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Understanding macroscopic behaviors of suspensions of active particles is a challenging issue
in the study of living fluids. We investigate the response of shape-change driven microswimmers
to an external flow. In particular we estimate the viscosity of the dilute suspension of active
microswimmers for the flow timescale close to that of the swimmer activity. We find that the shape
activity leads either to an increase or decrease of the effective viscosity, depending on the shear rate.
These opposite behaviors occurring for the same microswimmer originate from a phase-locking
phenomenon between the swimmer shape oscillations and the applied flow. A simplified analytical
model remarkably reproduces the results of full simulations, and offers a promising framework for
the derivation of macroscopic constitutive laws for active matter.
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I. INTRODUCTION

Because of the wide variety of the environments and ecosystems where micro-organisms live, their evolution has
resulted in various ways of moving (gliding, twitching, swimming) towards their favorite chemical or food sources
[1, 2]. Examples of propulsion machinery include the cyclic beating of two flagella in a breast-stroke manner by C.

reinhardtii [2], rotation of helical flagellar bundle by E. coli [1] or the repeated body-deformation of the Eutreptiella

gymnastica [3]. Similarly, cells of the immune system develop ample shape changes to fight pathogens in complex
environments, such as the extracellular matrix within tissues. There is now increasing evidence that cells of the
immune system, among others, are able to swim in a fluid [4, 5]. The micron size of cells and their low velocity
ensure that inertia is negligible. Despite the diversity of micro-organisms, they all share a common feature, namely
the repetitive and non-reciprocal temporal variation of forces on the fluid.

A popular swimmer model is the constant force-dipole which often discards the details of the active force generation
machinery and retains the average behavior over one cycle of time-dependent active forces [6, 7]. This swimmer can be
categorized into two types- “puller” (eg. Chlamydomonas reinhardtii [7, 8]) and “pusher” (eg. E. coli [9]) depending
on the sign of the dipole. A suspension of microswimmers displays unusual macroscopic rheology [8, 10–14]: a
pushers’ (pullers’) suspension exhibits a lower (higher) effective viscosity than their respective passive counterparts.
Furthermore, experimental studies have also shown a rich rheological behavior rarely recovered in theoretical models.
For instance, a shear-thinning [8] (shear-thickening [13, 14]) nature of the pullers’ (pushers’) suspensions has been
reported. So far, the main key ingredient of the models explaining the rheology of microswimmers (increase and
decrease of viscosity due to activity), is rotational diffusion [15]. However, in general, microswimmers exhibit shape
deformations (flagella motion, body shape changes, etc.) and their impact needs to be explored. It has been shown
recently that the cyclic motion of flagella makes the cell follow very specific Jefferey’s orbits that can affect rheology
[16].

In order to decipher the rheological behavior of swimmer suspensions, it seems relevant to consider the coupling
between the flow and the time-dependent active forces. More generally, in most cases, shape changes of microswimmers
are intrinsically related to propulsion mechanisms (flagellar beating or shape deformations). We show that shape
change activity not only contributes to the viscosity of the suspension without evoking noise, but also uncovers new
subtle effects. In particular, the active contribution to the viscosity is found to switch between positive and negative
values depending on the magnitude of the applied shear flow for a given type (puller or pusher) of microswimmer.
This results from a nonlinear coupling between the swimmer and the applied flow.

A widely adopted model for swimmers consists of a thin rod-like rigid shape with a given stresslet (force dipole),
which is aligned with the rod and is either inward (puller) or outward (pusher). A deterministic rod under linear
shear flow is known to exhibit tumbling (Jeffery orbit) and spends the same time in the upper and lower halves of the
shear plane. As a consequence, no resulting active contribution to the viscosity is expected on average. Noise breaks
this symmetry (the rod, then, spends more time in the upper half plane), giving rise to a net contribution of the
active stress to the rheology [6, 12]. Hence, in all available models, noise (due, for instance, to rotational diffusivity or
tumbling of the microswimmers) is a crucial ingredient to recover a net effect of average active stresses on viscosity.
Real swimmers undergo repeated shape changes, that lead to a non-trivial contribution to the active stress. Here
we will address the effect of shape activity on the rheology of microswimmer suspensions in two cases: amoeboid
swimmer and bead-spring microswimmer.

