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We consider the three-dimensional (3D) Cahn-Hilliard equations coupled to, and driven by, the forced,

incompressible 3D Navier-Stokes equations. The combination, known as the Cahn-Hilliard-Navier-Stokes

(CHNS) equations, is used in statistical mechanics to model the motion of a binary fluid. The potential

development of singularities (blow-up) in the contours of the order parameter φ is an open problem. To address

this we have proved a theorem that closely mimics the Beale-Kato-Majda theorem for the 3D incompressible

Euler equations [J. T. Beale, T. Kato, and A. J. Majda, Commun. Math. Phys. 94, 61 (1984)]. By taking an

L∞ norm of the energy of the full binary system, designated as E∞, we have shown that
∫ t

0
E∞(τ ) dτ governs

the regularity of solutions of the full 3D system. Our direct numerical simulations (DNSs) of the 3D CHNS

equations for (a) a gravity-driven Rayleigh Taylor instability and (b) a constant-energy-injection forcing, with

1283 to 5123 collocation points and over the duration of our DNSs confirm that E∞ remains bounded as far as

our computations allow.

DOI: 10.1103/PhysRevE.94.063103

I. INTRODUCTION

The Navier-Stokes (NS) equations [1–6], the fundamental

partial differential equations (PDEs) that govern viscous

fluid dynamics, date back to 1822. Since its introduction

in 1958 the Cahn-Hilliard (CH) PDE [7], the fundamental

equation for the statistical mechanics of binary mixtures, has

been used extensively in studies of critical phenomena,

phase transitions [8–13], nucleation [14], spinodal

decomposition [15–19], and the late stages of phase

separation [19,20]. If the two components of the binary mixture

are fluids, the CH and NS equations must be coupled, where

the resulting system of PDEs is usually referred to as model

H [9] or the Cahn-Hilliard-Navier-Stokes (CHNS) equations.

The increasing growth of interest in the CHNS equations

arises from the elegant way in which they allow us to follow

the spatiotemporal evolution of the two fluids in the mixture

and the interfaces between them. These interfaces are diffuse,

so we do not have to impose boundary conditions on the

moving boundaries between two different fluids, as in other

methods for the simulation of multiphase flows [12,21,22].

However, in addition to a velocity field u, we must also follow

the scalar, order-parameter field φ, which distinguishes the

two phases in a binary-fluid mixture. Here, interfacial regions

are characterized by large gradients in φ. The CHNS equations

have been used to model many binary-fluid systems that are

of great current interest; examples include studies of (a) the

Rayleigh-Taylor instability [23,24], (b) turbulence-induced

suppression of the phase separation of the two components

of the binary fluid [17], (c) multifractal droplet dynamics in

a turbulent, binary-fluid mixture [25], (d) the coalescence

of droplets [26], and (e) lattice-Boltzmann treatments of

multiphase flows [17,27].

The system of CHNS equations is written as fol-

lows [24,28–30]:

(∂t + u ·∇)u =−∇P/ρ + ν∇2u−αu−(φ∇μ) − Ag + f , (1)

(∂t + u · ∇)φ =γ∇2μ, (2)

where P is pressure and ρ (=1) is the constant density, together

with the incompressibility condition ∇ · u = 0. In Eq. (1),

u ≡ (ux, uy, uz) is the fluid velocity and ν is the kinematic

viscosity. In the two-dimensional (2D) case, uz = 0 and the

air-drag-induced friction α should be included, but in 3D we

set α = 0. φ(x, t) is the order-parameter field at the point x and

time t [with φ(x, t) > 0 in the lighter phase and φ(x, t) < 0

in the heavier phase]. The third term on the right-hand side

of Eq. (1) couples u to φ via the chemical potential μ(x, t),

which is related to the the free energy F of the Cahn-Hilliard

system as follows:

μ = δF[φ]/δφ(x, t), (3)

F[φ] = 


∫

V

[

1

2
|∇φ|2 + (φ2 − 1)2/(4ξ 2)

]

dV, (4)

where 
 is the energy density with which the two phases

mix in the interfacial regime [24], ξ sets the scale of the

interface width, σ = 2(2
1
2 )
/3ξ is the surface tension, γ

is the mobility [29] of the binary-fluid mixture, A = (ρ2 −

ρ1)/(ρ2 + ρ1) is the Atwood number, and g is the acceleration

due to gravity.

