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Abstract

The periodic 3D Navier-Stokes equations are analyzed in terms of dimensionless, scaled, L2m-

norms of vorticity Dm (1 ≤ m < ∞). The first in this hierarchy, D1, is the global enstrophy.

Three regimes naturally occur in the D1 − Dm plane. Solutions in the first regime, which

lie between two concave curves, are shown to be regular, owing to strong nonlinear depletion.

Moreover, numerical experiments have suggested, so far, that all dynamics lie in this heavily

depleted regime [1] ; new numerical evidence for this is presented. Estimates for the dimension of

a global attractor and a corresponding inertial range are given for this regime. However, two more

regimes can theoretically exist. In the second, which lies between the upper concave curve and a

line, the depletion is insufficient to regularize solutions, so no more than Leray’s weak solutions

exist. In the third, which lies above this line, solutions are regular, but correspond to extreme

initial conditions. The paper ends with a discussion on the possibility of transition between these

regimes.
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1 Introduction

Kolmogorov’s phenomenological statistical theory of turbulence, based on a set of axioms, displays

certain well-known characteristics, such as a k−5/3 spectrum in an inertial range with a wavenumber

cut-off at L−1Re3/4, together with a dissipation range beyond this [2-5]. In contrast, from the

perspective of Navier-Stokes analysis, much remains open in the three-dimensional case [6-19]. A

proof of the existence and uniqueness of solutions is missing so the existence of a global attractor

remains an open question [10-13]. Moreover, characteristics of an energy spectrum, such as its

steepness and wavenumber cut-off, are hard to extract from a time-evolving PDE. An interesting

question is whether numerical experiments on the Navier-Stokes equations can inform the analysis

by suggesting a new and different way of looking at Navier-Stokes turbulence? In the early days of

Navier-Stokes simulations [20-25] less resolution was available but, in recent years, several very large

simulations (up to a maximum of 40963) have been performed [26-32]. The data from two of these,

together with additional computations, are used in an attempt to understand the behaviour of the

solutions from a range of initial conditions.

The variables that will be used in this paper are defined in terms of the Navier-Stokes vorticity

field ω = curlu in the following manner [1, 33-36] :

Ωm(t) =

(

L−3

∫

V
|ω|2mdV

)1/2m

; Dm =
(
̟−1

0 Ωm

)αm
; αm =

2m

4m− 3
, (1.1)

where ̟0 = νL−2 is the frequency on the periodic box [0, L]3. Note that D1 =
(
̟−1

0 Ω1

)2
is

proportional to the H1-norm of the velocity field. A recent set of numerical experiments, using a

variety of initial conditions, each with periodic boundary conditions [1], has suggested that the Dm

are ordered on a descending scale such that Dm+1 < Dm for m ≥ 1. In itself this is not surprising :

while Hölder’s inequality necessarily enforces the Ωm to be ordered on an ascending scale such that

Ωm ≤ Ωm+1, the decreasing nature of the αm means that if the Ωm are bunched sufficiently close,

the ordering of the Dm could easily be the reverse of the Ωm, as indeed is observed numerically.

What is more surprising is the observed strong separation on a logarithmic scale in the descending

sequence of the Dm, in particular from D1. This separation is observed to be of the form7 (see §2)

D
αm/2
1 ≤ Dm ≤ DAm

1 , m ≥ 2 , (1.2)

where 1
2
αm < Am(t) < 1

2
: the lower bound arises from Ω1 ≤ Ωm expressed in the Dm-notation.

The main intention of this paper is to investigate how the numerically observed depletion in

(1.2) severely reduces the strength of the vortex stretching, thereby opening a window through

which we can examine its effect on the regularity problem. To illustrate how this comes about,

let us summarize the results which standard methods (Hölder and Sobolev inequalities) yield when

attempting to estimate the rate of enstrophy production Ḋ1. The result in the unforced case is

1
2
Ḋ1 ≤ ̟0

(
−D2

1/4E + cD3
1

)
, (1.3)

where the dimensionless, bounded energy is E = ν−2L−1
∫

V |u|2dV . This result has been known for

a generation [10, 11, 12, 13] and is derived for the reader in §2. As it stands, (1.3) allows no control

7The exponent has been changed to Am from am in [1] to avoid confusion with αm.
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Figure 1: A cartoon of the three regimes in the D1 − Dm plane represented by the inequalities in (1.8) at some value of

m > 1, with Am,λ defined in (1.4). Two solid concave curves bound regime I : the lower curve derives from Hölder’s inequality

and corresponds to λ = 1, whereas the upper curve is the upper limit of the regular regime (see §3) which corresponds to

λ = 2. The dotted curves approximately denote the region where the computations of §2.1 lie for various values of λ in the range

1.15 ≤ λ ≤ 1.5. The line Dm = CmD1 separates regimes II and III.

over D1 beyond short times for arbitrarily large initial data or for long times from very small initial

data. Moreover, dimensional scaling arguments suggest that no improvement on the D3
1-term can

be obtained when standard methods are used. However, §2 shows that a re-working of this term by

the insertion of the nonlinear depletion

Dm ≤ D
Am,λ

1 , where Am,λ = max
t

Am(t) (1.4)

results in the D3
1-term being replaced by one proportional to D

ξm,λ

1 (see (3.12)) where :

ξm,λ =
χm,λ + 2m− 3

2(m− 1)
, with χm,λ = Am,λ(4m− 3) . (1.5)

The parameter λ, lying in the range 1 ≤ λ ≤ 4, appears through a scaling argument in §2.2 which

suggests that Am,λ and χm,λ take the form

Am,λ =
mλ+ 1− λ

4m− 3
and χm,λ = mλ+ 1− λ . (1.6)

Note that when λ = 4, then Am,4 = 1. The value of λ chosen in the above range depends on the

initial conditions of a given numerical simulation. Equations (1.5) and (1.6) yield

ξm,λ = 1 + 1
2
λ (1.7)

which is explicitly independent of m. To gain control over D1, for long times and large initial data,

it is thus necessary to restrict ξm,λ to ξm,λ < 2 and λ to the range8 1 ≤ λ < 2 : see Fig. 1. It

appears that the numerical data in [1] can be fitted to (1.6) with λ sitting well within this range :

λmin is chosen as the minimum value of λ for any given numerical fit. In §2.1 we suggest that the

range 1.15 ≤ λmin ≤ 1.5 is appropriate for a range of initial conditions.

