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Single-shooting homotopy method for parameter identification in dynamical systems
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An algorithm for identifying parameters in dynamical systems is developed in this work using homotopy

transformations and the single-shooting method. The equations governing the dynamics of the mathematical

model are augmented with observer-like homotopy terms that smooth the objective function. As a result, premature

convergence to a local minimum is avoided and the obtained parameter estimates are globally optimal. Numerical

examples are presented to demonstrate the application of the proposed approach to chaotic systems.
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I. INTRODUCTION

The identification of parameters in dynamical systems is a

challenging problem [1,2]. In this work, we focus specifically

on problems where the functional form of the system of differ-

ential equations is known, as studied in [3–7]. In the context

of deterministic global optimization [8], the present work

focuses on the development of a new theory using homotopy

optimization to obtain globally optimal parameters in systems

governed by nonlinear ordinary differential equations (ODEs).

While the theory and results presented herein are applicable

to any dynamical system governed by ODEs, we demonstrate

the application of our theory to chaotic systems. Since chaotic

systems are highly sensitive to both initial conditions and

system parameters [9], they represent challenging test cases

for any parameter identification algorithm.

One of two fundamental strategies is commonly employed

in parameter identification: synchronization or optimization.

The former involves coupling to the mathematical model an

auxiliary system that governs the dynamics of the parameters

[5–7,10]. Convergence of the parameters to the actual values

is achieved once the mathematical model has synchronized

with the experimental data. The theory of Lyapunov stability

can be used to study the convergence characteristics of such

a system [11]. The conditions under which synchronization

will occur in nonlinear systems can be found in the work of

Letellier and Aguirre [12].

The parameter identification problem is even more chal-

lenging if the system is unobservable—that is, if only partial

state measurements are obtained experimentally and are insuf-

ficient in number or richness to recover the remaining system

states. In such cases, an optimization approach [13,14] is

required, of which there are two varieties: single-shooting and

multiple-shooting, the latter of which can be implemented with

[3,4] or without [14] penalty terms. Provided the conditions of

parameter identifiability [15] are met, it is possible to recover

the system parameters using only partial state measurements;

however, it might not be possible to recover the unknown initial

conditions of unmeasured states. Single-shooting algorithms

involve repeatedly simulating a mathematical model of the

physical system for the same duration as the experiment,

comparing the simulated response to the measured response

and updating the parameter estimates after each simulation.

In multiple-shooting algorithms, the experimental data are

divided into several shorter fragments, each of which is

used in a separate single-shooting procedure. Constraints

ensure that the final states of each fragment are sufficiently

close to the initial states of the fragment that follows. By

performing shorter simulations, multiple-shooting algorithms

are less likely to diverge when identifying parameters in

chaotic systems.

In the optimization step, the objective function being

minimized is typically defined as the Euclidean distance

between the experimental data and the simulated response.

Since the objective function generally contains many local

minima, local search methods (e.g., Gauss–Newton, gradient

descent, Levenberg–Marquardt, Nelder–Mead) must be used

with caution, since they are likely to converge to these local

minima. Recently, stochastic optimization techniques [16,17]

have been used for their ability to find a global minimum in

the presence of local minima; however, stochastic optimization

generally requires a large number of iterations and is, therefore,

time-consuming.

In this paper, the idea of homotopy optimization [18–20]

is applied to dynamical systems and, in particular, those that

are chaotic in nature. By augmenting the system equations

with observer-like terms, the homotopy optimization technique

avoids diverging when simulating chaotic systems, but does

so using single-shooting rather than the more complicated

multiple-shooting approach. Furthermore, homotopy opti-

mization avoids converging to a local minimum without re-

sorting to stochastic techniques. As will be demonstrated, this

approach is suitable for identifying parameters in dynamical

and chaotic systems. This paper extends the previous homo-

topy work of the authors [21,22], and also demonstrates that

the objective function becomes quadratic with the introduction

of the homotopy transformation.

II. MATHEMATICAL MODELING

Suppose the parameters p that minimize a given func-

tion F(p) are being sought. In the homotopy optimization

approach, a new function is defined as follows:

H(p,λ) = (1 − λ)F(p) + λG(p), (1)

where G(p) is a convex function whose global minimum is

known. The arguments that minimize H(p,λ) at a given value

of λ shall be referred to herein as λp∗. The optimization

procedure begins with λ = 1, where the global minimum of

H(1p∗,1) = G(1p∗) is known by design. The value of λ is then

decreased by a small amount δλ, and the functionH(p,1 − δλ)
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is minimized using 1p∗ as the initial guess. Once the optimal

parameters 1−δλp∗ have been obtained, λ is further decreased

to 1 − 2δλ and the minimization is repeated, again using as

an initial guess the optimal parameter vector corresponding to

the previous value of λ. This process is repeated until λ = 0

and the original optimization problem is recovered—that is,

H(p,0) = F(p). An important condition for convergence is

the continuity of λp∗ between the global minimum of G(p)

and that of F(p).

