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Advanced wireless technology, high speed internet facility and availability of other communication systems can be used to
provide the accessibility of state-of-the-art healthcare facilities to the patients in remote and rural areas for monitoring and
diagnosis of cardiovascular diseases, one of the prime causes of human mortality today. Telemonitoring applications
encounter technological constraints viz. bandwidth, storage and data transmission time due to which reduced lead (RL) ECG
systems (containing three to four leads) are used. From the medical science perspective, cardiologists are accustomed to the
standard 12-lead (S12) ECG system owing to its wide-spread acceptability and decades-long usage and these RL systems
may prove to be insufficient for diagnosis. In this paper, we attempt to provide for the first time, to the best of our knowledge,
a technical methodology to the medical practitioners for selection of such RL systems suitable for personalised remote
health monitoring applications. Subsequently, a novel S12-lead ECG reconstruction methodology is also proposed which is
shown to be more reliable than the state-of-the art lead reconstruction methodologies. In this study, along with Frank’s
vectorcardiographic system, reduced 3-lead systems consisting of leads I, II and one of the six precordial leads (V,—Vs)
leading to a total of six such reduced lead sub-systems are considered. Based on the proposed lead reconstruction
methodology, these aforementioned reduced lead systems’ performance are evaluated and compared comprehensively using
R? statistics, correlation and regression coefficients. Furthermore, comparison of ECG features extracted from the original
and reconstructed standard leads from each of these reduced lead systems by our recently proposed time domain
morphology and gradient algorithm using root mean square error has been reported and discussed. The advantages and
disadvantages of using a particular RL system have been discussed in the context of remote health monitoring applications.

Keywords: ECG; VCG; lead reconstruction; standard 12-lead system; Frank system; personalised remote healthcare

Abbreviations: ECG, electrocardiography; VCG, vectorcardiography; FV, Frank vectorcardiography system; S12,
standard 12-lead system; RL, reduced lead system; R3L, reduced 3-lead system; PRHM, personalised remote health
monitoring; CR, compression ratio; FRM, first reconstruction methodology; SRM, second reconstruction methodology;
BW, baseline wandering; LS, least-square; DT, Dower transform

1. Introduction

In this paper, we attempt to provide a technical
methodology to the medical practitioners for the selection
of appropriate reduced lead (RL) system targeting
personalised remote health monitoring (PRHM) appli-
cations for electrocardiography (ECG) acquisition by
selecting two popular RL systems (discussed later in this
section) and by comparing the performance extensively in
terms of reconstructed standard 12-leads (S12) obtained
from both of these RL systems using our proposed
methodology (see Section 3). The two RL systems used to
reconstruct S12 system are (1) Frank vectorcardiographic
(FV) system and (2) six reduced 3-lead (R3L) system
constituted by lead I, II and one of the six precordial leads
i.e. V1—Vi. The advantages and disadvantages of using a
particular RL system for PRHM Applications have been
discussed, and the factors which can govern the selection
of a particular system have been mentioned.

Cardiovascular diseases (CVD) is one of the main
causes of human mortality around the world (World
Health Organisation 2009) which has led to tremendous
research in the field of its detection and prevention. There
are commercial products available which allow patients to
stay at home and still be connected to ECG monitors
(Liszka et al. 2004) using wireless technology, telephone
or internet. These advancements focus on bringing relief
and convenience to the patients suffering from cardiologic
disorders by allowing them to stay at home or work still
being monitored continuously through wireless trans-
mission of signals to nearby state-of-the-art facility where
they have been registered (Liszka et al. 2004). These
developments in telemonitoring and telemedicine have
greatly improved the quality of healthcare services;
however, they are mainly limited to developed countries
and urban areas (Prasad 2008). In developing countries,
there is a need for implementation of these remote health
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monitoring services (Prasad 2008) due to the large number
of patients, scarcity of medical practitioners and
caregivers, and more importantly the lack of basic
healthcare infrastructure (Chudi 2010).