8The lower bound λ ≥ 1 derives from the lower bound on Dm in (1.2).
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While (1.4) is designated as regime I it is nevertheless theoretically possible that there exist other

regimes beyond this (see Fig 1). The following regimes are defined and analyzed in §3 and §4 :

D
αm/2
1 ≤ Dm ≤ D

Am,λ

1 , (regime I) ;

D
Am,λ

1 < Dm ≤ CmD1 , (regime II) ; (1.8)

CmD1 < Dm , (regime III) ,

with regime I corresponding to the range 1 ≤ λ ≤ 2. The constant Cm is determined in §4, where it

is shown that regime II leads to no improvement in the D3
1 estimate. Solutions are actually regular

in regime III, but it is an open question whether this regime is physical. Fig. 1 is a cartoon of the

regimes in (1.8).

Remarkably, the two respective values of the exponents ξm,λ = 1 + 1
2
λ and ξm,4 = 3 (λ = 4) in

regimes I and II, are close to those found in a paper by Lu and Doering [37], who used a numerical

calculus of variations argument to find the value(s) of the exponent ξm,λ when the rate of enstrophy

production is maximized subject to the constraint divu = 0. They found that two branches existed,

the lower being D1.78
1 and the uppermost D2.997

1 . Later, Schumacher, Eckhardt and Doering [38]

suggested that 7/4 and 3 were the likely values of these two exponents ; the exponent ξm,λ = 7/4

corresponds to λ = 1.5 which lies at the upper end of our observed range 1.15 ≤ λ ≤ 1.5.

Boundedness from above of D1 establishes existence and uniqueness and is the missing ingredient

in the search for the existence of a global attractor A [10-13], albeit limited to regime I. In §3.2 it is

shown that estimates for the Lyapunov dimension of A are found to be (Proposition 3)

dL(A) ≤ cmRe
3(6−λ)
5(2−λ) or cmGr

3(4−λ)
5(2−λ) , (1.9)

where Re and Gr are respectively the Reynolds and Grashof numbers defined in §2. §5 shows

that there is a corresponding energy spectrum in an inertial range for which E(k) ∼ k−qm,λ where

qm,λ = 3 − 4/3λ, with a cut-off at L−1Re3λ/4. The lower concave curve in Fig. 1 corresponds to

λ = 1 for which qm,1 = 5/3 with a cut-off at L−1Re3/4. Regime I corresponds to 5/3 ≤ qm,λ < 7/3.

If these properties of regime I turn out to be typical of Navier-Stokes flows in periodic domains,

then the existence and uniqueness results derived here are consistent with the observation that

both numerical solutions [20-32] and experimental data [39, 40], while providing evidence of strong

intermittency, have shown none of the violent super-exponential or singular growth observed in the

3D Euler equations [41, 42], nor have they shown any positive evidence of a lack of uniqueness. A

related question is why a regime with such heavy depletion is favoured? Moreover, what vortical

structures would correspond to it? Formally, using Sobolev and Hölder inequalities in d dimensions

(1 ≤ d ≤ 3) to estimate the vortex-stretching term, as in (1.3), results in ξm,λ = (6 − d)/(4 − d),

which takes the expected value ξm,4 = 3 when d = 3. The value of d corresponding to ξm,λ = 1+ 1
2
λ

is dλ = 4(λ − 1)/λ which takes values from d1.15 ≈ 0.52 to d1.5 = 4/3. This suggests that the

dominant structures which give rise to the depletion observed in regime I could be the pasta-mix of

tubes on which both vorticity and strain have long been numerically observed to accumulate [39, 43]

but also suggests that some vortical structures may lie closer to scattered points.

In contrast, §4 shows that in regime II (labelled in Fig 1) these methods fail to find a proof of the

existence of an attractor. Only Leray’s weak solutions are known to exist and qm,λ lies at its outer

limit with a value of 8/3 for the sustenance of an energy cascade [44, 45]. In regime III, vorticity
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norms are under control, although it is possible that this regime represents an extreme state. While

numerical evidence suggests that the Navier-Stokes equations operate in regime I only, it is still

possible that solutions could jump between regimes, corresponding to some unusual initial conditions

or higher Reynolds numbers. These possibilities are discussed in §6.

2 Three Navier-Stokes regimes

Consider the forced 3D Navier-Stokes equations on the periodic domain [0, L]3 :

∂tu+ u · ∇u = ν∆u−∇p+ f(x) , (2.1)

with divu = 0. The forcing function f(x) and its derivatives are considered to be L2-bounded

[46]. Estimates will be made in terms of the Grashof number Gr and the Reynolds number whose

definitions are [46]

Gr =
L3frms

ν2
, f2

rms = L−3‖f‖22 , (2.2)

Re =
LU0

ν
, U2

0 = L−3
〈
‖u‖22

〉

T
, (2.3)

and where the time average to time T is given by

〈g(·)〉T =
1

T

∫ T

0
g(τ) dτ . (2.4)

Doering and Foias [46] have introduced a simplified form of forcing with the mild restriction that

involves it peaking around a length scale ℓ, which, for simplicity, is taken here to be the box length L.

Then they have shown that Navier-Stokes solutions obey Gr ≤ cRe2 and that the global enstrophy

satisfies

〈D1〉T ≤ GrRe+O
(
T−1

)
≤ cRe3 +O

(
T−1

)
. (2.5)

In fact, all the 〈Dm〉T for 1 ≤ m ≤ ∞ are bounded [34].

2.1 A summary of numerical work

The results from several numerical experiments, some of which were reported in [1]), are summarized

in Figs. 2, 3 and 4 which show plots of

Am(t) =
lnDm(t)

lnD1(t)
(2.6)

versus time t, with the exception of Fig. 3c, in which the horizontal axis is Reλ : this the conventional

notation for the Taylor micro-scale Reynolds number so the subscript λ should not be confused with

the parameter λ in (1.4). The Dm are replaced by the time averages 〈Dm〉T and the Am by Am :

1. Figs. 2a-d come from a pseudo-spectral 5123 simulation of the forced Navier-Stokes equations

on a (2π)3 domain with random initial conditions : in all cases maxtAm ≤ 0.46, with m = 2

at the upper limit, but with values dropping close to about 0.37 as m → 9. Fig. 2a is the

result of Kolmogorov forcing f(x, y, z) = f0 sin(k1x) with f0 = 0.005 and k1 = 1, which keeps
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the Grashof number Gr constant (Gr = 8.8 × 107). Figs. 2b-d are the result of white-noise

forcing restricted to those modes for which |k| = 1, i.e.,

f(x, y, z) = f0(t) cos{k1x+ k2y + k3z} . (2.7)

The amplitude f0(t) is a zero-mean (Gr = L3fAν
−2), Gaussian white noise with variance

〈f0(t) f0(t
′)〉 = fA δ(t − t′). The values of Reλ for the simulations shown in Figs. 2b-d are

Reλ1,2,3 = 97, 117 and 192 respectively.