The differential equations governing the dynamics of an

experimental system are assumed to be of the following general

form:

q̇e = f(qe,pe,t), (2)

where qe(t) = [q1e(t),q2e(t), . . . ,qne(t)]T contains the time

series of the n independent states, and pe are the parameters

corresponding to the experimental system. It will be assumed

that the experimental measurements ye(t) = qe(t) + η(t) are

corrupted by zero-mean noise η(t) = [η1(t),η2(t), . . . ,ηn(t)]T

and are available over the time interval t = [0,tf ]. The

corresponding mathematical model that will be used for

identification purposes is of the following general form:

q̇ = f(q,p,t), (3)

where q(t) = [q1(t),q2(t), . . . ,qn(t)]T are the corresponding

states and p = [p1,p2, . . . ,pℓ]T are the parameters to be

identified. The goal is to determine the parameter vector p
that minimizes the error between the predicted response q(t)

and the experimental measurements ye(t):

J (p) =
1

2

∫ tf

0

[e(p,t) + η(t)]T[e(p,t) + η(t)]dt, (4)

where J (p) is the objective function to be minimized, and

e(p,t) = [e1(p,t),e2(p,t), . . . ,en(p,t)]T is the error vector,

whose kth entry is defined as ek(t) = qke(t) − qk(p,t). Un-

measured states have zero error; if experimental data are

available for only one state, the error vector is simply e(t) =

[e1(p,t),0, . . . ,0]T. In general, J (p) will contain many local

minima; the mathematical model (3) that is most representative

of the experimental system (2) is obtained when the parameters

p correspond to the global minimum of the above objective

function (4).

To find the global minimum of J (p), a homotopy transfor-

mation is introduced into the objective function:

J (p,λ) =
1

2

∫ tf

0

[e(p,λ,t) + η(t)]T[e(p,λ,t) + η(t)]dt, (5)

which can be expanded as follows:

J (p,λ) =
1

2

∫ tf

0

[e(p,λ,t)Te(p,λ,t)]dt

+

∫ tf

0

[e(p,λ,t)Tη(t)]dt +
1

2

∫ tf

0

[η(t)Tη(t)]dt. (6)

Since the shape of J (p,0) is unknown, the homotopy trans-

formation is introduced into the mathematical model (3), not

directly into the objective function:

q̇ = f(q,p,t) + λŴe(t) + λŴη(t). (7)

The last two terms in (7) are related to the use of observers in

dynamical systems [11], with gain matrix Ŵ.

To study the influence of the homotopy terms on the

objective function, (7) is subtracted from (2), whereupon the

following equation governing the dynamics of the error is

obtained:

ė(t) + λŴe(t) = f(qe,pe,t) − f(q,p,t) − λŴη(t). (8)

Equation (8) is similar to that governing the dynamics of

a damped first-order system, and has a static equilibrium

at e(t) = 0 when p = pe. Assuming the initial conditions

q(0) = qe(0) are used for the mathematical model, the initial

conditions of the error system are e(0) = 0. By choosing an

appropriate gain matrix Ŵ, the effect of the forcing terms in

(8) can be reduced. In other words, by increasing the stiffness

(Ŵ) of the first-order system (8), it is forced to oscillate very

close to its equilibrium. Since the amplitude of the noise term

λŴη(t) in (8) increases as the entries in gain matrix Ŵ increase,

Ŵ should be selected such that the synchronization error (4) is

as small as possible when using the initial parameter guesses

in the mathematical model. For a given noise signal η(t), there

is an optimal Ŵ at which the best possible synchronization

occurs; in the absence of noise, the synchronization improves

as Ŵ (the stiffness) is increased.