With the advancements in wireless technology, it has
now become possible to connect rural and remotely
accessed areas and provide availability and accessibility to
state-of-the-art facilities in the urban areas for diagnosis
and therapy. Implementation of such remote health
monitoring system to cater to large number of patients in
rural and remote areas will encounter two major problems
from the technical and medical science perspective: first,
limitations on bandwidth, storage capacity and data
transmission time (Liszka et al. 2004; Brechet et al.
2007; Alesanco and Garcia 2008) and second, it is a
standard clinical practice to examine S12 ECG, owing to
its usage over decades and widespread acceptability, as a
preliminary step in the diagnosis of CVD by the
cardiologists and at times they may find other RL systems
inadequate or insufficient for diagnosis, therapy and
disease prognosis (Hoekema et al. 1999). The technologi-
cal limitations can be allayed by using a RL system
essentially with three to four leads, and the S12 system can
be reconstructed for diagnosis by the cardiologists using
lead reconstruction methodologies.

In this paper, we envisage a remote health monitoring
scenario in which a patient is registered to a nearby state-
of-the-art health centre which maintains a data repository
to keep track of patient’s health. The patients may belong
to the region under the catchment area of the health
centre or may be from a rural/remote area. During the
registration process, a patient’s ECG is acquired and
transformation coefficients are generated which are stored
along with the patient’s database. In future, whenever the
patient is monitored, the ECG signals from the RL
system are transmitted to the health centre and S12
system is reconstructed using personalised reconstruction
methodology which can be further displayed on
cardiologists mobile phone/PDA/Tablet. From a techno-
logical perspective as of now, the main thrust of research
has been on the communication module (Alesanco and
Garcia 2010; Yu et al. 2012) and the signal processing
module comprising of feature extraction (Mazomenos,
Biswas, et al. 2013; Mazomenos, Chen, et al. 2012),
irregular ECG wave pattern identification including
Arrhythmia (Liu et al. 2013), wearable non-contact
ECG sensing and acquisition system design (Yoo et al.
2009; Peng and Bocko 2013), cardiogram analysis and
interpretation (He and Wu 2001; Rieta et al. 2004; Yang
2011) and signal compression (Brechet et al. 2007;
Alesanco and Garcia 2008; Sharma et al. 2012).
Algorithms for automated cardiogram interpretation and
feature extraction have been developed for both remote
and hospital-based environments to help cardiologists
with proper diagnosis, therapy and prognosis of the

disease. The signal compression techniques have been
developed to address the storage and bandwidth issues;
however, it should be noted that the compression ratio (CR)
of these algorithms depend on the number of ECG channels
(Sharma et al. 2012). The greater the number of channels, the
lower is the CR; thus, a RL system can significantly improve
the performance of these algorithms. Lead reconstruction
methodologies have mostly been investigated in order to
address the problems faced by patients and caregivers in
hospital-based environments (Dower 1968; Dower et al.
1988; Nelwan et al. 2000; Nelwan, Kors, et al. 2004; Nelwan,
Carter, et al. 2004; Finlay et al. 2007; Gregg et al. 2008;
Dawson et al. 2009); however, they have not been evaluated
in the context of remote health monitoring applications.
Using a RL system for PRHM applications will require
selection of an appropriate RL system. If proper method-
ology is available from the technical aspects, then
cardiologists after considering other non-technical i.e.
medical science aspects can accurately select the RL system
relevant for a particular patient. This has been our motivation
behind this work.

Two different lead reconstruction methodologies have
been investigated in this paper. The first reconstruction
methodology (FRM) involves transformation of six R3L
systems which is comprised of leads I, II and one of the six
precordial leads (V;—Vg) to S12 system, and the second
reconstruction methodology (SRM) involves transform-
ation of FV (X, Yand Z) system to S12 system. A total of
275 patients from PhysioNet’s PTB database (PTBDB)
(Bousseljot et al. 1995; Goldberger et al. 2000) were
categorised, on the basis of cardiologic disorders, and used
in this investigation. ECG and VCG of each patient, after
baseline wandering (BW) removal and denoising, were
used to obtain personalised transformation coefficients
employing least-square (LS) fit technique on the heart
model proposed by heart-vector projection theory (Frank
1954; Dower 1968; Levkov 1987). The reconstructed
signals were then compared with the original signal using
R statistics, Correlation (b) and regression (r) coefficients.
Pertaining to the omnipresence of computerised ECG
acquisition and interpretation, we have employed our
recently proposed domain morphology and gradient
(TDMG) (Mazomenos, Chen, et al. 2012) algorithm to
extract features from PQRST complexes of both originally
measured and the reconstructed signal and computed root
mean square error (RMSE) to provide a detailed
comparative study and discuss efficiency of lead
reconstruction methodologies for applications of auto-
mated ECG interpretation algorithms on reconstructed
signals for RHM applications.