II. RHEOLOGY OF MICROSWIMMER SUSPENSIONS

A. Amoeboid microswimmer

We begin our study by considering an amoeboid microswimmer in 2d-space (Fig. 1) characterized by a fluid-filled
impermeable membrane of perimeter P0 and enclosed area A0 immersed in another fluid [17, 18]. The swimmer has
reduced area Γ = 4πA0/P

2
0 (measuring deviation from a circle for which Γ = 1) which allows the microswimmer

deformation. η and λη denote the respective viscosities of external and internal fluids. We consider the flow, in and
outside of the swimmer to be in Stokes regime, following

∇ · u = 0, ηi∇2u (r, t) = ∇P (r, t) (1)

where u and P are the fluid velocity and pressure, respectively, and ηi = η or λη depending on the location of r.
The shape of the swimmer at time t is described by a closed curve X(s, t) in x-y plane, where s is the curvilinear
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FIG. 1. Schematics of bead-spring and amoeboid microswimmers in shear flow.

coordinate along the membrane. We represent the membrane position X by a Fourier series

X(s) =

kmax
∑

k=−kmax

Xk exp (2πiks) (2)

where the complex amplitudes Xk are the shape parameters of the membrane. Given the inextensibility of the
membrane the application of active force results in generation of tension ξ(s, t) which gives rise to a tangential force
ξ(s, t)t(s, t). The resultant passive force density on the swimmer surface is, therefore, given by

f(s, t) = −ξ(s, t)c(s, t)n(s, t) +
dξ(s, t)

ds
t(s, t) (3)

where n and t are the normal and tangential unit vectors in the membrane surface, respectively. In addition to the
passive membrane forces, there is also an active force normal to the membrane which is also written in terms of
Fourier harmonics as

Fa (s, t) =

n=nmax
∑

n=−nmax,n 6=−1,0,1

fn(t)e
ins. (4)

In the above, due to the fluid incompressibility the term corresponding to n = 0, which corresponds to a constant
pressure jump across the membrane, plays no role. For simplicity we set f±1(t) = 0 (we have kept the model as simple
as possible by considering only the second and third harmonics). We require at least two harmonics to induce shape
deformations which are not invariant under time-reversal a necessary condition for autonomous swimming (Scallop
theorem [19]). We set f2 = −fa cos(ωat)/2 and f3 = fa sin(ωat)/2, where ωa is the stroke frequency and fa is the
active force amplitude. By considering only the real part of the Fourier harmonics expansion, we get the following
active force

Fa (s, t) = −fa cos(ωat) cos (2s) + fa sin(ωat) cos (3s) (5)

Including higher harmonics is not decisive for the swimming phenomenon [20]. Therefore, the total force density on
the swimmer surface is given by

F (s, t) = Fa (s, t)n+ f (s, t) + fo(t) + ft(t)t(s, t) (6)

where fo(t) and ft(t)t(s, t) allows to fulfill the force-free and torque-free conditions on the swimmer surface.
We define the non-dimensional active force amplitude f = fa/ (ηωa) as the ratio between the time scales of the

swimming strokes and fluid flow. This, together with hydrodynamic interactions, results in autonomous propulsion
along a straight line [17, 20, 21]. We make use of Green’s function techniques to write the membrane velocity as
an integral equation expressing non-local hydrodynamics effects [22]. Details of the boundary integral method based
numerical technique are given in the Appendix-A.



4

FIG. 2. (A) Intrinsic viscosities of passive vesicles (f = 0) and amoeboid microswimmers (f > 0) for Γ = 0.75. γ̇c marks
the shear rate at which ∆η = 0. Inset shows [η] for different Γ with f = 40. (B) For small f , the normalization of the shear
rate difference γ̇/γ̇c − 1 and the active contribution to viscosity ∆η/ [η]

p
by f results in a reasonable collapse of the curves,

especially in the central region; λ = 20.

The system is subjected to a linear shear flow of strength γ̇ (Fig. 1) and the effective viscosity ηeff = 〈σxy〉/γ̇ is
measured as the ratio of average shear stress (active+passive) and applied shear rate. For a suspension with swimmer
volume fraction φ, the intrinsic viscosity of the suspension [η] = (ηeff − η) /φη is obtained by the Batchelor’s formula
[23] as

[η] =
1

A0γ̇η
〈−
∫

Fxyds+ η(λ− 1)

∫

(uxny + uynx)ds〉 (7)

where x and y subscripts denote the x and y-components respectively, and u is the membrane velocity. Here the integral
is performed over the membrane and 〈·〉 refers to time average (to be specified later). We define the contribution
of activity to viscosity as ∆η = [η] − [η]p where [η]p is the intrinsic viscosity of the passive suspension, obtained by
setting the active force to zero.