While solutions of the CHNS equations have been shown

to be regular in the 2D case [31,32], with an equivalent

body of literature associated with the CH equations alone

(mainly 2D; see, e.g., Ref. [33]) a critical issue for the 3D

CHNS system (1)–(4) revolves around the smoothness of the

contours of φ packed together within the fluid interfaces.

The regularity of the solutions of the 3D Navier-Stokes (NS)

equations alone is in itself a major open problem [6]; a

coupling of the CH and the NS equations poses additional

severe difficulties. For instance, how do we know whether

a slope discontinuity, such as a cusp, might develop in a

finite time in arbitrarily large spatial derivatives of φ, thereby

affecting the smoothness of these contours? Moreover, if such

singularities do develop, how closely are they associated with

the breakdown of regularity of the solutions of the 3D NS
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FIG. 1. Isosurface plots of the φ field in the 3D CHNS equations illustrating the development of the RTI with large-wavelength perturbations

in 3D (DNS run T1 in Table I), with 2563 collocation points, at times (a) t = 1, (b) t = 10, (c) t = 25, and (d) t = 36. The spatiotemporal

development of this field is given in the Video RTI_Atwood=5e-1 in the Supplemental Material [53].

equations themselves? To answer such questions, we follow a

strategy that is closely connected to an issue that once arose

in studies of the incompressible 3D Euler equations (for a

survey of the Euler literature, see Refs. [34–36]). Since the

time of Leray [2,5,6] it has been known that the finiteness

of
∫

V
|ω|2dV pointwise in time controls the regularity of

solutions of the 3D incompressible NS equations, where ω =

∇ × u is the vorticity. There are also a variety of alternative

time integral criteria, such as the finiteness of
∫ T

0
‖u‖2

∞ dτ

or
∫ T

0
(‖ω‖2

4/‖ω‖2)dτ . In addition, other conditions exist

involving the pressure [37]. In contrast, prior to 1984, it was

not known what variables control the regularity of solutions

of the 3D Euler equations. Beale, Kato, and Majda [38] then

proved that the time integral
∫ T ∗

0
‖ω‖∞ dτ is the key object: if

this integral becomes infinite at a finite time T ∗, then solutions

have lost regularity at T ∗ (i.e., blow-up occurs), but there exists

a global solution if, for every T > 0,
∫ T

0
‖ω‖∞ dτ < ∞. This

result is now generally referred to as the BKM theorem. Its

practical value is that only one simple integral needs to be

monitored numerically. It also discounts the possibility that
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very large spatial derivatives of u could develop a discontinuity

if the integral is finite.

The main result of this paper is that we have shown that

there exists a similar result for the 3D CHNS system. It can

be expressed very simply and takes its motivation from the

energy E(t) of the full system, which can be written as

E(t) =

∫

V

[

1

2

|∇φ|2 +




4ξ 2
(φ2 − 1)2 +

1

2
|u|2

]

dV. (5)

Given that this can be viewed as a combination of squares of

L2 norms, it suggests a corresponding L∞ version, which we

call the maximal energy [39]:

E∞(t) =
1

2

‖∇φ‖2

∞ +



4ξ 2

(

‖φ‖2
∞ − 1

)2
+

1

2
‖u‖2

∞. (6)

In Sec. III we prove a theorem which says that
∫ T ∗

0
E∞(τ ) dτ

is the key object that controls regularity of solutions of the 3D

CHNS equations exactly in the same fashion as
∫ T ∗

0
‖ω‖∞ dτ

does for the 3D Euler equations [38]. The proof of the theorem

is technically complicated, so this is given in the Appendix A.

Our numerical calculations in that section [Fig. 1 (left)]

suggest that E∞ is indeed finite.

In order to make a comparison with 3D Navier-Stokes

results, we also calculate the time dependence of scaled L2m

norms of other fields, such as the fluid vorticity ω. The study

of similar scaled norms has led to fruitful insights into the

solutions of the 3D NS [40–42] and the 3D Magnetohydrody-

namics (MHD) equations [43]. We find that plots of all these

norms, versus time t , are ordered as a function of m (curves

with different values of m do not cross); and, as m → ∞,

these curves approach a limit curve that can be identified as

the scaled L∞ norm.