The properties of the error system (8) can be further

examined by expanding q around qe and p around pe:

ė(t) +

[

λŴ −
∂f

∂qe

]

e(t) ≈
∂f

∂pe

δp − λŴη(t), (9)

where δp = pe − p and the higher-order terms have been

neglected. Note that, for a given value of λ, the error signal

e(t) will be stable provided the eigenvalues of the matrix

− [λŴ − ∂f/∂qe] are negative. With a suitable choice of Ŵ,

the solution of the singularly perturbed system (9) will exhibit

a boundary layer effect [23], where the deviation of the

mathematical model from the experimental data vanishes on a

fast time scale, and the solution on a slow time scale (ė(t) = 0)
behaves as follows:

e(t) =

[

λŴ −
∂f

∂qe

]−1
∂f

∂pe

δp

− λ

[

λŴ −
∂f

∂qe

]−1

Ŵη(t) � Aδp − b. (10)

Left-multiplying both sides of (10) by e(t)T and integrating

over the time interval t = [0,tf ], we obtain the following:

∫ tf

0

[e(t)Te(t)]dt = δpT

[∫ tf

0

ATA dt

]

δp +

∫ tf

0

[bTb]dt

− 2δpT

∫ tf

0

[ATb]dt. (11)

Both sides of (10) are now left-multiplied by η(t)T and

integrated over the time interval t = [0,tf ]:

∫ tf

0

[η(t)Te(t)]dt = δpT

∫ tf

0

c dt −

∫ tf

0

g dt, (12)
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where c = ATη(t) and g = η(t)Tb. Substituting (11) and (12)

into (6), we obtain the following:

J (p,λ) =
1

2
δpT

[∫ tf

0

ATA dt

]

δp

+ δpT

[∫ tf

0

(c − ATb)dt

]

+ C, (13)

where C =
1
2

∫ tf
0

[bTb]dt −
∫ tf

0
g dt +

1
2

∫ tf
0

[η(t)Tη(t)]dt ,

which is not a function of δp.

From (13), it can be concluded that the objective function is

quadratic in the parameter error δp provided that gain matrix

Ŵ is selected so as to ensure the synchronization [12] of the

mathematical model to the experimental data [i.e., (10) holds].

The value of p∗ at which the objective function J (p,λ) attains

a minimum can be expressed as follows:

p∗
= pe +

[∫ tf

0

ATA dt

]−1 ∫ tf

0

(c − ATb)dt. (14)

In the absence of noise [i.e., if η(t) = 0], the homotopy

terms do not shift the location of the global minimum (i.e.,

p∗
= pe); in the presence of noise, the optimal parameters

are shifted by the amount shown in (14). Two numerical

examples are presented below to illustrate the application of the

single-shooting homotopy method for parameter identification

in dynamical systems.

III. NUMERICAL EXAMPLES

The Lorenz oscillator is first considered to illustrate the

effect of homotopy terms on the shape of the objective

function. In its original form, the Lorenz system is defined

as follows:

q̇1e = −p1eq1e + p1eq2e, (15a)

q̇2e = p2eq1e − q2e − q1eq3e, (15b)

q̇3e = q1eq2e − p3eq3e. (15c)

This system is chaotic when the parameters p1e = 10, p2e =

28, and p3e = 8/3 are used. The initial conditions for

the experimental system are q1e(0) = 1.2, q2e(0) = 2.1, and

q3e(0) = 1.7. The following mathematical model is now used

to identify parameters p1, p2, and p3:

q̇1 = −p1q1 + p1q2 + λγ1(q1e + η1 − q1), (16a)

q̇2 = p2q1 − q2 − q1q3 + λγ1(q1e + η1 − q1), (16b)

q̇3 = q1q2 − p3q3 + λγ1(q1e + η1 − q1), (16c)

where (16) has been augmented with homotopy transformation

terms corresponding to a gain matrix Ŵ consisting of three

identical rows of [20,0,0]. Note that the original system (15) is

recovered upon substitution of λ = 0 into the augmented sys-

tem (16). As suggested by (16), it is assumed that only y1e(t) =

q1e(t) + η1(t) is measured, where η1(t) ∼ N (0,0.25).1 A 10-s

time series of the experimental system (15) is generated, which

1The noise is Gaussian with zero mean and a variance of 0.25.
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FIG. 1. (Color online) Evolution of parameter estimates for the

Lorenz system, normalized relative to experimental values.

is used to evaluate the following objective function during the

minimization process:2

J =

k
∑

i=1

{∫ tf

0

(qie(t) + ηi(t) − qi(
λp1,

λp2,
λp3,t))