The dependence of intrinsic viscosity on the applied shear rates is summarized in Fig. 2. We observe that the
contribution of activity switches from positive to negative at some critical shear rate γ̇c. Three successive regimes of
[η] are observed. For low values of shear rates (γ̇ < γ̇−), d [η] /dγ̇ > 0 followed by d [η] /dγ̇ < 0 for intermediate values
of shear rates. Finally for high shear rates (γ̇ > γ̇+), [η] again starts to increase with γ̇. The transitions occur at shear
rates γ̇∓ which depend on the active force amplitude. A remarkable observation is that the normalized transition
shear rates (γ̇∓/γ̇c − 1) /f do not depend on the active force amplitudes f (Fig. 2B) (see Sec.- III A for the motivation
for this scaling.)

In 2D a dilute passive suspension of disks provides [η]p = 2 (equal to 5/2 in 3D)[24, 25]. For vesicles, it is about 1.8
for Γ = 0.75 (Fig. 2A, black). In the presence of activity, the intrinsic viscosity attains values close to 3 (see Fig. 2A,
green), showing the importance of activity (in the same proportion as found experimentally in 3D for Chlamydomonas

[8]). From data shown in Fig. 2A (inset) obtained for two different deflation parameters Γ we expect this value to
be significantly larger than 3 for more deflated shapes such as that of Eutreptiella gymnastica. An estimate of active
forces generated by the cells shows that the dimensionless force f ≫ 1 (assuming η ≈ 1cP and ωa ≈ 1s−1)[26]. Owing
to the membrane incompressibility [η] saturates beyond a value of f of few tens for Γ = 0.75 (Fig. 2B). In order to
gain insights into this rheological behavior, we estimated the effective viscosity of the dilute suspension of a much
simpler system of active swimmer composed of beads and springs.
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B. Bead-spring microswimmer

We consider bead-spring microswimmer where three identical beads (radius a each) are connected by linear springs
(length l ≫ a, stiffness k = force/strain) in a triangular manner (Fig. 1) [27]. This is a variant of the model of
flagellar swimming of C. reinhardtii proposed in [28, 29]. In the Stokes regime, that is Re = 0, we can write the
equations of motion for each bead as

dri
dt

= µfi (r, t) +
∑

j 6=i

Gij · fj (r, t) + u∞ (8)

where µ = (6πηa)
−1

is the bead mobility, u∞ is the externally imposed flow and Gij is the Oseen tensor

Gij(rij) =
1

8πη

(

I

rij
+

rij ⊗ rij

r3ij

)

(9)

describing the hydrodynamic interaction between the ith and jth beads, and fi is the total force acting on ith bead.
By virtue of the hydrodynamic interactions among the beads, the active forces fij = fa sin(ωat + αij) between ith
and jth beads along the connecting spring lead to autonomous translation and/or rotation for appropriate values of
αij [30]. In the absence of any external flow, for α12 = α13 = 0 and α23 = α 6= 0 the swimmer performs translational
motion. In general, the nonlinear nature of Eq. (8) makes it almost impossible to solve analytically. However, for
fa ≪ k, the perturbation analysis around the equilibrium shape of the triangular microswimmer makes Eq. (8)
analytically tractable. It has to be noted that the stresslet associated with this triangular microswimmer vanishes
over the course of one cycle of active force. Therefore, it cannot be classified as puller or pusher microswimmer [27].
Under a linear shear flow, the contribution of the triangle to the suspension viscosity is given by the Kramers-

Kirkwood formula [31]

[η] = − 1

vbγ̇η

∑

i

〈yi(t)fx
i (t)〉 (10)

where vb is the swimmer volume, yi(t) is the y-coordinate of the ith bead and fx
i is the x-component of the total

(active+passive) force acting on it. The resulting rheology is obtained numerically and shows the same qualitative
features as in the case of amoeboid model (Fig. 3). To unravel the mechanisms that govern the observed transitions
(from positive to negative active viscosity as a function of shear rate) we will, in the following, analytically quantify
the coupling of the active forces and applied flow.