2. Fig. 3a is a decaying simulation of fully developed Navier-Stokes turbulence performed by Kerr

[31, 1] who used an anisotropic 1024 × 2048 × 512 mesh in a 2π(2 × 8 × 1) domain, with

symmetries applied to the y and z directions. As summarized in [1, 31], the simulation has

long anti-parallel vortices as initial conditions from which develop three sets of reconnections

at t = 16, 96 and 256. The figure is a plot of Am for m = 2 descending to m = 9 where

maxtAm takes its maximum at m = 2 (0.46), and decreases to about 3/8 as m → 9.

3. Fig. 3b shows a plot from a decaying version of the simulation in Figs. 2a-d. maxtAm ≤ 0.43,

but decreases close to 0.37 as m → 9.

4. Fig. 3c derives from a DNS data-base using a massively parallel pseudo-spectral code run on

105 processors, which includes simulations with resolutions up to 40963 and Taylor-Reynolds

number up to Reλ ∼ 1000 [28, 29, 30]. In order to maintain a stationary state, turbulence

is forced numerically at the large scales. Results are shown using the stochastic forcing of

Eswaran & Pope [23] (denoted as EP), as well as a deterministic scheme described in [29]

(denoted as FEK). The figure shows the m = 2 case descending to m = 6 : open and closed

symbols in the figure correspond to EP and FEK forcing, respectively. These schemes are

summarized in more detail in [1]. Here Am is defined by Am = ln 〈Dm〉T / ln 〈D1〉T while the

horizontal axis denotes values of Reλ which goes up to 103, while maxAm ≤ 0.42.

5. The simulations above have been performed in the range 2 ≤ m ≥ 9. In Fig. 4 we give one

example of a simulation in the range 1 ≤ m ≤ 2. Three values of (m, Am,λ) are given in table

2. There it can be seen that the range of λ is 1.19 ≤ λ ≤ 1.5.

2.2 How to choose maxt Am

λ 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

A2,λ 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

A6,λ 0.31 0.32 0.33 0.35 0.36 0.36 0.38 0.39 0.40

A9,λ 0.30 0.31 0.32 0.33 0.35 0.36 0.37 0.38 0.39

Table 1: Table of values of λ and A2,λ, A6,λ and A9,λ corresponding to Figs. 2 and 3.

The numerical experiments reported above show that Am has values lying in a wide range. Is

there a way of choosing maxtAm as a function of m in a simple manner consistent with the results

of these simulations? The following is a consistency argument based on the inequalities the Dm

must obey.
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Figure 2: Plots of Am versus time for four forced simulations : in all of these maxt Am < 0.5. Figs 2a-d are the result of

pseudo-spectral 5123 simulations on a cubical [0, 2π]3-domain with random initial conditions. Fig 2a is the result of Kolmogorov

forcing with |f0| = 0.005 and k1 = 1, while figs 2b-d are plots for three different values of Reλ, namely Reλ1,2,3
= 97, 117 and

192 respectively, under the influence of white-noise forcing : see the text for a more detailed explanation.

Firstly it is easy to prove that

Ωm(p+q)
m ≤ Ω

q(m−p)
m−p Ω

p(m+q)
m+q . (2.8)

Let p = m− 1 and q = 1 to give Ωm2

m ≤ Ω1Ω
m2−1
m+1 . In terms of Dm, this translates to

Dm2

m ≤ D
αm/2
1 D

αm(m2−1)/αm+1

m+1 . (2.9)

Suppressing the λ-label on Am+1 in the depletion Dm+1 ≤ D
Am+1

1 , we obtain

Dm ≤ D
1+Am+1(m−1)(4m+1)

m(4m−3)

1 . (2.10)

For the exponent on the right-hand side of (2.9) to be consistent with Dm ≤ DAm

1 , we require

1 +Am+1(m− 1)(4m+ 1)

m(4m− 3)
= Am . (2.11)

By using the definition χm = Am(4m− 3), this reduces to

1 + (m− 1)χm+1 = mχm , (2.12)

which is solved to give :

Proposition 1 The solution of (2.12) is given by

χm,λ = mλ+ 1− λ , or Am,λ =
mλ+ 1− λ

4m− 3
, (2.13)

where the constant λ lies in the range 1 ≤ λ ≤ 4.
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Figure 3: Plots 3a, b are of Am defined in (2.6) versus time for two decaying simulations for which maxt Am < 0.5. Fig. 3a is

a 1024× 2048× 512 pseudo-spectral simulation on a long 4π× 16π× 2π domain with anti-parallel initial conditions [31, 1]. Fig.

3b is a decaying version of the 5123 simulation as in Figs. 2a-d. Fig. 3c is a plot of Am defined by Am = ln 〈Dm〉T / ln 〈D1〉T
arising from the TAMU database with the horizontal axis denoting values of Reλ. Open and closed symbols denote results from

two types of forcing (EP and FEK) for statistically steady flows : see [1].
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Figure 4: Example of a simulation with white-noise forcing, as in Fig. 2d (Reλ = 192) performed in the range 1 ≤ m ≤ 2.

In the right-hand figure D1 is included whereas it is not in Fig. 2d.

The fit of (2.13) to the figures in §2.1 is not perfect in the sense that numerical trajectories do not

follow exactly the concave curves of Fig. 1, so the appropriate value of λ from an initial condition

needs to be estimated. To achieve this, we label as λm those values computed from maxtAm in a

given figure. These increase slightly with m ; for example, in Fig 3a, λ2 = 1.4 at m = 2, whereas

λ9 = 1.45 at m = 9 (see table 1). λmin, defined in (2.14), is taken as the minimum of a set of

values of λ computed over a range of m from a given initial condition. This can then be used in the

estimates for the attractor dimension or energy spectrum in the following sections.