The paper is organised in the following manner.
Section 2 presents the previous work on lead reconstruc-
tion, Section 3 presents the proposed methodology,
Section 4 presents the results and discussions and Section
5 concludes the paper.
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2. Previous work

Vectorcardiogram (VCG) represents the electrical activity
of heart three-dimensionally as the components of a dipole
vector (known as heart vector, H=Xi+ Y} + ZIAc) on the
orthogonal planes (horizontal, frontal and sagittal) (Riera
et al. 2007). VCG is useful in the 3D-visualisation of heart,
diagnosis of certain diseases including myocardial
ischemia, inferior myocardial infarction, Brugada syn-
drome, etc. and it captures the important characteristics of
heart as good as the 12-lead ECG (Edenbrandt and Pahlm
1988; Riera et al. 2007; Vullings et al. 2010; Yang 2011).
The most widely accepted system for VCG is the FV
system (Li and Lin 2009). However, as mentioned earlier,
cardiologists are accustomed to conventional 12-lead ECG
(S12), and hence several lead transformation method-
ologies were proposed to transform an RL system to S12
system. Dower proposed a transformation matrix,
popularly known as Dower transform (DT) in medical
science, to transform FV system to S12 system (Dower
1968). Recently in (Dawson et al. 2009) the transformation
matrix obtained using LS fit method applying on a
population of patients (known as population based
transformation matrix) outperformed DT. EASI system
to S12 system is another transformation proposed which
uses LS fit method and/or DT (Dower et al. 1988). Other
population-based and patient-specific transformation
reported in (Nelwan et al. 2000; Nelwan, Crater, et al.
2004; Nelwan, Kors et al. 2004; Gregg et al. 2008) reduce
the inconvenience of patient and the caregiver during bed-
time monitoring by reconstructing the missing precordial
leads (which will be referred to as R3L systems from
hereafter). Finlay et al. (2007) posit that the transformation
involving reconstruction of missing precordial leads of
S12 has been shown to outperform the transformation of
EASI system to S12 system.

However, to the best of our knowledge, this is the first
work which compares the performance of personalised or
patient-specific transformation of FV to S12 and R3L to

o
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S12 systems. R3L system consists of three basis leads
which is a subset of S12 system, consisting of one
precordial lead along with leads I and II invariably present
in all R3L systems. FV systems consists of heart-vector
(ﬁD components as the basis leads, i.e. X, Y and Z. The
target leads in this case are the 12 leads of the S12 system.
As evident from the literature, personalised reconstruction
has outperformed all other types of reconstruction
strategies, and hence has been adopted in this investigation
for accurate and reliable lead reconstruction.

3. Proposed methodology

Here, Section 3.1 discusses the envisaged remote health
monitoring environment. The patients in PTBDB were
categorised on the basis of their cardiologic disorders
(Section 3.2). The raw signal was then preprocessed for
removal of BW and noise (Section 3.3). Transformation
coefficients were generated from the preprocessed signal
using the classical heart model following the heart-vector
projection theory and LS fit technique (Section 3.3). The
reconstructed signals were then compared with the
originally measured signals using various evaluation
metrics (Sections 3.4 and 3.5).