III. ANALYTICAL CALCULATIONS

A. Triangle dynamics and phase locking

For a passive vesicle or bead-spring triangle, one can describe the respective dynamics under shear flow in terms of
the particle orientation ϕs (see Appendix-C for details). Therefore, the time-averaging in Eqs. (7) and (10) for the
passive particles can also be achieved by an averaging over ϕs. On the other hand, activity affects shape and thus the
swimmer orientation. The phase related to activity is ϕa = ωat, whereas the phase related to shear flow driven shape
change is ϕs = ωst where, due to symmetry, the shape changes occur at a frequency twice of the tumbling frequency
(ωs ≃ γ̇; as for the classical Jeffery orbit). This means that the shape configuration depends on both phases. For
γ̇ ≪ ωa and γ̇ ≫ ωa (weak coupling), ϕs can be considered independent of the activity and the time-averaging in
Eqs. (7) and (10) has to be performed over the larger period (4π/γ̇ or 2π/ωa). For γ̇ ≈ ωa, however, there is a strong
coupling between the swimmer orientation ϕs and its activity ϕa. For weak deformation we have (which is an exact
relation for rigid object)

dϕs

dt
≈ 1

l2

∣

∣

∣

∣

∣

3
∑

i=1

ri(ϕs, ϕa)× ṙi(ϕs, ϕa)

∣

∣

∣

∣

∣

(11)

where ri is the position vector of the ith bead. The evolution equation of a bead position is expressed as a proportion-
ality between ṙi(ϕs, ϕa) and the total force acting on the bead. The active part contains obviously ϕa and the beads
positions (via the spring force), which can be written as a function of ϕs to leading order in deformation. Together



6

FIG. 3. (A) The intrinsic viscosities (|χ|/fa = 0, 0.04 without (solid) and with (dashed) noise, respectively) and (B) normalized
active viscosities, which follow Eq. (15) in the phase-locked regime, for the bead-spring triangles.

with definition (11) the time evolution of ϕs is obtained (see Appendix-C.) If hydrodynamic interactions are ignored,
along with the assumptions fa ≪ k and γ̇, ωa ≪ kµ/l, the phase equation assumes a simple analytical form, known
as Adler equation [32]

dδ

dt
≈ −(γ̇ − ωa) +Aγ̇ sin(δ + δ0) (12)

where δ = ϕs − ϕa,

cos δ0 =
3− 3 cosα− 2 sinα/ζ
√

2 (1− cosα) (9 + 4/ζ2)
. (13)

and

A = 2
√
2

(√
1− cosα

√

9 + 4/ζ2

)

fa
k

(14)

depends on the magnitude of the triangle deformation (fa/k) due to the active force (see Appendix-B for more general
form of the Adler equation for active triangle). In the above expressions, ζ = kµ/ωal is the ratio of the timescales
associated with active force (∼ 1/ωa) and elastic deformation (∼ l/kµ).
Equation (12) is a well known equation in nonlinear systems and is used as a model for synchronization of oscillators

[33, 34]. It is apparent from the Eq. (12) that for −A ≤ (γ̇/ωa − 1) ≤ A there is a “locking” of the two phases as
dδ/dt = 0 and we obtain γ̇∓ = ωa (1∓A) as the boundaries of the “phase-locked” regime (see Movies in [35]). For the
amoeboid swimmer also we have the shear rates (γ∓) proportional to the active force amplitude (Fig. 2B), a scaling
inspired by Eq. (12). The phase locking phenomenon can be appreciated by analyzing the dependence of angular
frequency of the shear flow driven triangle dynamics (ωs) on the applied shear. By definition the angular frequency
ωs is twice the tumbling frequency due to the symmetry of the shear flow. Fig. (4)A shows that ωs increases with the
shear rate monotonically, except in the phase-locked regime where the synchronization of shear and activity modes
results in ωs = ωa. The effect of phase locking is further reflected in the time dependence of the shear stress applied
by the swimmer on fluid (Fig. 5). In the absence of activity under flow the particle has a cyclic motion with frequency
ωs (with the leading deformation mode behaving as eiωst+c.c.). The mode associated with activity is eiωat+c.c.. Due
to nonlinear coupling, this generates new modes having frequencies ωs ± ωa. In the phase-locked regime (ωs ≈ ωa)
the system shows two frequencies: the basic one ωa and 2ωa (Fig. 5, middle panels). Outside the phase locked regime
the system shows three disparate basic frequencies (generically, not rationally related to each other) ωa and ωs ± ωa,
as seen in Fig. 5 (top and bottom panels).
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bead-spring swimmer, as a function of applied shear rate, γ̇
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FIG. 5. Time dependence of the shear stress for (A) amoeboid and (B) bead-spring swimmers. Each panel also shows the
evolution of swimmer conformations, showing a periodic character in the phase-locked regime (middle panels). The red bars
designates the duration of the active force cycle.