λmin = min {λm : 2 ≤ m ≤ N} . (2.14)

m 1.1 1.5 1.9

Am,λ 0.85 0.55 0.45

λ 1.5 1.3 1.19

Table 2: Table of values of λ corresponding to A1.1,λ, A1.5,λ and A1.9,λ corresponding to Fig. 4.
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2.3 A division into three regimes

The scaling ansatz for Am,λ in (2.13) derived in Proposition 1 suggests that the D1−Dm plane can

be divided into different regimes for the range9 1 ≤ λ ≤ 2 :

Regime I : D
m

4m−3

1 ≤ Dm ≤ D
Am,λ

1 : the lower bound is Ω1 ≤ Ωm expressed in the Dm-notation.

Regime II : D
Am,λ

1 < Dm ≤ CmD1, where
10 Cηm

m = ̟2,m/̟1,m = c1,mc2,m, and ηm = 2m
3(m−1) .

Regime III : CmD1 < Dm.

Regime III appears in the following way. Using the standard contradiction method11, for 1 < m < ∞

(̟i,m are constants), the Dm obey the differential inequality [35, 36]

Ḋm ≤ D3
m

{

−̟1,m

(
Dm+1

Dm

)ρm

+̟2,m

}

+̟3,mGrD
αm−1
αm

m , (2.15)

ρm = 2
3
m(4m+ 1) . (2.16)

Moreover, for m > 1 it is easily proved that

Dm

D1
≤

(
Dm+1

Dm

)(m−1)(4m+1)

, (2.17)

which changes (2.15) and (2.16) into

Ḋm ≤ D3
m

{

−̟1,m

(
Dm

D1

)ηm

+̟2,m

}

+̟3,mGrD
αm−1
αm

m , (2.18)

ηm =
2m

3(m− 1)
. (2.19)

Clearly, in regime III the combination of terms within the braces is negative and can be neglected.

In this regime the dissipation is sufficiently strong to control solutions rather than depletion reducing

the nonlinearity. In the unforced case, the Dm always decay ; at most, they grow only algebraically

in time in the forced case (see §4). Moreover, Ω1 ≤ Ωm universally implies that

(
Dm

D1

)ηm

D2
m ≥ 1 , (2.20)

which means that Dm ≥ 1 in regime I, while in regime II there is a lower bound D2
m ≥ C−ηm

m .

9The two regimes I and II could be merged by using the range 1 ≤ λ ≤ 4 but this leaves a gap between D1 and

CmD1 which causes technical difficulties.
10The constants ci,m in̟1,m = ̟0c

−1
1,m and̟2,m = ̟0c2,m have the following properties [33, 35] : c1,m is a Sobolev

constant multiplied by m2/(m− 1) whereas c2,m derives from the constant in ‖∇u‖p ≤ cp‖ω‖p for 1 < p < ∞.
11This method assumes the existence of a maximal interval of existence and uniqueness on an interval [0, T ∗), which

means that D1 must be infinite at T ∗ : then, in any subsequent calculation, one considers the behaviour of D1 as

t → T ∗. If this limit is finite then a contradiction has occurred, thus invalidating the original assumption of a maximal

interval. This cannot be zero so it must be infinite. The value of the method is that it allows the differentiation of the

Dm on [0, T ∗).
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3 Regime I

3.1 Depletion resulting in an absorbing ball for D1

It has long been understood that the H1-norm of the velocity field (D1 in the notation of this paper)

controls all the regularity properties of 3D Navier-Stokes equations [10, 11, 12, 13]. It is also the

essential missing ingredient in the search for the proof of the existence of a 3D Navier-Stokes global

attractor. What is required is an “absorbing ball” for this norm, which consists of a ball of finite

radius into which all solutions are drawn for large times. In what follows, estimates are made for the

forced case in terms of the Grashof number Gr or Reynolds number Re. In the unforced case the

conclusions regarding the finiteness of D1 still stand except that the radius of the ball decays and

the attractor is just the origin.

In this context it is difficult to handle a wide variety of forcing functions analytically. For simplicity

we shall remain with the properties of the forcing as in Doering and Foias [46] who took forcing at a

single scale ℓ, taken here to be the box-scale L, to make estimates in terms of the Grashof number

Gr or Reynolds number Re defined in (2.2).

The first task is to illustrate why the standard estimate for D1 produces an apparently unsur-

mountable problem. Note that from the definition of the Dm in (1.1) D1 = Lν−2‖ω‖22 so, using

the standard contradiction method (see footnote 10), a formal differential inequality for D1 is

1
2
Ḋ1 ≤ Lν−2

{

−ν

∫

V
|∇ω|2 dV +

∫

V
|∇u||ω|2 dV + L−1

(∫

V
|ω|2 dV

)1/2

‖f‖2

}

. (3.1)

Dealing with the negative term first, an integration by parts gives

∫

V
|ω|2 dV ≤

(∫

V
|∇ω|2dV

)1/2(∫

V
|u|2dV

)1/2

, (3.2)

where the dimensionless energy E is defined as

E = ν−2L−1

∫

V
|u|2 dV . (3.3)

which is always bounded such that [10-13]

limt→∞E ≤ cGr2 . (3.4)

Then the nonlinear term in (3.1) can be estimated in two ways :

1. By using a Sobolev inequality in the standard way [10-13] ;

2. By invoking the nonlinear depletion of regime I.

(1) The standard method simply involves a Schwarz inequality to estimate the nonlinear term as
∫

V
|∇u||ω|2 dV ≤ ‖ω‖2‖ω‖24 . (3.5)

After the application of the Sobolev inequality ‖ω‖4 ≤ c ‖∇ω‖
3/4
2 ‖ω‖

1/4
2 , this becomes

∫

V
|∇u||ω|2 dV ≤ c ‖∇ω‖

3/2
2 ‖ω‖

3/2
2

≤
3ν

4
‖∇ω‖22 +

c

4ν3
‖ω‖62 . (3.6)
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(3.1) then becomes

1
2
Ḋ1 ≤ ̟0

(

−
1

4

D2
1

E
+ cD3

1 +GrD
1/2
1

)

. (3.7)

Clearly the cubic nonlinearity is too strong for the quadratic negative term : all we can deduce is

that D1 is bounded from above only for short times or for small initial data. The difficulty caused

by this term has been known for many decades : see [10, 11, 12, 13] and also Lu and Doering [37].