2dt

}

,

(17)

where k = 1 and tf = 10. The following noise-corrupted

initial conditions are used for the mathematical model (16):

q1(0) = 1.5570, q2(0) = 2.2533, and q3(0) = 2.1952; the

initial parameter guesses at λ = 1 are chosen as 1p0
1 = 20,

1p0
2 = 38, and 1p0

3 = 12.67. The evolution of the parameter

estimates during the optimization process is shown in Fig. 1

for decreasing values of λ.3 The final identified parameters

2In both examples, the optimization is performed using the

fminsearch function in MATLAB, which is based on the Nelder–Mead

simplex method [24]. The differential equations are solved using

the ode45 variable-time-step integrator with absolute and relative

error tolerances of 10−6. Since measurement data are collected every

10 ms, the integral in the objective function is replaced with discrete

summation. The noisy experimental data are linearly interpolated

during the numerical integration to accommodate the use of a

variable-time-step integrator.
3λ is decreased in increments of 0.25. At each value of λ, 25

iterations of fminsearch are performed, each of which corresponds to

at least one simulation of (16) (function call).
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FIG. 2. (Color online) Experimental measurement (q1e + η1) and

predicted response using identified parameters (q1) for the Lorenz

system.
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FIG. 3. (Color online) Evolution of parameter estimates for the

Rössler system, normalized relative to experimental values.

are 0p∗

1 = 10.7311, 0p∗

2 = 28.3848, and 0p∗

3 = 2.6030, which

result in excellent agreement between the experimental system

and the mathematical model, as shown in Fig. 2. Note that,

despite using noisy initial conditions for the mathematical

model, the predicted response lies within the envelope of

the noisy experimental measurement. The slight deviation of
the identified parameters from the experimental parameters
compensates for the small error in the initial conditions. The

exact parameters are identified when the value of λ is nearly

(but not exactly) zero. The homotopy term with a small value of

λ must be retained if the experimental data are collected over a

long time interval. If the homotopy term is absent (λ = 0), the

model response will eventually deviate from the experimental

data due to the nature of chaotic systems. The smallest value

of λ that must be retained is problem-specific, and will depend

on the amplitude and nature of the noise in the experimental

data. Some guidelines for selecting the smallest suitable value

of λ are suggested in the work of Abarbanel et al. [3].

The Rössler system is now considered:

q̇1e = −q2e − q3e, (18a)

q̇2e = q1e + p1eq2e, (18b)

q̇3e = p2e + q1eq3e − p3eq3e. (18c)

The parameters used for generating the experimental data

are p1e = p2e = 0.2 and p3e = 5.7; the initial conditions

are q1e(0) = q2e(0) = q3e(0) = 3. It shall be assumed that

y1e = q1e + η1, y2e = q2e + η2, and y3e = q3e + η3 are mea-

sured over the time interval t = [0,25]. The following

mathematical model is used to identify parameters p1, p2,

and p3:

q̇1 = −q2 − q3 + λγ1(q1e + η1 − q1), (19a)

q̇2 = q1 + p1q2 + λγ2(q2e + η2 − q2), (19b)

q̇3 = p2 + q1q3 − p3q3 + λγ3(q3e + η3 − q3), (19c)
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FIG. 4. (Color online) Experimental measurements (qie + ηi) and

predicted responses using identified parameters (qi) for the Rössler

system.

where γ1 = γ2 = γ3 = 10 and the noisy initial conditions

q1(0) = 2.9881, q2(0) = 2.6808, and q3(0) = 3.2613 are used.

An objective function of the same form as (17) is minimized,

where k = 3, tf = 25, and ηi(t) ∼ N (0,0.25) in this case. The

evolution of the parameter estimates during the optimization

process is shown in Fig. 3 for decreasing values of λ. Note that

the parameters converge at different values of λ as new valleys

are formed in the parameter space of the objective function,

which illustrates the utility of the homotopy approach. The

final identified parameters are 0p∗

1 = 0.2099, 0p∗

2 = 0.2164,

and 0p∗

3 = 5.5838, which again result in excellent agreement

between the experimental system and the mathematical model,

as shown in Fig. 4.

IV. CONCLUSIONS

In this paper, we have presented a method for identifying pa-

rameters in mathematical models where the explicit functional

form of the equations is known exactly. We have explicitly

demonstrated that the objective function becomes quadratic

upon the addition of the homotopy terms in the mathematical

model. Since homotopy optimization can be used with single-

shooting algorithms, the more complicated multiple-shooting

techniques can be avoided. The above analysis and numerical

examples involving chaotic systems suggest that the proposed

method is an effective strategy for identifying parameters in

dynamical systems.
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