B. Effect of phase-locking on effective viscosity

In the phase locked regime by using Eq. (10) we get

∆η

[η]p
≈ [3ζ (cosα− sinα− 1) + 2 (cosα+ sinα− 1)]

√

(9ζ2 + 4) (1− cosα)

(

ωa

γ̇

)2(
γ̇

γ̇c
− 1

)

(15)
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where

γ̇c = ωa

(

1 + 3ζ2

√

2(1− cosα)

9ζ2 + 4

(

cosα+ sinα− 1

3ζ (cosα− sinα− 1) + 2 (cosα+ sinα− 1)

)(

fa
k

)

)

. (16)

This shows that depending on α, γ̇c can increase or decrease with fa. It is remarkable that ∆η/ [η]p is independent

of fa in the phase-locked regime (Fig. 3B) which is also observed for amoeboid swimmer (Fig. 2B). The effect of
active force amplitude fa, however, does reflect in the maximum change in the viscosity, that is |∆η/[η]p|max which
is obtained by substituting γ̇ = γ̇∓ in Eq. (15). Since γ̇∓ scale linearly with fa (at least for fa ≪ k) we have
|∆η/[η]p|max ∼ fa. It needs to be noted that this linear relation between maximum viscosity change and fa holds for
fa ≪ k. For large fa the deformation of the triangle with linear springs can be very large and the results based on
perturbation analysis may not hold.

Further, note that higher order phase-locking may also take place and Eq. (12) can be extended for δmn = mϕs−nϕa

where m 6= 0 and n 6= 0 are arbitrary integers. The occurrence of higher order phase locking suggests multiple values
of critical shear rates γ̇c where transition between shear-thickening and shear-thinning behaviors can be observed
(Fig. 6). A noteworthy point is that hydrodynamic interaction is not essential for the reported feature in Fig. 3A,
albeit necessary for the self propulsion. The phase locking is found to be robust against several perturbations. For

1.0 1.2 1.4 1.6 1.8
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10

15

20
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γ̇c
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ωa
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 Higher order
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0.3

∆
η/

[η
] p

FIG. 6. Phase-locked regimes of the amoeboid swimmers for different f . ∆η/ [η]
p
for f = 5.0 is shown as a reference.

the microscopic swimmers noise has a significant effect on their behavior. In order to study the influence of noise on
the swimmer behavior under shear flow and the phase-locking phenomenon we consider the noise to be of two origins.
First, the noise intrinsic to the swimmer coming from the mechanism of its activity. Its intrinsic nature ensures
that it does not contribute to the total force and torque. Second, the noise experienced by the swimmer due to the
fluctuations in the surrounding fluid flow. These fluctuations in fluid flow result in additional velocities to each bead
of the triangular swimmer which we assume to be uncorrelated over time as well as among the beads. We consider
the combined effect of noise in the form of random forces (proportional to the velocity fluctuations in the fluid) χi(t)
on each bead such that they are uncorrelated, that is χi(t)χj(t

′) = |χ|2δijδ(t − t′) where |χ| is the noise amplitude.
This nature of the noise results in a nonzero contribution to the total force and torque to the swimmer, resulting
in translational and rotational diffusion of the swimmer. We performed numerical simulations of the bead-spring
swimmer with noise under shear flow using Euler-Maruyama method for the stochastic ordinary differential equations
[36]. As shown in Fig. 3A the noise does not affect the qualitative features of the suspension viscosity as long as
|χ| ≪ fa. The consideration of noise reflects in the form of an additional diffusive term in the Adler equation (Eq.
(27)) resulting in the diffusion of the phase-difference δ on a tilted washboard potential with occasional phase slips
[34] as opposed to its deterministic behavior.
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IV. MECHANISMS LEADING TO THE VISCOSITY BEHAVIOR