(2) Now we turn to using the nonlinear depletion of regime I. How might the insertion ofDm ≤ D
Am,λ

1

mollify the cubic exponent in (3.7)? We return to (3.1) and estimate the nonlinear term as
∫

V
|∇u||ω|2dV =

∫

V
|ω|

2m−3
m−1 |ω|

1
m−1 |∇u|dV

≤

(∫

V
|ω|2dV

) 2m−3
2(m−1)

(∫

V
|ω|2mdV

) 1
2m(m−1)

(∫

V
|∇u|2mdV

) 1
2m

≤ cm

(∫

V
|ω|2dV

) 2m−3
2(m−1)

(∫

V
|ω|2mdV

) 1
2(m−1)

= cmL3̟3
0D

2m−3
2m−2

1 D
4m−3
2m−2
m , 1 < m < ∞ . (3.8)

based on ‖∇u‖p ≤ cp‖ω‖p, for 1 < p < ∞. Inserting the depletion Dm ≤ D
Am,λ

1 ,

Lν−2

∫

V
|∇u||ω|2 dV ≤ cm̟0D

ξm,λ

1 , (3.9)

where ξm,λ is defined as in (1.5) but repeated here

ξm,λ =
χm,λ + 2m− 3

2(m− 1)
, χm,λ = Am,λ(4m− 3) = mλ+ 1− λ . (3.10)

Thus we have

ξm,λ = 1 + 1
2
λ , (3.11)

which is explicitly m-independent. Thus the equivalent of (3.7) is

1
2
Ḋ1 ≤ ̟0

(

−
D2

1

E
+ cmD

1+ 1
2
λ

1 +GrD
1/2
1

)

. (3.12)

Given that E is bounded above, D1 is always under control provided λ is restricted to the range

1 ≤ λ < 2. This is expressed in the following :

Proposition 2 If the solution always remains in regime I (1 ≤ λ < 2), there exists an absorbing ball

for D1 of radius

limt→∞D1 ≤ cmGr
4

2−λ +O
(

Gr4/3
)

. (3.13)

Remark 1 : The range of control over D1 in 1 ≤ λ < 2 can be extended to λ = 2 as (3.12) shows

that there is an exponentially growing bound on D1 at this value.

Remark 2 : Note that the values of λ = λmin corresponding to the numerical experiments in §2 lie

well within the range (1 ≤ λ < 2) of validity, as illustrated by Fig. 1.

Remark 3 : From (3.13) and the standard properties of the Navier-Stokes equations [10, 11, 12, 13],

we conclude that a global attractor A exists in this regime, which is a compact L2-bounded ball for

the velocity field u. cm is a generic constant dependent only on m.
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3.2 An estimate for the attractor dimension

It is now possible to estimate the Lyapunov dimension of the global attractor A, which has been

shown to exist as a result of Proposition 2, subject to the depletion in regime I. A connection between

the system dynamics and the attractor dimension is provided by the notion of the Lyapunov exponents

through the Kaplan-Yorke formula. For ODEs the Lyapunov exponents control the exponential growth

or contraction of volume elements in phase space : the Kaplan-Yorke formula expresses the balance

between volume growth and contraction realized on the attractor. It has been rigorously applied to

global attractors in PDEs by Constantin and Foias [47, 10] : see also [11, 12, 48]. The formula is the

following : for Lyapunov exponents labelled in descending order and designated by µn, the Lyapunov

dimension dL is defined in terms of these by

dL = N − 1 +
µ1 + . . .+ µN−1

−µN
, (3.14)

where the number N of µn is chosen to satisfy

N−1∑

n=1

µn ≥ 0 but

N∑

n=1

µn < 0 . (3.15)

Note that according to the definition of N , the ratio of exponents in (3.14) satisfies

0 ≤
µ1 + . . .+ µN−1

−µN
< 1 , (3.16)

so the formula generally yields a non-integer dimension such that

N − 1 ≤ dL < N . (3.17)

The value of N that turns the sign of the sum of the Lyapunov exponents, as in (3.15), is that

value of N that bounds above dL and hence the Hausdorff and fractal dimensions dH and dF . For

a discussion of generalized dimensions see the paper by Hentschel and Procaccia [49]. To use the

method for PDEs as developed in [47, 10] the phase space is replaced by u ∈ L2 ∩ divu = 0, which

is infinite dimensional. The solution u(t) forms an orbit in this space, with different sets of initial

conditions u(0) + δui(0), which evolve into u(t) + δui(t) for i = 1, . . . , N . The linearized form of

the Navier-Stokes equations in terms of δu of u is

∂t(δu) + u · ∇δu+ δu · ∇u = ν∆δu−∇δp , (3.18)

which can also be written in the form

∂t(δu) = Mδu . (3.19)

If they are chosen to be linearly independent, initially these δui form an N -volume or parallelpiped

of volume

VN (t) = |δu1 ∧ δu2 . . . ∧ δuN | . (3.20)

It is now necessary to find the time evolution of VN . This is given by

V̇N = VNTr [PNMPN ] , (3.21)
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which is easily solved to give

VN (t) = VN (0) exp

∫ t

0
Tr [PNMPN ] (τ) dτ . (3.22)

PN (t) is an L2-orthogonal projection, using the orthonormal set of functions {φi}, onto the finite

dimensional subspace PNL2, which spans the set of vectors δui for i = 1, ..., N . In terms of the

time average 〈·〉t up to time t, the sum of the first N global Lyapunov exponents is taken to be

[47, 10]
N∑

n=1

µn = 〈Tr [PNMPN ]〉t . (3.23)

As in (3.15), we want to find the value of N that turns the sign of 〈Tr [PNMPN ]〉t and for which

volume elements contract to zero. This value of N bounds above dL as in (3.14). To estimate this

we write

Tr [PNMPN ] =
N∑

n=1

∫

V
φn · {ν∆φn − u · ∇φn − φn · ∇u−∇p̃ (φn)} dV. (3.24)

Since div δmun = 0 for all n, then divφn = 0 also and so the pressure term integrates away, as does

the second term

Tr [PNMPN ] ≤ −ν
N∑

n=1

∫

V
|∇φn|

2 dV +
N∑

n=1

∫

V
|∇u| |φn|

2 dV. (3.25)

