]

.

Therefore the coding gain of the Alamouti code for NILC is

given by 4d2

2 and that of CIOD is given by Theorem 34 as 4d2

√
5

.

Therefore the coding gain of the CIOD for N=2 is inferior

to the Alamouti code by a factor of 2√
5

= 2
2.23 = 0.894,

which corresponds to a coding gain of 0.4 dB for the Alamouti

code10.
7) The number of transmit antennas N=4: The average

transmit power constraint is given by tr
(
SHS

)
= L = 4. If

the signal set has unit average energy then the rate 3/4 COD
code transmitted is

S =
1
√

3






x0 x1 x2 0

−x∗
1 x∗

0 0 x2

−x∗
2 0 x∗

0 −x1

0 −x∗
2 x∗

1 x0






where the multiplication factor is for power normalization. For

the same average transmit power, the rate 1 CIOD is given in

(129). If the rate 3/4 code uses a 2n square QAM and the

rate 1 CIOD uses a 2
3n
4 square QAM, then they have same

spectral efficiency in bits/sec/Hz, and the possible values of

n for realizable square constellations is n = 8i, i ∈ Z+. Let

d1, d2 be the values of d so that the average energy of 2n

square QAM and 2
3n
4 square QAM is 1. Therefore the coding

gain of rate 3/4 COD for NILC is given by ΛCOD =
4d2

1

3

and that of CIOD is given by Theorem 34 as ΛCIOD =
4d2

2

2
√
5

.

Using the fact that for unit average energy M-QAM square

constellations d =
√

6
M−1 , we have

ΛCOD =
8

(28i − 1)
and ΛCIOD =

12√
5(26i − 1)

where i ∈ Z
+

for a spectral efficiency of 6i bits/sec/Hz. For i = 1, 2, 3 we

have ΛCOD = 0.0314, 1.2207e-004, 4.7684e-007 and ΛCIOD

= 0.0422, 6.5517e-004, 1.0236e-005 respectively, correspond-

ing to a coding gain of 1.29, 7.29, 13.318 dB for the CIOD

code. Observe that in contrast to the coding gain for N = 2
which is independent of the spectral efficiency, the coding gain

for N = 4 appreciates with spectral efficiency.

8) The number of transmit antennas N=8: The total trans-

mit power constraint is given by tr
(
SHS

)
= L = 8. If the

signal set has unit average energy then the rate 1/2 COD code

has a multiplication factor of 1/2 and for the same transmit

power, the rate 3/4 CIOD has a multiplication factor of 1/
√
3.

If the rate 1/2 COD code uses a 2n square QAM and the

rate 3/4 CIOD uses a 2
3n
2 square QAM, then they have same

spectral efficiency in bits/sec/Hz, and the possible values of

n for realizable square constellations is n = 4i, i ∈ Z
+. Let

d1, d2 be the values of d so that the average energy of 2n

square QAM and 2
3n
2 square QAM is 1. Therefore the coding

gain of rate 1/2 COD for NILC is given by ΛCOD =
4d2

1

4

and that of CIOD is given by Theorem 34 as ΛCIOD =
4d2

2

3
√
5

.

10In Section VII, we revisit these codes for their use in rapid-fading
channels where we show that this loss of coding gain vanishes and the CIOD
for N = 2 is SD while the Alamouti code is not.
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S =
1√
2






x0I + jx2Q x1I + jx3Q 0 0
−x1I + jx3Q x0I − jx2Q 0 0

0 0 x2I + jx0Q x3I + jx1Q

0 0 −x3I + jx1Q x2I − jx0Q




 . (129)

Using the fact that for unit average energy M-QAM square

constellations d =
√

6
M−1 , we have

ΛCOD =
6

(24i − 1)
and ΛCIOD =

8√
5(23i − 1)

where i ∈ Z
+

for a spectral efficiency of 3i bits/sec/Hz. For i = 1, 2, 3
we have ΛCOD= 0.4, 0.0235, 0.0015 and ΛCIOD = 0.4737,

0.0563, 0.007 respectively, corresponding to a coding gain of

0.734, 3.789, 6.788 dB for the CIOD code. Observe that as in

the case of N = 4 the coding gain appreciates with spectral

efficiency.

Next we compare the coding gains of some GCIODs.

9) The number of transmit antennas N=3: Both the GCIOD

and GCOD for N = 3 is obtained from the N = 4 codes

by dropping one of the columns, consequently the rates and

the total transmit power constraint are same as for N = 4.