The remainder of this paper is organized as follows: In

Sec. II we discuss the numerical methods that we use to study

its solutions. Section III is devoted to the statement of our E∞

theorem and associated numerical results together with plots

of the L2m norms mentioned in the last paragraph. Section IV

contains concluding remarks. In the Appendix we describe the

details of the proof of the theorem.

II. NUMERICAL METHODS

We carry out direct numerical simulations of the 3D CHNS

equations. For this we use a simulation domain that is a

cubical box with sides of length 2π and periodic boundary

conditions in all three directions. We use N3 collocation points,

a pseudospectral method with a 1/2- dealiasing rule, and a

second-order Adams-Bashforth method for time marching. In

our DNSs we use the following two types of forcing: (a) In the

first type, we use the gravity-driven Rayleigh Taylor instability

(RTI) of the interface of a heavy fluid that is placed initially

on top of a light fluid; this instability is of great importance

in inertial-confinement fusion [44,45], astrophysical phenom-

ena [23], and turbulent mixing, especially in oceanogra-

phy [46]. (b) In the second type, we have a forcing that yields a

constant energy-injection rate [47]. In our RTI studies, there is

a constant gravitational field in the ẑ direction; here we stop our

DNS just before plumes of the heavy or light fluid wrap around

the simulation domain in the ẑ direction because of the periodic

TABLE I. Parameters N , A, ν, D, σ , Ch, and Gr for DNS runs

T1–T3. The number of collocation points is N3, A is the Atwood

number, ν kinematic viscosity, D diffusivity, σ surface tension, Ch

Cahn number, and Gr Grashof number in runs T2 and T3.

N A ν D σ Ch Gr Reλ

T1 256 0.5 0.001 16 0.0015 0.23 0.011

T2 128 0 0.0116 0.0015 0.23 0.011 1.2 × 107 42.23

T3 512 0 0.001 16 0.0015 0.23 0.011 1.2 × 109 300

boundary conditions. Most of the DNSs of such CHNS prob-

lems, e.g., CHNS studies of the RTI, have been motivated by

experiments [48–50]. To the best of our knowledge, no studies

have investigated the growth of L2m norms of the quantities we

have mentioned above. (For the RTI problem, some of these

norms have been studied [51] by using the DNS results of

Ref. [52] for the miscible, two-fluid, incompressible 3D NS

equations.) It behooves us, therefore, to initiate such DNS in-

vestigations of L2m norms of fields in the 3D CHNS equations.

The last-but-one term in Eq. (1) is used in our DNSs

of the RTI; in these studies we set the external force

f = 0. We also carry out DNSs, with no gravity, but with a

constant-energy-injection forcing scheme in which

f̂ = P�(kf − k)û(k, t)/[2E(k, t)], (7)

where P is the energy-injection rate and � is the Heaviside

function. For simplicity, our CHNS description of binary-fluid

mixtures assumes that γ is independent of φ and that both

components of the mixtures have the same viscosity. We keep

the diffusivity D = γ
/ξ 2 constant in all our DNSs. We give

the parameters for our DNS runs T1–T3 in Table I.

III. E∞ THEOREM AND CORRESPONDING NUMERICAL

RESULTS

A. E∞ theorem

Let us consider n derivatives of both u and φ within L2

norms such that for n � 0,

Hn =

∫

V

|∇nu|2dV and Pn =

∫

V

|∇nφ|2dV. (8)

Then the CHNS equivalent of the BKM theorem [38] is the

following (which we prove in the Appendix A)

Theorem 1. Consider the CHNS equations on a periodic

domainV = [0, L]3 in three spatial dimensions. For initial data

u0 ∈ Hm, for m > 3/2, and φ0 ∈ Pm, for m > 5/2, suppose

there exists a solution on the interval [0, T ∗) where T ∗ is the

earliest time that the solution loses regularity, then

∫ T ∗

0

E∞(τ ) dτ = ∞. (9)

Conversely, there exists a global solution of the 3D CHNS

equation if, for every T > 0,

∫ T

0

E∞(τ ) dτ < ∞. (10)