Because the φn are orthonormal they obey the relations

N∑

n=1

∫

V
|φn|

2 dV = N, and Tr [PN (−∆)PN ] =

N∑

n=1

∫

V
|∇φn|

2 dV. (3.26)

In 3D the φn satisfy the Lieb-Thirring inequalities [47, 10, 13, 11] for orthonormal functions

∫

V

(
N∑

n=1

|φn|
2

)5/3

dV ≤ c

N∑

n=1

∫

V
|∇φn|

2 dV, (3.27)

where c is independent of N . Moreover, it is known that the first N eigenvalues of the Stokes

operator in three-dimensions satisfy

Tr [PN (−∆)PN ] ≥ cN5/3L−2 . (3.28)

To exploit the Lieb-Thirring inequality (3.27) to estimate the last term in (3.25) we write it as

N∑

n=1

∫

V
|∇u| |φn|

2 dV ≤

[∫

V
|∇u|5/2 dV

]2/5




∫

V

(
N∑

n=1

|φn|
2

)5/3

dV





3/5

. (3.29)

Hence, using (3.27) and time averaging 〈·〉t, we find
〈

N∑

n=1

∫

V
|∇u| |φn|

2 dV

〉

t

≤ c

〈

(Tr [PN (−∆)PN ])3/5
(∫

V
|∇u|5/2 dV

)2/5
〉

t

≤
3ν

5
〈Tr [PN (−∆)PN ]〉t +

2c

5ν3/2

〈∫

Ω
|∇u|5/2 dV

〉

t

(3.30)
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and so (3.25) can be written as

〈Tr [PNMPN ]〉t ≤ −
2

5
ν 〈Tr [PN (−∆)PN ]〉t +

2

5
c ν−3/2

〈∫

V
|∇u|5/2 dV

〉

t

. (3.31)

To estimate the nonlinear term we use Hölder’s inequality to obtain (m > 1)

∫

V
|∇u|5/2 dV ≤ c

∫

V
|ω|5/2 dV

≤ c

(∫

V
|ω|2 dV

) 4m−5
4(m−1)

(∫

V
|ω|2m dV

) 1
4(m−1)

≤ c̟
5/2
0 L3D

4m−5
4(m−1)

1 D
4m−3
4(m−1)
m . (3.32)

Therefore, using this and (3.28), we find

̟−1
0 〈Tr [PNMPN ]〉t ≤ −c1N

5/3 + c2

〈

D
4m−5
4(m−1)

1 D
4m−3
4(m−1)
m

〉

t

. (3.33)

It is at this point where the depletion of nonlinearity Dm ≤ D
Am,λ

1 is used, thereby giving

〈

D
4m−5
4(m−1)

1 D
4m−3
4(m−1)
m

〉

t

≤ 〈D1〉t
(
limt→∞D1

)χm,λ−1

4(m−1) , (3.34)

where χm,λ = Am,λ(4m − 3) as defined in (1.5). Proposition 2 and the estimate 〈D1〉t ≤ cGrRe

from [46] then allow us to write

〈D1〉t
(
limt→∞D1

)χm,λ−1

4(m−1) ≤ c (GrRe)Gr
χm,λ−1

2m−1−χm,λ ≤ cRe
6m−5−χm,λ
2m−1−χm,λ , (3.35)

and so (3.33) can be written as

〈Tr [PNMPN ]〉t ≤ ̟0

(

−c1N
5/3 + c2Re

6m−5−χm,λ
2m−1−χm,λ

)

. (3.36)

To find an estimate solely in terms of Gr the (GrRe)-term of (3.35) is replaced by Gr2. Choosing

χm,λ as in (2.13), we have proved :

Proposition 3 If the solution always remains in regime I the Lyapunov dimension of the global

attractor A is estimated as

dL(A) ≤ c1,mRe
3
5(

6−λ
2−λ) , (3.37)

or, alternatively, as

dL(A) ≤ c2,mGr
3
5(

4−λ
2−λ) . (3.38)

4 Regimes II and III

In §3, regime I has been defined to lie in the region Dm ≤ D
Am,λ

1 for 1 ≤ λ < 2, with regime II

defined as the region where this inequality has been reversed up to CmD1. One could fuse regimes

I and II together by taking λ in the wider range 1 ≤ λ ≤ 4 but we have no control over D1 for

2 < λ ≤ 4. In this section we choose to remain with the definition of regime II as in (1.8).
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To test whether there is any depletion in regime II let us repeat inequality (3.8) for the nonlinear

term and use Dm ≤ CmD1

∫

V
|∇u||ω|2 dV ≤ c L3̟3

0D
2m−3
2m−2

1 D
4m−3
2m−2
m

≤ c L3̟3
0C

4m−3
2m−2
m D3

1 . (4.1)

Thus ξm,4 = 3 and there is no depletion of nonlinearity in the upper bound Dm ≤ CmD1. Moreover,

when the scaling argument in §2.2 is repeated, this too shows no depletion. To test whether the

dissipation term in (2.18) is changed by the use of the lower bound D
Am,λ

1 < Dm we consider first

(2.20)

D2
m

(
Dm

D1

)ηm

> D
Am,λ(2+ηm)−ηm
1 ≡ D

∆m,λ

1 , (4.2)

which improves the lower bound of unity in (2.20) and thereby increases the dissipation. In fact

∆m,λ =
2

3
(λ− 1) . (4.3)

Let us assume that initial data is placed in regime II at a time t0 : then dividing (2.18) by D3
m we

find
1
2

d

dt
D−2

m ≥ D−2
m

{

̟1,mD
∆m,λ

1

}

−̟2,m , (4.4)

where, for convenience, we have taken the unforced case [35]. An integration over [t0, t] gives

e−(t−t0)g(t)D−2
m (t) ≥ D−2

m (t0)− 2̟2,m

∫ t

t0

e−(τ−t0)g(τ) dτ (4.5)

where

g(t) =
2̟1,m

t− t0

∫ t

t0

D
∆m,λ

1 dτ . (4.6)

The main question here is whether there exists a sufficiently large lower bound on the time average

g(t) to prove that the right hand side of (4.5) never develops a zero for some wide range of initial

data? The problem is that the size of
∫ t
t0
D

∆m,λ

1 dτ over very short intervals [t0, t] is indeterminate.