Accordingly, the rate 3/4 GCOD code uses a 2n square QAM

and the rate-one GCIOD uses a 2
3n
4 square QAM where n =

8i, i ∈ Z
+. The coding gain for the rate 3/4 GCOD for NILC is

given by ΛGCOD =
4d2

1

3 and that of GCIOD is lower bounded

by Proposition 37 as ΛGCIOD >
(

4d2
2

2
√
5

) 4
3

. Using the fact that

for unit average energy M-QAM square constellations d =√
6

M−1 , we have

ΛGCOD =
8

(28i − 1)
and ΛGCIOD >

(
12√

5(26i − 1)

) 4
3

where i ∈ Z
+

for a spectral efficiency of 6i bits/sec/Hz. For i = 1, 2, 3
we have ΛGCOD = 0.0314, 1.2207e−4, 4.7684e−7 and

ΛGCIOD > 0.0147, 5.69e−5, 2.22e−7 respectively.

Observe that at high spectral rates, even the lower bound is

larger than the coding gain of GCOD. In practice, however,

the GCIOD performs better than GCOD at all spectral rates.

C. Simulation Results

In this section we present simulation results for 4-QAM and

16-QAM modulation over a quasi-static fading channel. The

fading is assumed to be constant over a fade length of 120

symbol durations.

First, we compare the CIOD for N = 4, with (i) the STBC

(denoted by STBC-CR in Fig. 4 and 5) of [62], (ii) rate 1/2,

COD and (iii) rate 3/4 COD for four transmit antennas for

the identical throughput of 2 bits/sec/Hz. For CIOD the

transmitter chooses symbols from a QPSK signal set rotated

by an angle of 13.2825◦ so as to maximize the CPD. For

STBC-CR the symbols are from a QPSK signal set and rate 1/2

COD from 16-QAM signal set. For rate 3/4 COD, the symbols

are chosen from 6-PSK for a throughput of 1.94 bits/sec/Hz

which is close to 2 bits/sec/Hz. The average transmitted power

is equal in all the cases i.e. E{tr(SHS)} = 4, so that average

energy per bit using the channel model of (5) is equal. The Fig.

4. shows the BER performance for these schemes. Observe

that the scheme of this paper outperforms rate 1/2 COD by

3.0 dB, rate 3/4 COD by 1.3 dB and STBC-CR by 1.2 dB

at Pb = 10−5. A comparison of the coding gain, Λ, of these

schemes is given in tabular form in Table VI.

For CIOD, ΛCIOD = 0.4478 while for STBC-CR

ΛSTBC−CR = 0.5 at R = 2 bits/sec/Hz, but still CIOD out-

performs STBC-CR because the coding gain is derived on

the basis of an upper bound. If we take into consideration

the kissing number i.e. the number of codewords at the given

minimum coding gain, then we clearly see that though STBC-

CR has higher coding gain, it has more than double the kissing

number of CIOD. The results for rest of the schemes are in

accordance with their coding gains;

10 log10

(
ΛCIOD

Λrate 1/2 COD

)

= 3.5

and

10 log10

(
ΛCIOD

Λrate 3/4 COD

)

= 1.3.

Observe that rate 3/4 COD and STBC-CR have almost similar

performance at 2 bits/sec/Hz, and around 1.6 dB coding gain

over rate 1/2 COD. A possible apparent inconsistency of these

with the results in [32], [33], which report coding gain of over

2 dB, is due to the fact that symbol error rate (SER) vs. ρ
is plotted in [32], [33]. As rate 1/2 COD chooses symbols

from 16 QAM and STBC-CR from 4 QAM, SER vs. ρ plot

gives an overestimate of the errors for STBC-OD as compared

to STBC-CR and bit error rate (BER) vs. Eb/N0 is a more

appropriate plot for comparison at the same through put (2

bits/sec/Hz).

From the Table VI, which gives the coding gains of various

schemes at spectral efficiencies of 2,3,4 bits/sec/Hz, we see

that the coding gain of STBC-CR and CIOD are nearly equal

(differ by a factor of 1.11) and significantly greater than

other schemes. But, the main factor in favor of CIOD as

compared to STBC-CR (as also any STBC other than STBC-

OD) is that CIOD allows linear complexity ML decoding

while STBC-CR has exponential ML decoding complexity.

At a modest rate of 4 bits/sec/Hz, CIOD requires 64 metric

computations while STBC-CR requires 164 = 65, 536 metric

computations. Even the sphere-decoding algorithm is quite

complex requiring exponential complexity when M < N and

polynomial otherwise [38].

For 4-QAM and 16-QAM constellations, Fig. 5 shows the

performance for CIOD, STBC-CR and Diagonal Algebraic

Space Time (DAST) codes of [34]. As expected CIOD shows

better performance. Finally note that the performance of full-

diversity QODs [26], [27] is same as the performance of

CIODs, however QODs are not single-symbol decodable.
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D. Maximum Mutual Information (MMI) of CIODs

In this Subsection we analyze the maximum mutual in-

formation (MMI) that can be attained by GCIOD schemes

presented in this section. We show that except for the Alamouti

scheme all other GLCOD have lower MMI than the corre-

sponding GCIOD. We also compare the MMI of rate-one

STBC-CR with that of GCIOD to show that GCIOD have

higher MMI.