3.1 Envisaged remote health monitoring scenarios

Figure 1 shows the two possible ways in which a patient
can be registered at the health centre. During the
registration process, the transformation coefficients are
generated which can be eventually used to reconstruct
the S12 system. The first scenario shows the online
registration process and second shows the offline
registration process. By ‘online’ we meant that the patient
needs not to be present in the hospital/health-centre
physically. In this case, the RL or Frank leads can be
captured and transmitted to the hospital/health-centre for
reconstruction of standard 12-leads. By ‘offline’ we meant

SCENARIO 2 - Physical presence of the patient / Off-line

- Registration
Antenna ( )
)
—= Coeflicient
Freprocessing 1 Generation
A Module . .
== | using LS fit
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Lead
Reconstruction
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Figure 1. Envisaged remote health monitoring scenarios: (1) when patient may not be physically present for registration (online) and

(2) when patient is available for registration (offline).
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that the patient is present in the hospital/heath-centre
physically. In this case, standard 12-lead reconstruction is
done at the hospital/health-centre itself.

The aforementioned remote health monitoring service
can benefit both ambulatory patients and the patients living
in rural or remotely accessed areas. The following section
discusses the registration process in the context of RL
system used.

3.1.1 R3L systems to S12 system

If the reconstruction methodology being adopted is the
transformation of R3L systems to S12 system, then for
coefficient generation the acquisition of only S12 system is
required. These coefficients can then be used to
reconstruct S12 system on eventual readings.

3.1.2  FV system to S12 system

If the reconstruction methodology being adopted is the
transformation of FV to S12 system, then for the
coefficient generation a simultaneous acquisition of both
the systems is required. On eventual monitoring, only FV
system’s acquisition is required which can be then
transformed to S12 system.

3.2 Material

PTBDB (Goldbergeretal.) is a290-patient 15 lead database
with both S12 and FV system simultaneously acquired and
digitised at the sampling frequency of 1kHz. Of the 290
patients, 275 were used and the rest were excluded from the
study pertaining to their extreme artifacts and paced rhythm
in consultation with the cardiologists. For all the patients in
the database first recordings were used in this paper. The
patients were divided on the basis of their cardiologic
disorder into six categories viz. bundle branch block (BB —
14), healthy control (HC - 51), hypertrophy, cardiomyo-
pathy and heart failure (HY — 24), myocardial infarction
(MI - 140), valvular myocarditis and other miscellaneous
(VA - 27) and patients with no diagnostic data (ND — 19).

3.3 Proposed lead reconstruction methodology

The 15-lead raw ECG of every patient is passed through
a preprocessing module (Section 3.3.1) comprising of BW
removal and denoising. After preprocessing, LS fit
technique is used to obtain the personalised coefficients
(section 3.3.2) for lead transformation and then the
reconstructed leads are compared to original leads using
various evaluation metrics (Sections 3.4 and 3.5).

3.3.1 Preprocessing module

Here, we propose a preprocessing module comprising of
BW removal based on discrete wavelet transform (Zhang

2005) and denoising based on translation invariant wavelet
transform (TIWT) (Zhang 2005). Figure 5 in Appendix
provides the snippet of the MATLAB code for
implementation of the preprocessing module to encourage
the reproducible research. This code may also lead to the
mobile-app development and validating the methodology
proposed in this paper.

Other denoising methods (Hernandez and Olvera 2009;
Li and Lin 2009) were also used however; TIWT was found
to outperform the rest and therefore we used it in the
proposed methodology. The implementation of TIWT
requires the input number of samples to be in the power
of 2. For example, if a patient’s ECG is recorded for about
38 s, the number of samples obtained at a sampling rate of
1kHz was 38,399, and out of these we have taken
2A15 = 2,768 samples i.e. first 32,768 samples for the
algorithmic need and rest were excluded from the study. For
every patient, the recording was reduced to the maximum
power of 2 that can be accommodated in the original
recording and was then used for all further processing
throughout the work. For BW, the level of decomposition
was down to level 9 and the wavelet used was Symmlet 10.
For denoising, the level of decomposition was self-
determined by the code, the wavelet used was symmlet 8
and hard thresholding was used.

3.3.2  Generation of transformation coefficients

Heart-vector projection theory (Levkov 1987; Zhang
2005) states that heart can be approximated as single
dipole vector (known as heart vector, H) fixed in 3-D space
whose orientation and magnitude varies during a cardiac
cycle. This dipole vector is responsible for the body
surface potential observed when electrodes are placed on
the body. The potential at any point on the body is the
projection of H on the lead vector (L) which is assumed to
originate from the zero-potential region in the heart and
terminates on the point located on the body (1).