This lower bound would have to be large enough on arbitrarily small intervals for the negative

integral of the exponential in (4.5) to be always smaller than D−2
m (t0) to prevent a zero forming on

the right-hand side.

Finally, regime III is easily dealt with because the condition CmD1 < Dm allows us to drop two

of the three terms in the (2.18) leaving us with Ḋm ≤ 0 in the unforced case, thus implying decay

from initial data. In the forced case Ḋm ≤ ̟3,mGrD
1−1/αm
m and so it follows that any Dm that

satisfies this is bounded for all time as in

Dm ≤
[

Dα−1
m

m (t0) + α−1
m ̟3,mGr (t− t0)

]αm

(4.7)

5 Energy spectra and typical length scales in regimes I & II

Some ideas are explained in this section on how information might be extracted from the analysis on

the properties of an energy spectrum E(k) corresponding to regimes I and II. Doering and Gibbon
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[44] have shown how to associate bounds of time averages with the moments of this spectrum by

following some ideas in [2, 45]. It is these arguments we shall summarize first.

In the standard manner, we define

Hn(t) =

∫

V
|∇nu|2 dV with H0 =

∫

V
|u|2 dV , (5.1)

where the label n refers to derivatives. Then it was shown in [44] that to take proper account of the

forcing these require an additive adjustment such that

Fn = Hn + τ2‖∇nf‖22 , (5.2)

where τ−1 ∼ ̟0Gr
1
2
+ε for any ε > 0. This formalism now allows us to define the set of ‘wave-

numbers’ κn,0 and κn,1 such that

κ2nn,0 = Fn/F0 , κ
2(n−1)
n,1 = Fn/F1 . (5.3)

Using the fact that

1
2
Ḣ1 ≤ −νH2 +

∫

V
|∇u||ω|2dV + forcing , (5.4)

which is just another way of expressing (3.1), we can re-visit the inequality in (3.8) to estimate the

integral in (5.4) with the application of the depletion of regime I
∫

V
|∇u||ω|2dV ≤ ̟0

(
L3̟2

0

)1−ξm,λ H
ξm,λ

1 = ̟0H1D
ξm,λ−1
1 , (5.5)

which, again, is just another expression of (3.9). The bounds 1 ≤ λ < 2 mean that

3/2 ≤ ξm,λ < 2 , (5.6)

and so
1
2
Ḣ1 ≤ ̟0

{

−L2H2 +H1D
ξm,λ−1
1

}

+ forcing , (5.7)

which, when the Hn are adjusted to the Fn defined in (5.2) as in [44], becomes

1
2
Ḟ1 ≤ ̟0

{

−L2F2 + F1D
ξm,λ−1
1

}

+ cn̟0Gr F1 . (5.8)

Dividing (5.8) by F1 and time averaging, we get [44]

L2
〈
κ22,1

〉

T
≤ 〈D1〉

ξm,λ−1
T ≤ cRe3(ξm,λ−1) . (5.9)

Moreover, we can also write

〈κ2,0〉T ≤ 〈κ2,1κ1,0〉
1/2
T ≤

〈
κ22,1

〉1/4

T

〈
κ21,0

〉1/4

T
. (5.10)

In [44] it was shown that Leray’s energy inequality leads to an estimate for L2
〈
κ21,0

〉

T
≤ Re1+ε,

although from now on we ignore the infinitesimal ε > 0. We combine this with (5.10) to show that12

〈κ2,0〉T ≤ cReσm,λ +O
(

Gr1/4
)

, (5.11)

12To find a good estimate for 〈κn,0〉T for n > 2 using the depletion is a difficult task. The estimate for this, found

in [44] and quoted in (5.22), is valid in regime II where no depletion result has been used.
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where

σm,λ =
3(χm,λ − 1) + 2(m− 1)

8(m− 1)
= (3λ+ 2)/8 . (5.12)

To interpret this estimate physically in terms of statistical turbulence theory (restricting attention

to forcing at the longest wavelength ℓ = L), suppose that Gr is high enough and the resulting flow

is turbulent, ergodic and isotropic enough in the limit T → ∞ that the wave-numbers 〈κn,0〉T may

be identified with the moments of the energy spectrum E(k) according to

〈κn,0〉T :=

(∫∞
L−1 k

2nE(k) dk
∫∞
L−1 E(k) dk

)1/2n

. (5.13)

The a priori constraints on E(k) are that the velocity U and energy dissipation rate ǫ obey

U2 =

∫ ∞

L−1

E(k) dk ǫ =

∫ ∞

L−1

νk2E(k) dk . (5.14)

Suppose also that E(k) displays an “inertial range” in the sense that it scales with a power of k up

to an effective cut-off wavenumber kc. For simplicity, let us write

E(k) =

{

Ak−q, L−1 ≤ k ≤ kc ,

0, k > kc ,
(5.15)

We also assume that kc diverges as ν → 0, while U2 and ǫ remain finite, and that A depends only

upon the energy flux ǫ and the outer length scale ℓ = L. Then we have the asymptotic relations

ǫ ∼
U3

L
and Lkc ∼

( ǫ

ν3

) 1
9−3q

L
4

9−3q ∼ Re
1

3−q . (5.16)

Then the moments of the spectrum 〈κn,0〉T satisfy

L 〈κn,0〉T ∼ (Lkc)
1− q−1

2n ∼ Re
1

3−q
− 1

2n

(

q−1
3−q

)

. (5.17)

Now let us compare this scaling result with the estimate in (5.11) for n = 2 with q = qm,λ : this

correspondence tells us that

qm,λ =
12σm,λ − 5

4σm,λ − 1
, with qm,λ = 3−

4

3λ
. (5.18)

In fact, for regime I, qm,λ lies between

5/3 ≤ qm,λ < 7/3 . (5.19)

The 5/3 at the lower end is the conventional Kolmogorov result which rises to just under 7/3. The

cut-off of the inertial range as (5.15) is given by

Lkc ∼ Re1/(3−q) so Lkc,λ ∼ Re3λ/4 . (5.20)

A resolution length is inbuilt into this formalism : the estimate for L 〈κ2,0〉T , with an exponent of σm,

can be interpreted as an average length scale. Thus, the first L 〈κ1,0〉T is followed by an estimate

for L 〈κ2,0〉T at χm,λ = mλ+ 1− λ :

L 〈κ1,0〉T ≤ Re1/2 , L 〈κ2,0,λ〉T ≤ Reσm,λ , (5.21)
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λ 1 2 4

σm,λ = (3λ+ 2)/8 5/8 1 7/4

qm,λ = 3− 4/3λ 5/3 7/3 8/3

Lkc ≤ Re3λ/4 Re3/4 Re3/2 Re3

Table 3: The entries in the second and third columns are the lower and upper bounds of σm,λ, qm,λ and Lkc corresponding

to the two concave curves in Fig. 1. The fourth column lists values of these at λ = 4, which is near the extreme end of regime II.

where σm,λ is defined as in (5.12). This is roughly consistent with scaling arguments found in other

parts of the literature [50, 28].