It is very clear from the number of zeros in the transmission

matrices of GCIODs, presented in the previous sections, that

these schemes do not achieve capacity. This is because the

emphasis is on low decoding complexity rather than attain-

ing capacity. Nevertheless we intend to quantify the loss in

capacity due to the presence of zeros in GCIODs.

We first consider the N = 2,M = 1 CIOD. Equation (5),

for the CIOD code given in (40) with power normalization,

can be written as

V =
√
ρHs+N (130)

where

H =

[
h00 0
0 h10

]

and s = [s̃0 s̃1]
T , and where s̃0 = s0I + js1Q, s̃1 =

s1I + js0Q, s0, s1 ∈ A. If we define CD(N,M, ρ) as the

maximum mutual information of the GCIOD for N transmit

and M receive antennas at SNR, ρ, then

CD(2, 1, ρ) =
1

2
E(log det(I2 + ρHHH))

=
1

2
E log{(1 + ρ|h00|2)(1 + ρ|h10|2)}

=
1

2
E log{1 + ρ|h00|2}+

1

2
E log{1 + ρ|h10|2}

= C(1, 1, ρ) < C(2, 1, ρ). (131)

It is similarly seen for CIOD code for N = 4 given in (41)

that for

H =







h00 h10 0 0
−h∗

10 h∗
00 0 0

0 0 h20 h30

0 0 −h∗
30 h20






,

CD(4, 1, ρ) =
1

4
E
(

log det
[

I4 +
ρ

2
HHH

])

=
1

2
E log

{[

1 +
ρ

2

(
|h00|2 + |h10|2

)]

[

1 +
ρ

2

(
|h20|2 + |h30|2

)]}

=
1

2
E log{1 + ρ

2
(|h00|2 + |h10|2)}

+
1

2
E log{1 + ρ

2
(|h20|2 + |h30|2)}

= C(2, 1, ρ) < C(4, 1, ρ) (132)

and

CD(3, 1, ρ) =
1

2
{C(2, 1, ρ)+C(1, 1, ρ)} < C(3, 1, ρ). (133)

Therefore CIODs do not achieve full channel capacity even

for one receive antenna. The capacity loss is negligible for

one receiver as is seen from Figures 6, 7 and 8; this is

because the increase in capacity is small from two to four

transmitters in this case. The capacity loss is substantial when

the number of receivers is more than one, as these schemes

achieve capacity that could be attained with half the number

of transmit antennas. This is because half of the antennas are

not used during any given frame length.

Another important aspect is the comparison of MMI of

CODs for three and four transmit antennas with the capacity

of CIOD and GCIOD for similar antenna configuration-we

already know that for two transmit antennas and one receive

antenna, complex orthogonal designs, (Alamouti code) achieve

capacity; no code can beat the performance of Alamouti code.

It is shown in [37] that

CO(3,M, ρ) =
3

4
C(3M, 1,

4

3
Mρ) (134)

where CO(N,M, ρ) is the MMI of GLCOD for N transmit

and M receive antennas at a SNR of ρ. Similarly,

CO(4,M, ρ) =
3

4
C(4M, 1,

4

3
Mρ). (135)

Equation (135) is plotted for M = 1, 2 in Fig. 6 and (133) is

plotted in Fig. 7 along with the corresponding plots for CIOD

derived from (132) and (133). We see from these plots that the

capacity of CIOD is just less than the actual capacity when

there is only one receiver and is considerably greater than

the capacity of code rate 3/4 complex orthogonal designs for

four transmitters. When there are two receivers the capacity

of CIOD is less than the actual capacity but is considerably

greater than the capacity of code rate 3/4 complex orthogonal

designs four transmitters.

Next we present the comparison of GCOD and GCIOD for

N > 4. Consider the MMI of GLCOD of rate K/L. The

effective channel induced by the GLCOD is given by [37]

v =
Lρ

KN
‖H‖2x+ n (136)

where v is a 2K × 1 vector after linear processing of the

received matrix v, x is a 2K × 1 vector consisting of the

in-phase and quadrature components of the K indeterminates

x0, · · · , xK−1 and n is the noise vector with Gaussian iid

entries with zero mean and variance ‖H‖2/2. Since (136) is a

scaled AWGN channel with SNR = Lρ
KN ‖H‖2 and rate K/L,

the average MMI in bits per channel use of GLCOD can be

written as [37]

CO(N,M, ρ) =
K

L
E

(

log2

(

1 +
Lρ

KN
‖H‖2

))

(137)

observe that H is a N×M matrix. Since ‖H‖2 = ~HH ~H where
~H is the NM × 1 vector formed by stacking the columns of

H, we have

CO(N,M, ρ) =
K

L
C(MN, 1,

ML

K
ρ) (138)