The microswimmers are usually categorized as puller or pusher depending on far-field velocity field generated by
the swimmer. The leading order contribution in the far-field velocity field due to swimmer can be written in terms

of the first moment of the force distribution, that is Σij =
3
∑

i=1

fi ⊗ rj for the bead-spring swimmer where ri and fi

are the position and the total force on the ith bead. In the absence of any external flow (such as shear flow in this
paper), the symmetric nature of the swimmer results in the average velocity field over one active force cycle to be
proportional to the average stresslet Σs = Σxx −Σyy where x is the direction of the swimmer propulsion. The puller
and pusher nature of the swimmer is characterized by the sign of the stresslet Σs (Σs < 0 for puller and Σs > 0 for
pusher). The bead-spring triangular swimmer with three identical beads is known to demonstrate a puller and pusher
characteristic within an active force cycle while on average its behavior is neutral (Σs = 0) [27]. In the presence of the
shear flow the triangle demonstrates tumbling and we can define the stresslet in the reference frame attached to the
swimmer as Σ = Σx′x′ − Σy′y′ where the swimmer propulsion direction x′ is co-rotating with it. We calculated the
average value (over sufficiently long time to capture the effects of interaction between shear and activity modes) of
stresslet Σ of the bead-spring swimmer under different shear rates. Fig. 4B shows the transition of swimmer nature
from pusher (Σ < 0) to puller (Σ > 0) at shear rate close to the angular frequency of active force. This transition
between the two swimmer states coincides with the transition from ∆η > 0 to ∆η < 0. This demonstrates that for
shape-deformation driven swimmers the puller-pusher nature is not an intrinsic property but depends on the external
conditions, such as external flow (as shown here) or confinement [17].
In order to dig further into the origin of the viscosity change, we investigated the probability density of the

microswimmer surface (or beads in case of bead-spring microswimmer) being at any location in the reference frame
co-moving with the swimmer center of mass. This density represents the average microswimmer shape in the steady
state (Fig. 7). For low γ̇ the average shape first has an increasing cross section against the flow (meaning shear
thickening), then a decrease of cross section until alignment with the flow in phase-locked regime, then an increase of
cross section with γ̇.

V. DISCUSSION

The phase locking is very generic due to nonlinear coupling of two oscillators. Shear flow can lead to tumbling
(which is the first autonomous oscillator). This is the case, for example, for Chlamydomonas which undergoes (more
or less complex) tumbling; see [8]. On the other hand the activity is materialized by a periodic beating of flagella (the
second oscillator). The flow affects the motion of flagella, which in turns affects the tumbling dynamics, resulting in an
effective coupling between the two oscillators (the activity mode and the tumbling one). We thus expect phase-locking
to occur for various swimmers since tumbling and shape activity are quite common. Phase locking (at least the first
order) seems to be absent for shakers (Eq. (27)). It needs to be pointed out that the mechanism of viscosity modulation
by the swimmer activity shown here is fundamentally different from the previously known mechanisms which rely
primarily on the rotational diffusion [6, 10, 15] or an intrinsic tumbling mechanism [12, 15] of the microswimmer. In
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general, however, the two mechanisms- deterministic (shape activity as reported here) and stochastic (say diffusion
or run-and-tumble) can be visible under different applied shear rates for the same microswimmer. For shear rates
very different from that of the angular frequency ωa of the swimming strokes it is the stochastic mechanism which
has significant contribution as opposed to the shear rates close to ωa where the deterministic mechanism takes
over. Equation (15) shows that in the phase locked region (but for γ̇ 6= ωa) the active contribution to viscosity
scales as ∆η/ [η]p ∼ (ωa/γ̇)

2 ∼ 1. On the other hand for fixed shapes (slender body) with noise it is of order of

∆η/ [η]p ∼ tr/15ts [15], where tr and ts are reorientation and swimming time (over swimmer size), respectively. For

several swimmers [8, 13, 15] the latter leads to ∆η/ [η] ∼ 1, meaning that shape activity contribution may be of the
same order as that of noise.