In regime II we are forced to revert to the weak solution results in [44] where it was shown that

for n ≥ 2,

〈κn,0〉T ≤ cRe3−
5
2n . (5.22)

For n = 2 this means σm,λ = 7/4 and thus qm,λ = 8/3. Table 3 summarizes the results for both

regimes I and II.

Interestingly, Sulem and Frisch [45] showed that a k−8/3 energy spectrum is the borderline

steepness capable of sustaining an energy cascade. This spectrum corresponds to the extreme limit,

where the energy dissipation is concentrated on sets of dimension zero (points) in space [51, 52]. It

provides some physical setting in which to interpret the result of Caffarelli, Kohn & Nirenberg that

the space-time dimension of the Navier-Stokes singular set is unity [53].

6 Conclusion

Three regimes have been identified based on the size of the Dm for m ≥ 2 relative to that of D1.

Regime I has been shown to have a sufficiently depleted nonlinearity that an absorbing ball exists for

D1. The consequence of this is that a global attractor exists, provided solutions remain in regime I.

A diagrammatic description of the relation between the three regimes is given below :

........ Regime I .......
︸ ︷︷ ︸

Dm≤D
Am,λ
1 −regular

D
Am,λ

1 ............... Regime II .................
︸ ︷︷ ︸

D
Am,λ
1 ≤Dm≤CmD1−weak solutions

CmD1 ........... Regime III ..........
︸ ︷︷ ︸

CmD1<Dm−regular

Fig. 1 in §1 depicts these regions in the Dm −D1 plane. Specifically, the region between λ = 1 and

λ = 2 is the region where solutions are regular. The dotted curves within this show the approximate

region (not the exact trajectories) where the computations of §2.1 lie.

These results also prompt the following set of questions.

The first question is why should the Navier-Stokes equations choose to operate in regime I, as

observed? While the numerical experiments in [1] have shown no evidence of a transition from regime

I to II, nevertheless, such a transition cannot be discounted for different sets of initial conditions or

higher Reynolds numbers. This raises the question whether solutions with initial conditions lying in

regime I remain there for all time? If a transition does occur, how might it come about? Are regimes

II and III physical in the sense that while mathematically allowable, do they represent recognizable

turbulent states? Regimes I and II appear to be consistent with the two branches discovered by Lu

and Doering [37] in their maximization of the rate of enstrophy production. The ξm,λ = 1+ 1
2
λ result

in regime I takes the value of 1.75 at λ = 1.5 : the value at the lower branch in [37] is ξm,λ = 1.78.
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The value ξm,4 = 3 for regime 2 is also consistent with ξm,λ = 2.997 on the upper branch in [37].

In a further paper, Schumacher, Eckhardt and Doering [38] found numerically that ξm,λ = 3/2.

This, however, was derived from an analysis of local concentrations of vorticity, not the full volume

calculations in this paper. Nevertheless, it is worth pointing out that bounds on ξm,λ are

3/2 ≤ ξm,λ < 2 , 1 ≤ λ < 2 , (6.1)

so the result in [38] lies exactly at the extreme lower bound where the energy spectrum is qm,1 = 5/3.

Secondly, what of initial conditions that are the reverse of the observed ordering : that is, initial

conditions that are in an ascending scale and thus satisfy Dm < Dm+1? A recent numerical ex-

periment by Kerr [42] on the 3D Euler equations found that, in the late stage, the Dm did indeed

reverse in order to this ascending scale Dm < Dm+1. Then in a further experiment Kerr [54] took

this reversed state as initial conditions for the Navier-Stokes equations to discover that the ordering

immediately switched back again to the descending scale Dm+1 < Dm.

Thirdly, the magnitude of the vortex stretching term is locally dependent on the angle between

ω and eigenvectors of the strain matrix. Overall, this is averaged within the norms buried within the

Dm. Is it possible that a more direct connection could be made in the analysis between these results

and the work of Constantin and Fefferman and others on the direction of vorticity [55-61,41]?

Fourthly, there is a growing body of work on so-called Navier-Stokes-α models, which includes

the Leray-α, LANS–α, Clark-α and Bardina models [62-67], plus the Navier-Stokes-Voight model

[68]. All of these models have better regularity properties, in differing degrees, than the original

Navier-Stokes equations themselves. A comparison between these and the results of regime I might

be a useful exercise.

Finally, the depletion of nonlinearity in regime I is sufficiently strong to suggest that vorticity may

be accumulating on low-dimensional sets. A generation of graphics has suggested that this is indeed

the case : vortex sheets rolling up into tubes is typically the situation as a turbulent Navier-Stokes flow

matures beyond intermediate times. An analytical proof of this poses formidable technical problems

as no proof exists for the Divergence theorem nor the Sobolev inequalities on a fractal domain with

evolving fractal boundary conditions. Given these hurdles all that can be done at present is to re-

estimate formally (1.3) in d-dimensions using dimensional analysis. This suggests that the formal

equivalent of (1.3) is

1
2
̟−1

0 Ḋ1 ≤ −

(
4− d

4

)
D2

1

E
+ cdD

6−d
4−d

1 . (6.2)

Note that when d = 3 this reduces to (1.3). With ξm,λ = 6−d
4−d it is easy to calculate the value of d

corresponding to ξm,λ = 1 + 1
2
λ which is

dλ = 4
(
1− λ−1

)
. (6.3)

For instance, this takes the value of d1.15 ≈ 0.52 when λ = 1.15 to d4/3 = 1 when λ = 4/3. This

suggests that the low-dimensional set corresponding to a nonlinearity of D
ξm,λ

1 is one which may run

from being a set of points to tube-like vortical structures [26-32,43].
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