=
K

L

1

Γ(MN)

∫ ∞

0

log

(

1 +
Lρλ

KN

)

λMN−1e−λdλ (139)
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where (139) follows from [2, eqn. (10)]. For GCIOD, rec-

ollect that it consists of two GLCODs, Θ1,Θ2 of rate

K/2L1,K/2L2 as defined in (79). Let C1,O, C2,O be the MMI

of Θ1,Θ2 respectively. Then the MMI of GCIOD is given by

CD(N,M, ρ) =
1

L
{L1C1,O + L2C2,O} (140)

=
1

L
{L1CO(N1,M, ρ)

+L2CO(N2,M, ρ)} (141)

=
K

2L

{

C

(

MN1, 1,
2L1Mρ

K

)

+C

(

MN2, 1,
2L2Mρ

K

)}

. (142)

The above result follows from the fact that the GCIOD is block

diagonal with each block being a GLCOD. When L1 = L2

i.e. Θ1 = Θ2 we have

CD(N,M, ρ) =
K

L
C

(
MN

2
, 1,

LMρ

K

)

(143)

as we have already seen for N = 2, 4.

Let △C = CD −CO . For square designs (N = L = 2ab, b
odd) we have

△C =
2a

N
C(M2a−1b, 1, 2a+1Mρ)

−a+ 1

N
C(M2ab, 1, 2aMρ). (144)

It is sufficient to consider b = 1. When N = 2, 2a
N = a+1

N =
1 and △C = C(M, 1,Mρ) − C(2M, 1,Mρ) < 0, as seen

from [2, Figure 3: and Table 2]. When N > 2, 2a > a + 1
and lima→∞

2a
a+1 = 2. Also C(M2a−1, 1,Mρ) is marginally

smaller than C(M2a, 1,Mρ) for M > 1, a > 1 as can be

seen from [2, Figure 3: and Table 2]. It therefore follows that

Theorem 39: The MMI of square CIOD is greater than

MMI of square GLCOD except when N = 2.

It can be shown that a similar result holds for GCIOD also,

by carrying out the analysis for each N . We are omitting N =
5, 6, 7. For N ≥ 8 we compare rate 2/3 GCIOD with the rate

1/2 GLCODs. The MMI of rate 1/2 GLCOD is given by

CO(N,M, ρ) =
1

2
C(MN, 1, 2Mρ). (145)

The MMI of rate 2/3 GCIOD is given by,

CD(N,M, ρ) =
1

3
{C(2M, 1,Mρ) + C(M(N − 2), 1, 2Mρ)} .

(146)

For reasonable values of N that is N ≥ 8,

C(MN, 1, 2Mρ) ≈ C(M(N − 2), 1, 2Mρ) and

C(2M, 1,Mρ) ≈ C(MN, 1,Mρ) ≈ C(MN, 1, 2Mρ)
and it follows that

CD(N,M, ρ) ≈ 2

3
C(MN, 1, 2Mρ). (147)

Note that in arriving this approximation we have used the

property of C(M,N,L) that for N = 1, as M increases the

increment in C is small and also that for a given M,N , C
saturates w.r.t. ρ.

Figure 9 shows the capacity plots for N = 8, observe that

the capacity of rate 2/3 GCIOD is considerably greater than

that of rate 1/2 GLCOD. At a capacity of 7 bits the gain is

around 10 dB for M = 8. Similar plots are obtained for all

N > 8 with increasing coding gains and have been omitted.

Finally, it is interesting to note that the MMI of QODs is same

as that of CIODs; however QODs are not SD.

VII. SINGLE-SYMBOL DECODABLE DESIGNS FOR

RAPID-FADING CHANNELS

In this section, we study STBCs for use in rapid-fading

channels by giving a matrix representation of the multi-antenna

rapid-fading channels. The emphasis is on finding STBCs

that are single-symbol decodable in both quasi-static and

rapid-fading channels, as performance of such STBCs will be

invariant to channel variations. Unfortunately, we show that

such a rate 1 design exists for only two transmit antennas.

We first characterize all linear STBCs that allow single-

symbol ML decoding when used in rapid-fading channels.

Then, among these we identify those with full diversity, i.e.,

those with diversity L when the STBC is of size L×N, (L ≥
N), where N is the number of transmit antennas and L is

the time interval. The maximum rate for such a full-diversity,

single-symbol decodable code is shown to be 2/L from which

it follows that rate 1 is possible only for 2 Tx. antennas. The

co-ordinate interleaved orthogonal design (CIOD) for 2 Tx

(introduced in section IV) is shown to be one such full-rate,

full-diversity and single-symbol decodable code. (It turns out

that Alamouti code is not single-symbol decodable for rapid-

fading channels.)