The finiteness, or otherwise, of E∞(t) is thus critical to the

regularity of solutions. This needs to be tested numerically
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FIG. 2. Plots against time t of Em according to Eq. (11) for m = 1–6 for (a) an RTI flow and (b) a flow with a constant-energy-injection

forcing scheme [see Eq. (7)], with no gravity. Also, plots against time t of ℓ−1
m for m = 1–6 for (c) an RTI flow and (d) a flow with a

constant-energy-injection forcing scheme.

from different initial conditions. One way is to plot finite Lm

norms of the energy, namely,

Em(t) =
1

2

‖∇φ‖2

m +



4ξ 2

(

‖φ‖2
m − 1

)2
+

1

2
‖u‖2

m, (11)

for increasing values of m � 1. We observe that Em(t)

converges as m increases; see Figs. 2(a) and 2(b). This suggests

that the integral criterion within Theorem 1 is indeed finite and

thus Eq. (10) holds, leading to the regularity of these solutions,

at least for the DNSs we carry out.

B. Temporal Evolution of Dm

The initial stages of the spatiotemporal development of the

RTI in the 3D CHNS system is illustrated by the isosurface

plots of the φ field in Fig. 1 (the spatiotemporal development

of this field is given in the Video RTI_Atwood=5e-1 in the

Supplemental Material [53]). In RTI flows, the potential energy

that is stored in the initial density field is converted to kinetic

energy, which initiates fluid mixing and a cascade of energy

from large to small length scales; this gives rise to filamentary

structures with enhanced gradients in φ. The nonlinearity of

the binary-fluid system is responsible for this energy cascade.

For both the 3D Navier-Stokes and 3D MHD equations,

a method was introduced to estimate the degree of nonlinear

depletion in the vortex stretching term(s) [40–43]. It involved

the use of the following L2m norms of the vorticity field ω =

∇ × u defined by (1 � m < ∞),

�m(t) =

(

L−3

∫

V

|ω|2mdV

)1/2m

, (12)

and also the following scaled dimensionless counterparts

of �m:

Dm(t) =
(

̟−1
0 �m

)αm
, αm =

2m

4m − 3
, (13)

where ̟0 = νL−2 is the box-size frequency of the periodic

box. Although the �m must obey Hölder’s inequality

�m � �m+1 for 1 � m < ∞, (14)

no such natural ordering is enforced upon the Dm, because the

αm decrease with m [see Eq. (13)]. We give the plots for Dm for

the RTI case in Fig. 3(a) and for the constant-energy-injection

scheme in Fig. 3(d).

It was shown in Ref. [42] that there are good reasons why

Dm and D1 are such that [54]

Dm � D
Am(t)
1 , (15)
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FIG. 3. Semilog (base 10) plots vs time t [with 2563 collocation (DNS run T1)] of Dm, Am, and λm(t) for m = 1–6 for (a)–(c) the runs

with RTI flows (DNS run T1), (d)–(f) the runs with constant-energy-injection forcing scheme (DNS run T2), and (g)–(i) for the runs with

constant-energy-injection forcing scheme (DNS run T3).

with the additional relation that includes the time-dependent

exponents λm

Am(t) =
λm(t)(m − 1) + 1

4m − 3
. (16)

It was observed numerically [41] that the maxima of the

λm lay in the range 1.15–1.45. For purposes of comparison

between those calculations and our RTI simulation, we plot

Am(t) versus t in Fig. 3(b), where

Am(t) = ln Dm/ ln D1. (17)

We observe that the Am do not change significantly with t but

that they depend on m. We also give the plot of Am(t) versus

t for the case of constant-energy injection in Fig. 3(e). As in

DNSs of the 3D Navier-Stokes equation [41], we find, for the

3D CHNS system, that D1 lies well above the other Dm [see

Figs. 3(a) and 3(c)]. We give the plots for λm(t) in Fig. 3(c) (for

the RTI case) and in Fig. 3(f) (for the constant-energy-injection

forcing scheme). In the 3D NS case, the λm are related to the

spectral exponents for the inertial-range, power-law form of

the energy spectra [41]; the analogous relation for the 3D

CHNS case is not straightforward because the power-law

ranges in such spectra depend on several parameters in the

CHNS equations (see, e.g., Ref. [25]).