Since most of the experimental measurements of the active suspension viscosity has been for γ̇ ≪ ωa [8, 13, 14] the
validation of the phenomenon reported in this paper would require further experimentation, especially for γ̇ ≈ ωa.
For flagellar microswimmers such as E. coli and C. reinhardtii ωa ≈ 100πs−1. Thus high enough shear rates are
required for the phase-locking. In contrast, amoeboid swimmers [3, 4] are endowed with much longer stroke duration,
approximately few seconds, requiring much lower shear rates. Finally, it will be an interesting task for future research
to study multiple swimmers in order to analyze the interplay between their mutual coupling (which may trigger their
synchronization) and the effect of external flow.

APPENDIX

A. Numerical simulation of amoeboid microswimmer using Boundary Integral Method

We consider a single swimmer in a linear shear flow

u∞ = γ̇yêx. (17)

Considering very small Reynolds number, the flow can be regarded as a Stokes flow and we can use the boundary
integral method (BIM) [22] to convert the Stokes equations into an integral form over the swimmer shape. The
velocity at any point r in the domain can then be calculated by the boundary integral equation

Λ(r)u(r) =u∞(r) +
1

η

∮

F(s′) · G(X(s′), r)ds′

+ (1− λ)

∮

u(X(s′)) · T (X(s′), r) · n(X(s′))ds′
(18)

where G and T are the single and double layer Green’s functions, respectively, and the integrals are performed over
the swimmer surface. The term Λ is defined as

Λ(r) =











λ, if r is inside the swimmer

(1 + λ)/2, if r is on a swimmer surface

1, if r is outside of swimmer

(19)

Once the velocity on the membrane is known, the evolution of vesicle shape is obtained from a simple fixed time step
Euler scheme

Xk(t+∆t) = Xk(t) + uk(t)∆t (20)

where uk(t) is obtained by taking Fourier transform of the velocity calculated from Eq. (18) at time t. Ideally, fluid
incompressibility and membrane impermeability should automatically ensure the swimmer volume to be a constant
but a drift due to numerical scheme can not be ruled out. To correct this drift, we inflate or deflate the swimmer
through homogeneous normal deformation.
We performed several confirmatory simulations with refined meshes and time steps, sampling points and Fourier
harmonics to ensure the numerical accuracy of the scheme. This verification led us to compromise between efficiency
and accuracy and characterize each swimmer surface by 63 Fourier harmonics. Further, we used 2048 sampling points
to resolve the short-range hydrodynamics interactions. We calculated the swimmer surface velocity at 128 sampling
points.
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B. Bead-spring microswimmer

1. Passive triangle in shear flow

We can obtain the passive counterpart of the active bead-spring microswimmer by setting fa = 0. Once it is placed
in shear flow γ̇ it undergoes rotation and also oscillatory deformations. For γ̇ ≪ kµ/l it is easy to see that the
time-scale of triangle rotation and deformation is 4π/γ̇. For small γ̇ we can define the phase of the passive triangle
ϕs as the angle made by one the triangle beads with some pre-specified direction in the triangle plane. Therefore, all
the properties of the passive triangle under shear can be written in terms of ϕs. We can write the contribution of the
passive triangle to total shear stress in the form of Kramers-Kirkwood stress [31] as

σxy
KK = 〈

3
∑

i=1

fx
i (ϕs) yi (ϕs)〉 (21)

where averaging is performed over ϕs ∈ [0, 2π], that is all triangle configurations. For small triangle deformation,

the force on any bead can be approximated as fx,y
i (ϕs) =

3
∑

n=1

∑

j 6=i

(

P x,y
ij sin(nϕs) +Qx,y

ij cos(nϕs)
)

, where the nϕs

dependence is due to the three-fold symmetric shape of the triangle. Similarly, the small deformation assumption
also gives yi(ϕs) = Ri sinϕs + Si cosϕs. The coefficients P x,y

ij , Qx,y
ij , Ri and Si are determined from the equations of

motion of the beads (Eq. 8). Substituting the values of these coefficients in the Eq. (21) gives the effective viscosity
of the passive bead-spring triangle suspension to be

ηp = η +
φ

vb

σxy
KK

γ̇
≈ η +

φ

vb

9l2

4µ

(

1

c2 + 9

)

(22)

where vb is the swimmer volume, φ is the swimmer volume fraction in the suspension and c = γ̇l/kµ is the capillary
number. This demonstrates a shear-thinning behavior of the passive triangle under shear flow.