A. Extended Codeword Matrix and the Equivalent Matrix

Channel

The inability to write (2) in the matrix form as in (5)

for rapid-fading channels seems to be the reason for scarce

study of STBCs for use in rapid-fading channels. In this

section we solve this problem by introducing proper matrix

representations for the codeword matrix and the channel. In

what follows we assume that M = 1, for simplicity. For a

rapid-fading channel (2) can be written as

V = SH +W (148)

where V ∈ CL×1 (C denotes the complex field) is the received

signal vector, S ∈ C
L×NL is the Extended codeword matrix

(ExCM) (as opposed to codeword matrix S) given by

S =








S0 0 0 0
0 S1 0 0
...

. . .
. . .

. . .

0 0 0 SL−1








(149)

where St =
[
s0t s1t · · · s(N−1)t

]
, H ∈ CNL×1

denotes the equivalent channel matrix (EChM) formed by

stacking the channel vectors for different t i.e.

H =








H0

H1

...

HL−1








where Ht =







h0t

h1t

· · ·
h(N−1)t






,
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and W ∈ CL×1 has entries that are Gaussian distributed

with zero mean and unit variance and also are temporally and

spatially white. We denote the codeword matrices by boldface

letters and the ExCMs by normal letters. For example, the

ExCM S for the Alamouti code, S =

[

x0 x1

−x∗
1 x∗

0

]

, is given

by

S =

[
x0 x1 0 0
0 0 −x∗

1 x∗
0

]

. (150)

Observe that for a linear space-time code, its ExCM S is

also linear in the indeterminates xk, k = 0, · · · ,K−1 and can

be written as S =
∑K−1

k=0 xkIA2k +xkQA2k+1, where Ak are

referred to as extended weight matrices to differentiate from

weight matrices corresponding to the codeword matrix S.

1) Diversity and Coding gain criteria for rapid-fading

channels: With the notions of ExCM and EChM developed

above and the similarity between (5) and (148) we observe

that,

1) The distance criterion on the difference of two distinct

codeword matrices is equivalent to the rank criterion

for the difference of two distinct ExCM.

2) The product criterion on the difference of two distinct

codeword matrices is equivalent to the determinant

criterion for the difference of two distinct ExCM.

3) The trace criterion on the difference of two distinct

codeword matrices derived for quasi-static fading in

[63] applies to rapid-fading channels also-following the

observation that tr
(
SHS

)
= tr

(
SHS

)
.

4) The ML metric (3) can again be represented as (6) with

the code word S replaced by the ExCM, S i.e.

M(S) = tr
(
(V − SH)H(V − SH)

)
. (151)

This amenability to write the ML decoding metric in

matrix form for rapid-fading channels (151) allows the

results on single-symbol decodable designs of section

IV to be applied to rapid-fading channels.

B. Single-symbol decodable codes

Substitution of the codeword matrix S by the ExCM, S
in Theorem 11 leads to characterization of single-symbol

decodable STBCs for rapid-fading channels. We have,

Theorem 40: For a linear STBC in K complex vari-

ables, whose ExCM is given by, S =
∑K−1

k=0 xkIA2k +
xkQA2k+1, the ML metric, M(S) defined in (151) decom-

poses as M(S) =
∑

k Mk(xk) +MC where MC = −(K −
1)tr

(
V HV

)
, iff

AH
k Al +AH

l Ak = 0, 0 ≤ k 6= l ≤ 2K − 1. (152)

Theorem 40 characterizes all linear designs which admit

single-symbol decoding over rapid-fading channels in terms

of the extended weight matrices.
Example 7.1: The Alamouti code is not single-symbol de-

codable for rapid-fading channels. The extended weight ma-
trices are

A0 =

[
1 0 0 0

0 0 0 1

]

, A1 =

[
j 0 0 0

0 0 0 −j

]

,

A2 =

[
0 1 0 0

0 0 −1 0

]

, A3 =

[
0 j 0 0

0 0 j 0

]

.

It is easily checked that the pair A0, A2 does not satisfy

equation (152).

C. Full-diversity, Single-Symbol decodable codes

In this section we proceed to identify all full-diversity codes

among single-symbol decodable codes. Recall that for single-

symbol decodability in quasi-static fading the weight matrices

have to satisfy (32) while for rapid-fading the extended weight

matrices, have to satisfy (152).

In contrast to quasi-static fading (152) is not easily satisfied

for rapid-fading due to the structure of the equivalent weight

matrices imposed by the structure of S given in (149). The

weight matrices Ak are block diagonal of the form (149)

Ak =









A
(0)
k 0 0 0

0 A
(1)
k 0 0

...
. . .

. . .
. . .