We also compute the temporal evolution of the L2m norms

of the gradients of φ by using the definition of the inverse

length scale ℓ−1
m

ℓ−2m
m =

∫

V
|∇φ|2mdV

∫

V
|φ|2mdV

. (18)

Figures 2(a)–2(d) show plots of Em and ℓ−1
m versus time t for

different values of m. These are qualitatively similar to those

for Dm in so far as curves for different values of m do not cross;

they are ordered in m such that ℓ−1
m < ℓ−1

m+1. Furthermore, both

ℓ−1
m and Em approach limiting curves as m → ∞. (We mention

in passing that errors increase as m increases. We present data

for values of m for which we have reliable data). This clustering

of the Em suggests convergence to a finite value of E∞.

IV. CONCLUSION

The regularity of solutions of the 3D Navier-Stokes (3D NS)

equations presents formidable difficulties. It remains to this

day one of the outstanding open problems in modern applied
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mathematics [4]. Coupling these 3D NS equations to the 3D

Cahn-Hilliard equations creates a set of 3D CHNS PDEs

that governs an incompressible binary fluid, but, in so doing,

creates a system where the already formidable difficulties with

the 3D NS system are amplified many times over. The elegant

and powerful proofs of regularity by Abels [31] and Gal and

Graselli [32] in the 2D case show how much harder the coupled

2D CHNS system is to deal with than the 2D Navier-Stokes

equations alone.

The main challenges in the 3D system considered here lie

in the behavior of not only arbitrarily large gradients of the

velocity field u but also of arbitrarily large gradients of φ, the

order parameter. The E∞ theorem, stated in Sec. III and proved

in the Appendix A, is a conditional-regularity criterion on

periodic boundary conditions that is realistically computable.

The motivation for this result lies in the BKM theorem

for the 3D Euler equations. Constantin and Fefferman [55]

reduced the ‖ω‖∞ within the BKM criterion to ‖ω‖p for

finite p � 2, but at the heavy price of introducing technically

complicated, local constraints on the direction of vorticity,

which are difficult to compute. Thus, the original form of the

BKM theorem, with its single requirement of ‖ω‖∞ being

finite, remains the simplest regularity criterion to this day.

Our E∞ theorem is the equivalent result for the 3D CHNS

system.

Our curves for Em versus time in Fig. 2(a) suggest

convergence to E∞, with increasing values of m, thereby

indicating that solutions remain regular for as long as our

DNSs remain valid, even though more resolution would be

desirable in the future to investigate the delicate issue of

possible finite-time singularities in solutions of the 3D CHNS

equations.
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APPENDIX: PROOF OF THEOREM 1

In the following proof the coefficients in Eqs. (1)–(4) in

the main paper are set to unity to avoid needless complication.

First, we recall the definitions of Hn and Pn in Eq. (8). In

addition to these we define

Xn = Hn + Pn+1. (A1)

The proof uses the method of BKM [38], which is by

contradiction. The strategy is the following: suppose there

exists an interval [0, T ∗) on which solutions are globally

regular with the earliest loss of regularity at T ∗. Assume

that
∫ T ∗

0
E∞(τ ) dτ < ∞, and then show that a consequence

of this is that Xn(T ∗) < ∞, which contradicts the statement

that solutions first lose regularity at T ∗. This falsifies the

assumption of the finiteness of the integral. We proceed in

three steps.

Step 1. We begin with the time evolution of Pn (the dot

above Pn denotes a time derivative):

1

2
Ṗn = −Pn+2 + Pn+1 +

∫

V

(∇nφ)∇n�(φ3) dV

−

∫

V

(∇nφ)∇n(u · ∇φ) dV ; (A2)

and then we estimate the third term on the right as

∣

∣

∣

∣

∫

V

(∇nφ)∇n�(φ3) dV

∣

∣

∣

∣

� ‖∇nφ‖2

n+2
∑

i,j=0

Cn+2
i,j ‖∇ iφ‖p|∇jφ‖q‖∇

n+2−i−jφ‖r , (A3)

where 1/p + 1/q + 1/r = 1/2. Now we use a sequence of

Gagliardo-Nirenberg inequalities

‖∇ iφ‖p � cn,i‖∇
n+2φ‖

a1

2 ‖φ‖1−a1

∞ ,

‖∇jφ‖q � cn,j‖∇
n+2φ‖

a2

2 ‖φ‖1−a2

∞ , (A4)

‖∇nφ‖r � cn,i,j‖∇
n+2−i−jφ‖

a3

2 ‖φ‖1−a3

∞ ,

where in d dimensions

1

p
=

i

d
+ a1

(

1

2
−

n + 2

d

)

,

1

q
=

j

d
+ a2

(

1

2
−

n + 2

d

)

, (A5)

1

r
=

n + 2 − i − j

d
+ a3

(

1

2
−

n + 2

d

)

.