2. Active triangle in shear flow

a. No coupling between the shear flow driven dynamics and activity: For the active triangle in
shear flow if we do not consider any coupling between the shear flow and activity driven dynamics the tri-
angle undergoes tumbling at a constant rate (due to shear flow) and deformation (due to activity as well as
flow). In the absence of the coupling, the two modes- activity and shear flow are independent of each other
and all dynamical variables can be written in terms of ϕs = γ̇t/2 and ϕa = ωat. Therefore, we can follow
the same steps as for the passive triangle above. However, there are additional terms due to the triangle ac-
tivity in the expressions for the force on the bead and but with additional dependence on activity which gives

fx,y
i (ϕs) =

∑

j 6=i

[

(

P a
ij sin(ωat) +Qa

ij cos(ωat)
)

sin(ϕs) +
(

P̃ a
ij sin(ωat) + Q̃a

ij sin(ωat)
)

cos(ϕs)
]

+ passive force, where

coefficients P a
ij , Q

a
ij , P̃

a
ij and Q̃a

ij can be obtained by solving the Eq. (8) for an isolated active triangle without any
external shear flow. We substitute these values in Eq. (21) and take an average over one cycle of active force to
obtain

ηa ≈ ηp−
φ

vb

(

fa
k

)2
l2

2µ

(

54 (cos(α− β) + cosα+ cosβ + 3) + 4
√
3 (9cζ + c/ζ) (sinβ − sinα+ sin(α− β)) + 729ζ2

(9ζ + 1/ζ) (9ζ + 4/ζ) (9 + c2)

)

(23)
to be the effective suspension viscosity in the absence of coupling between activity and shear flow driven dynamics.
It can be seen that for purely translation microswimmer (β = 0), we get

ηa ≈ ηp −
φ

vb

(

fa
k

)2
l2

2µ

(

108 (2 + cosα) + 729ζ2

(9ζ + 1/ζ) (9ζ + 4/ζ) (9 + c2)

)

(24)

which has a monotonic dependence on γ̇ contrary to the observation in Fig. 2. Therefore, the interaction between
the two modes of triangle deformation cannot be ignored and the assumption of ϕs ∼ t breaks down.

b. With coupling between the shear flow driven dynamics and activity: In order to study the effect
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of coupling we first need to obtain the dependence of ϕs on t. Under the assumption of small deformation of the
triangle, we can write

dϕs

dt
≈ 1

l2

3
∑

i=1

(

xi(ϕs, ϕa)
dyi
dt

(ϕs, ϕa)− yi(ϕs, ϕa)
dxi

dt
(ϕs, ϕa)

)

(25)

where (xi, yi) are the coordinates of the ith bead. In this condition we can take xi(ϕs(t), ϕa(t)) = Rx
i sinϕs(t) +

Sx
i cosϕs(t) + Rax

i sinϕa(t) + Sax
i cosϕa(t) and yi(ϕs(t), ϕa(t)) = Ry

i sinϕs(t) + Sy
i cosϕs(t) + Ray

i sinϕa(t) +
Say
i cosϕa(t). Substituting these values in the following equation for the phase difference

dδ

dt
=

dϕs

dt
− dϕa

dt
(26)

gives us the time dependence of the ϕs since the phase of the activity ϕa = ωat is already known. In a more general
setup, we can also have the activity described not by explicit time dependence but triangle configuration. We do not
consider those cases here. Assuming the change in the phase ϕs to be slower than the swimmer activity, we can use
method of averaging. After substituting the aforementioned expressions for xi and yi in Eq. (25) and taking average
over one cycle of the active force, we obtain following Adler equation

dδ

dt
≈ − (γ̇ − ωa) +

fa
k

γ̇

9ζ + 4/ζ
(Ac cos δ +As sin δ) (27)

with

Ac = −2(2 cosα− 3ζ sinα) + 3
√
3ζ(cosβ − 1) + 2(cosβ + 1) + sinβ(3ζ + 2

√
3) (28)

As = −2(2 sinα+ 3ζ cosα) + 2
√
3ζ(cosβ − 1) + 3ζ(cosβ + 1) + sinβ(2− 3

√
3ζ). (29)

This demonstrates that for different α and β (which correspond to the distribution of the active force on the amoeboid
swimmer surface) the phase-locking is observed under shear flow. The corresponding window of the the shear rates,
however, is dependent on the nature of the active force distribution (α and β). It can be seen that for α = β = 0 (no
propulsion) we get Ac = As = 0, implying lack of phase-locking.
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