0 0 0 A
(L−1)
k









. (153)

where A
(t)
k ∈ C1×N . In other words even for square

codeword matrix the equivalent transmission matrix is

rectangular. For example consider the Alamouti code,

A0 =

[

1 0 0 0

0 0 0 1

]

, A1 =

[

1 0 0 0

0 0 0 −1

]

etc., (152)

is not satisfied as a result we have

SHS =







|x0|2 x∗
0x1 0 0

x∗
1x0 |x1|2 0 0
0 0 |x1|2 −x1x

∗
0

0 0 −x∗
1x0 |x0|2






, (154)

and hence single-symbol decoding is not possible for the

Alamouti code over rapid-fading channels.

The structure of equivalent weight matrices that satisfy

(152) is given in Proposition 41.

Proposition 41: All the matrices Al that satisfy (152), with

a specified non-zero matrix Ak in (153) are of the form








a0A
(0)
k 0 0 0

0 a1A
(1)
k 0 0

...
. . .

. . .
. . .

0 0 0 aL−1A
(L−1)
k









. (155)

where ai = 0, j ∀i.
Proof: The the matrix Ak can satisfy the condition of

Theorem 40 iff A
(t)H
k A

(t)
l = −A

(t)H
l A

(t)
k , ∀t. For a given

t, A
(t)H
k A

(t)
l is skew-Hermitian and rank one, it follows that

A
(t)H
k A

(t)
l = UDUH where U is unitary and D is diagonal

with one imaginary entry only. Therefore A
(t)
k = ±jcA

(t)
l

where c is a real constant-in fact only the values c = 0, 1 are

of interest as other values can be normalized to 1, completing

the proof.

We give a necessary condition, derived from the rank

criterion for ExCM, in terms of the extended weight matrices

Ak for the code to achieve diversity r ≤ L. This necessary

condition results in ease of characterization.

Lemma 1: If a linear STBC in K variables, whose ExCM

is given by, S =
∑K−1

k=0 xkI A2k + xkQA2k+1, achieves
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diversity r then the matrices A2k, A2k+1 together have at least

r different non-zero rows for every k, 0 ≤ k ≤ K − 1.

Proof: This follows from the rank criterion of ExCM

interpretation of the distance criterion. If, for a given k,

A2k, A2k+1 together have at less than r different non-zero

rows then the difference of ExCMs, S− Ŝ which differ in xk

only, has rank less than r.

The conditions of Lemma 1 is only a necessary condition since

either (xkI − x̂kI) or (xkQ − x̂kI) may be zero for xk 6= x̂k.

The sufficient condition is obtained by a slight modification

of Theorem 16 and is given by

Corollary 42: A linear STBC, S =
∑K−1

k=0 xkIA2k+xkQA2k+1 where xk take values from a

signal set A, ∀k, satisfying the necessary condition of Lemma

1 achieves diversity r ≥ N iff

1) either AH
k Ak is of rank r (r different non-zero rows)

for all k
2) or the CPD of A 6= 0.

Using Lemma 1 with r = L, we have

Theorem 43: For rapid-fading channel, the maximum rates

possible for a full-diversity single-symbol decodable STBC

using N transmit antennas is 2/L.

Proof: We have two cases corresponding to the two cases

of Corollary 42 and we consider them separately.

Case 1: Ak has L non-zero rows ∀k. The number of matrices

that satisfy Proposition 41 are 2, and the maximal rate is

R = 1/L. The corresponding STBC is given by its equivalent

transmission matrix S = x0A0, where A0 is of the form given

in (153).

Case 2: Ak has less than L non-zero rows for some k. As

Lemma 1 requires A2k, A2k+1 to have L non-zero rows, we

can assume that A2k has r1 non-zero rows and A2k+1 has

non-overlapping L − r1 non-zero rows. The number of such

matrices that satisfy Proposition 41 are 4, and hence the

maximal rate is R = 2/L.

From Theorem 43 it follows that the maximal rate full-

diversity single-symbol decodable code is given by its ExCM

S = x0IA0 + x0QA1 + x1IA2 + x1QA3, (156)

where A2k, A2k+1, k = 0, 1 are of the form
[

A 0
0 0

]

,

[
jA 0
0 0

]

,

[
0 0
0 B

]

and

[
0 0
0 jB

]

(157)

where A,B are of the form given in (153) with L = r1 and

L = L − r1 respectively. Observe that other STBC’s can be

obtained from the above, by change of variables, multiplication

by unitary matrices etc. Of interest is the code for L = 2 due

to its full rate. Setting A = [1 0], B = [0 1] we have the

ExCM,

S =

[
x0I + jx1Q 0 0 0

0 0 0 x1I + jx0Q

]

(158)

and the corresponding codeword matrix is

S =

[
x0I + jx1Q 0

0 x1I + jx0Q

]

. (159)

Observe that S is the CIOD of size 2 presented in Section

IV. Also observe that other full rate STBC’s that achieve

full diversity can be achieved from S by performing linear

operations (not necessarily unitary) on S and/or permutation

of the real symbols(for each complex symbol there are two real

symbols). Consequently the most general full-diversity single-

symbol decodable code for N = 2 is given by the codeword

matrix

S =

[
x0I + jx1Q b(x0I + jx1Q)

c(x1I + jx0Q) x1I + jx0Q

]

, b, c ∈ C. (160)

An immediate consequence is

Theorem 44: A rate 1 full-diversity single-symbol decod-

able design for rapid-fading channel exists iff L = N = 2.