By summing these and using 1/p + 1/q + 1/r = 1/2, it is

seen that a1 + a2 + a3 = 1. Thus, we have
∣

∣

∣

∣

∫

V

(∇nφ)∇n+2(φ3) dV

∣

∣

∣

∣

� cn‖∇
nφ‖2‖∇

n+2φ‖2‖φ‖2
∞

�
1

2
Pn+2 + cnPn‖φ‖4

∞, (A6)

and so Eq. (A2) becomes (here and henceforth coefficients

such as cn are multiplicative constants),

1

2
Ṗn = −

1

2
Pn+2 + Pn+1 + cn‖φ‖4

∞Pn

+

∣

∣

∣

∣

∫

V

(∇nφ)∇n(u · ∇φ) dV

∣

∣

∣

∣

. (A7)

Estimating the last term in Eq. (A7) we have

∣

∣

∣

∣

∫

V

(∇nφ)∇n(u · ∇φ) dV

∣

∣

∣

∣

=

∣

∣

∣

∣

−

∫

V

(∇n+1φ)∇n−1(u · ∇φ) dV

∣

∣

∣

∣

� ‖∇n+1φ‖2

n−1
∑

i=0

Cn
i ‖∇ iu‖p‖∇n−1−i(∇φ)‖q, (A8)
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where 1/p + 1/q = 1/2. Now we use two Gagliardo-

Nirenberg inequalities in d dimensions to obtain

‖∇ iu‖p � c ‖∇n−1u‖a
2‖u‖1−a

∞ , (A9)

‖∇n−1−i(∇φ)‖q � c ‖∇n−1(∇φ)‖b
2‖∇φ‖1−b

∞ . (A10)

Equations (A9) and (A10) follow from

1

p
=

i

d
+ a

(

1

2
−

n − 1

d

)

, (A11)

1

q
=

n − 1 − i

d
+ b

(

1

2
−

n − 1

d

)

. (A12)

Because 1/p + 1/q = 1/2 then a + b = 1. Thus Eq. (A3)

turns into

∣

∣

∣

∣

∫

V

(∇nφ)∇n(u · ∇φ) dV

∣

∣

∣

∣

� cnP
1/2

n+1H
a/2

n−1P
b/2
n ‖u‖1−a

∞ ‖∇φ‖1−b
∞

� P
1/2

n+1

[

cnHn−1‖∇φ‖2
∞

]a/2[

Pn‖u‖2
∞

]b/2

�
1

2
Pn+1 +

1

2
acnHn−1‖∇φ‖2

∞ +
1

2
bPn‖u‖2

∞, (A13)

and Eq. (A7) becomes

1
2
Ṗn = − 1

2
Pn+2 + 3

2
Pn+1 + cn,1

(

1
2
‖φ‖4

∞ + ‖u‖2
∞

)

Pn

+ cn,2Hn−1‖∇φ‖2
∞. (A14)

Step 2. Now we look at Hn defined in Eq. (8) using Eq. (A15)

with f = −ẑφ. The easiest way is to use the 3D NS equation

in the vorticity form as in Doering and Gibbon [6] to obtain

the ‖u‖2
∞ term in Eq. (A16), where gradient terms have been

absorbed into the pressure term, which disappears under the

curl operation:

(∂t + u · ∇)ω = �ω + ω · ∇u + ∇φ × ∇�φ − ∇
⊥φ.