Following the results of Section IV,

Theorem 45: The CIOD of size 2 is the only STBC that

achieves full diversity over both quasi-static and rapid-fading

channels and provides single-symbol decoding.

Other STBC that achieves full diversity over both quasi-

static fading channels and provides single-symbol decoding

are unitarily equivalent to the CIOD for two antennas. Note

that the CIOD for two antennas dose not have any advantage

in rapid-fading channels over other SD codes in rapid-fading

channels.

Remark 46: Contrast the rates of single-symbol decodable

codes for quasi-static and rapid-fading channels. From The-

orem 43 we have the maximal rate is 2/L for rapid-fading

channels, while that of square matrix OD [11] is given by
⌈log2 N⌉+1

2⌈log2 N⌉ and that of square FRSDD is given by
⌈log2 N/2⌉+1

2⌈log2 N⌉−1

respectively. The maximal rate is independent of the number

of transmit antennas for rapid-fading channels.

VIII. DISCUSSIONS

In this paper we have conducted extensive research on

STBCs that allow single-symbol decoding in both quasi-static

and rapid-fading channels. We have characterized all single-

symbol decodable STBCs, both for quasi-static and rapid-

fading channels. Further, among the class of single-symbol

decodable designs, we have characterized a class that can

achieve full-diversity.

As a result of this characterization of SD codes for quasi-

static fading channels, we observe that when there is no

restriction on the signal set then STBCs from orthogonal

design (OD) are the only STBCs that are SD and achieve

full-diversity. But when there is a restriction on the signal set,

that the co-ordinate product distance is non-zero (CPD 6= 0),

then there exists a separate class of codes, which we call

Full-rank Single-symbol Decodable designs (RFSDD), that

allows single-symbol decoding and can achieve full-diversity.

This restriction on the signal set allows for increase in rate

(symbols/channel use), coding gain and maximum mutual

information over STBCs from ODs except for two transmit

antennas. Significantly, rate-one, STBCs from RFSDDs are

shown to exist for 2, 3, 4 transmit antennas while rate-one

STBCs ODs exist only for 2 transmit antennas. The maximal

rates of square RFSDDs were derived and a sub-class of

RFSDDs called generalized co-ordinate interleaved orthogonal

designs (GCIOD) were presented and their performance ana-

lyzed. Construction of fractional rate GCIODs has been dealt

with thoroughly resulting in construction of various high rate
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GCIODs. In particular a rate 6/7 GCIOD for N = 5, 6, rate

4/5 GCIOD for N = 7, 8 and rate >2/3 GCIOD for N ≥ 8
have been presented. The expansion of signal constellation due

to co-ordinate interleaving has been brought out. The coding

gain of GCIOD is linked to a new distance called generalized

co-ordinate product distance (GCPD) as a consequence the

coding gain of CIOD is linked to CPD. Both the GCPD and

the CPD for signal constellations derived from the square

lattice have been investigated. Simulation results are then

presented for N = 4 to substantiate the theoretical analysis

and finally the maximum mutual information for GCIOD has

been derived and compared with GLCOD. It is interesting

to note that except for N = 2, the GCIOD turns out to be

superior to GLCOD in terms of rate, coding gain and MMI.

A significant drawback of GCIOD schemes is that half of the

antennas are idle, as a result these schemes have higher peak-

to-average ratio (PAR) compared to the ones using Orthogonal

Designs. This problem can be solved by pre-multiplying with

a Hadamard matrix as is done for DAST codes in [34]. This

pre-multiplication by a Hadamard matrix will not change

the decoding complexity while more evenly distributing the

transmitted power across space and time.

An important contribution of this paper is the novel appli-

cation of designs to rapid-fading channels, as a result of which

we find that the CIOD for two transmit antennas is the only

design that allows single-symbol decoding over both rapid-

fading and quasi-static channel. It turns out that the single-

symbol decodability criterion is very restrictive in rapid-fading

channels and results in constant rate.

Though we have rigorously pursued single-symbol decod-

able STBCs and, in particular, square single-symbol decodable

STBCs, much is left to be desired in non-square STBCs.

Although non-square STBCs are shown to be useless for rapid-

fading channels, Su, Xia and Xue-bin-Liang [19], [17] have

shown for STBCs from ODs in quasi-static channels, that

higher rates can be obtained from non-square designs. Here

we list some open problems that were not addressed, or partly

addressed in this paper.

• Construction of maximal-rate non-square UFSDDs, RFS-

DDs. However, the construction of maximal rate non-

square GLCODs (not GCODs) is itself and open problem

and any contribution in this direction will greatly enhance

our understanding of non-square FSDDs.

• Proof (or contradiction) of existence of non-square FS-

DDs, S, such that SHS is not unitarily-diagonalizable by

a constant matrix. In Subsection V, we have shown that

such square designs do not exist. It would be interesting

to see if we can obtain even an example of such a design.

If such a design does not exist then class of UFSDDs

reduces to GLCODs. In this case the classification of

UFSDD is complete. Consequently,

• classification of non-square RFSDD, UFSDD is an open

problem. In-fact complete classification of RFSDDs ap-

pears to be even more difficult. Interestingly, [54] shows

that there exist RFSDDs, that do not belong to the class

of GCIODs.

• Even the smaller problem of maximal rates (and design)

for non-square GCIOD is an open problem.

• the CPD of non-square lattice constellations and the

GCPD for both square and non-square lattice constel-

lations needs to be quantified. It is worth mentioning

that the authors presented a class of non-square RFSDDs

called ACIODs in [54] whose coding gain depends on

CPD and not on GCPD as is the case for GCIODs.

• Finally, characterization of non-linear STBCs with SD

property is another open problem. One results in this

direction is [64].

Similar characterization of double-symbol decodable designs

will be reported in a future paper.

While the final version of the manuscript was under prepa-

ration the authors became aware of the work [57] that claim

to unify the results of [48], [54] which is incorrect. The class

of codes of [57] do not intersect with the class of codes of

[48] and [54] for the weight matrices of the codes of [57] are

unitary matrices whereas that of the codes of [48] and [54]

are not. Furthermore, the STBCs presented in [57], [58] and

[59] are SD STBCs that do not satisfy (31) and such full-rank

SD STBCs are not considered in this paper.
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TABLE I

THE ENCODING AND TRANSMISSION SEQUENCE FOR N =2, RATE 1/2 CIOD

antenna 0 antenna 1

time t x0I 0
time t+ T 0 x0Q

TABLE II

THE ENCODING AND TRANSMISSION SEQUENCE FOR N =2, RATE 1 CIOD

antenna 0 antenna 1

time t x0I + jx1Q 0

time t+ T 0 x1I + jx0Q

TABLE III

COMPARISON OF RATES OF KNOWN GLCODS AND GCIODS FOR ALL N

Tx. Antennas GLCODs GCIOD (rate-efficient) CIOD (delay-efficient)

N=2 1 1 1

N=3,4 3/4 1 1

N=5 2/3 6/7 3/4

N=6 2/3 6/7 3/4

N=7 5/8 4/5 3/4

N=8 5/8 4/5 3/4

N=2m-3, odd (m)/2(m-1) 2(m+1)/(3m+1) 7/11

N=2m-2, even (m)/2(m-1) 2(m+1)/(3m+1) 7/11

TABLE IV

COMPARISON OF DELAYS OF KNOWN GLCODS AND GCIODS N ≤ 8

Tx. Antennas GLCODs GCIOD (rate-efficient) GCIOD (delay-efficient)

N=2 2 2 2

N=3,4 4 4 4

N=5 15 14 8

N=6 30 14 8

N=7 56 35 8

N=8 112 50 8

TABLE V

THE OPTIMAL ANGLE OF ROTATION FOR QPSK AND NORMALIZED GCPDN1,N2
FOR VARIOUS VALUES OF N = N1 +N2 .

N N1 N2 x0 θopt GCPDN1,N2
/4d2

3 2 1 0.555 29◦ 0.3487

5
4
3

1
2

0.5246
0.5751

27.76◦

29.9◦
0.28

0.3869

6
4
3

2
3

0.555
0.61

29.9◦

31.7175◦
0.3487
0.4472

7
5
4

2
3

0.543
0.5856

28.51◦

30.35◦
0.3229
0.40

9
7
5

2
4

0.53
0.591

27.94◦

30.622◦
0.29

0.4135

10
8
5

2
5

0.526
0.61

27.76◦

31.7175◦
0.3487
0.4472

12
10
6

2
6

0.52
0.61

27.5◦

31.7175◦
0.265
0.4472

N N − 2 2 > 0.5 > 26.5656◦ > 0.2
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TABLE VI

THE CODING GAINS OF CIOD, STBC-CR, RATE 3/4 COD AND RATE 1/2 COD FOR 4 TX. ANTENNAS AND QAM CONSTELLATIONS

R (bits/sec/Hz) ΛCIOD ΛSTBC−CR Λrate 3/4 COD Λrate 1/2 COD

2 0.4478 0.5 0.333 0.2

3 0.1491 0.165 0.1333 0.0476

4 0.0897 0.1 - 0.0118
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