(A15)

Therefore,

1

2
Ḣn � −

1

2
Hn+1 + cn‖u‖2

∞Hn

+

∣

∣

∣

∣

∫

V

(∇n−1
ω)[∇n−1(∇φ × �∇φ)] dV

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

V

(∇n−1
ω)[∇n−1∇⊥φ] dV

∣

∣

∣

∣

. (A16)

Beginning with the third term on the right-hand side of

Eq. (A16), we obtain

∣

∣

∣

∣

∫

V

(∇n−1
ω)∇n−1(∇φ × �∇φ) dV

∣

∣

∣

∣

� ‖∇n−1
ω‖2

n−1
∑

i=0

Cn
i ‖∇ i(∇φ)‖r‖∇

n+1−i(∇φ)‖s . (A17)

Then, by using a Gagliardo-Nirenberg inequality,

‖∇ i(∇φ)‖r � c ‖∇n+1(∇φ)‖a
2‖∇φ‖1−a

∞ , (A18)

‖∇n+1−i(∇φ)‖s � c ‖∇n+1(∇φ)‖b
2‖∇φ‖1−b

∞ , (A19)

where 1/r + 1/s = 1/2 and where

1

r
=

i

d
+ a

(

1

2
−

n + 1

d

)

(A20)

1

s
=

n + 1 − i

d
+ b

(

1

2
−

n + 1

d

)

, (A21)

we find that a + b = 1. This yields

∣

∣

∣

∣

∫

V

(∇n−1
ω)∇n−1(∇φ × �∇φ)dV

∣

∣

∣

∣

� cnH
1/2
n P

1/2

n+2‖∇φ‖∞

� Pn+2 +
1

4
cnHn‖∇φ‖2

∞. (A22)

The last term on the right-hand side of Eq. (A16) is easily

handled. Altogether we find

1
2
Ḣn � − 1

2
Hn+1 + Pn+2 + cn,3

(

‖u‖2
∞ + ‖∇φ‖2

∞

)

Hn

+ 1
2
Hn + 1

2
Pn. (A23)

Step 3. Finally, by noting that Xn = Pn+1 + Hn, we use

Eq. (A6) with n → n + 1 to obtain

1
2
Ẋn � − 1

2
Pn+3 + 3

2
Pn+2 + cn,1

(

1
2
‖φ‖4

∞ + ‖u‖2
∞

)

Pn+1

+ cn,2Hn‖∇φ‖2
∞ − 1

2
Hn+1 + Pn+2

+ cn,3

(

‖u‖2
∞ + ‖∇φ‖2

∞

)

Hn + 1
2
Hn + 1

2
Pn

� − 1
2
Pn+3 − 1

2
Hn+1 + 5

2
Pn+2

+ cn,4

(

1
2
‖φ‖4

∞ + ‖u‖2
∞ + ‖∇φ‖2

∞

)

Xn

+ 1
2
Hn + 1

2
Pn. (A24)

By using Pn+2 � P
1/2

n+3P
1/2

n+1 � (ε/2)Pn+3 + (1/2ε)Pn+1, with

ε chosen as ε = 1
5
, we have (with Pn � Pn+1)

1
2
Ẋn � − 1

4
Pn+3 − 1

2
Hn+1

+ cn,4

(

‖∇φ‖2
∞ + 1

2
‖φ‖4

∞ + ‖u‖2
∞ + 1

2

)

Xn.

(A25)

We note that φ is a mean-zero function on a unit periodic

domain, so ‖φ‖∞ � ‖∇φ‖∞. Then we can write

cn,4

(

‖∇φ‖2
∞ + 1

2
‖φ‖4

∞ + ‖u‖2
∞ + 1

2

)

= cn,4

(

‖∇φ‖2
∞ + 1

2

(

‖φ‖2
∞ − 1

)2
+ ‖u‖2

∞ + ‖φ‖2
∞

)

� 2cn,4

(

‖∇φ‖2
∞ + 1

2

(

‖φ‖2
∞ − 1

)2
+ ‖u‖2

∞

)

. (A26)

By dropping the negative terms, Eq. (A25) turns into

1
4
Ẋn � cn,4E∞Xn, (A27)
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where E∞ is defined in Eq. (6). By integrating over [0, T ∗],

we obtain

Xn(T ∗) � cn,5Xn(0) exp

∫ T ∗

0

E∞(τ ) dτ. (A28)

The assumption that the time integral is finite implies that

Xn(T ∗) < ∞, which contradicts the statement in the theorem

that solutions first lose regularity at T ∗. �
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