V=HL=aX+bhY+cZ, 1)

where H = Xi + Y} +Zk and L= api + blj + cik. The
linearity of the model can be used to obtain potential at any
point using leads other than the heart vector components
(X, Yand Z) as shown in (2).

V= azl + bz[] + CzVi. (2)

In (2) we have used leads I, II and V; (where i = 1-6
denotes a precordial lead) to generate the signal of some
other lead. It can be seen from (1, 2) that any lead of S12
system can be generated from any other set of three
independent leads, provided the coefficients are available.
These coefficients can be generated statistically using LS
fit technique upon the availability of leads appearing on
right hand side and left hand side of (1, 2). The solution of
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LS fit when applied to V = a;l; 4 b;l, + ¢;l3 is given by
3.

-1

a; SEOShl Skl SV,
bi = 211 'lz Elg Elz~l3 Ev'lz , (3)
ci Shils Shl; 354 SVl

where [, [, and /5 are any three leads and a;, b; and c; are
the respective coefficients. These coefficients are used to
transform a set of leads to another lead signal and hence
are known as transformation coefficients. When LS fit
method is applied on one patient, the coefficients obtained
are personalised or patient-specific, and when applied on
a group of patients are known as population-specific
coefficients. A training set of 5000 samples from the
middle of the recording of each patient was used in (3) for
obtaining the transformation coefficients and the whole
recording was used as the testing set. The complete work
was carried out on MATLAB (Version 7.10.0.499
R2010a).

3.4 Evaluation metrics

R? statistics, correlation coefficient, regression coefficient
(Levkov 1987; Dawson et al. 2009) and RMSE have been
used as performance evaluation metric. R statistics has
been used to evaluate the degree of association between
the measured and the reconstructed signal. Perfect
retracing of the measured wave by the reconstructed
wave will be indicated by a value 100%. Correlation
coefficient (r,) (Levkov 1987) is a metric to estimate the
similarity between the two signals, and regression (b,)
(Levkov 1987) fairly estimates the amplitude differences
between the measured and reconstructed signal. RMSE is a
good measure for accuracy.

R2— { 1 2 [Derived(sample k) — Measured(sample k)]z}
S [Measured(sample k)]

X100,
“

_ { > (Measured sample i) X (Derived sample i) }
: (2 (Measured sample i)*> X 3(Derived sample i)z)l/ 2y
(5

b = {E(Measured sample i) X (Derived sample i)} ©)
! 3 (Measured sample i)

> e (xi — x_,-)2

n

RMSE = (7

3.5 Detailed comparison of ECG features of
reconstructed and original signal

TDMG (Mazomenos, Chen, etal. 2012) operates accurately
on a single heart beat. However, it is not feasible to
manually detect and select a PQRST complex from all the
12 leads of 275 patients for both original and reconstructed
signals using all the RL systems (in total 7), which accounts
to a total of 57,750 lead evaluations. To automate the
process of annotation and selection of PQRST complex, we
used the help of two open source MATLAB files viz.
nqrsdetect-m (Afonso et al. 1999) and select_train-m
(http://www.robots.ox.ac.uk/ gari/CODE/ECGtools/). The
former function detects the fiducial points of QRS
complexes. The latter function has been used for the
extraction of PQRST complexes through variations in the
input arguments. To attain this complex task, the PQRST
complexes of each patient in all the categories were visually
observed to fine tune the input arguments so that only one
complete heart beat is extracted and TDMG algorithm is

Table 1. Denotations of R3L systems and various ECG features extracted using TDMG algorithm.

R height (uV)

Basis leads of RL system Denotation ECG features (unit) Denotation
LIL VvV, 1 P duration (ms) 1
LI, V, 1I P height (LV) 2
L1, V3 111 PR interval (ms) 3
LIV, v PR segment (ms) 4
L1, Vs \% QO peak (V) 5
L1, Vg VI QRS length (ms) 6
Frank Leads X, Yand Z FV QT interval (ms) 7

8

9

S peak (LV)

ST interval (ms) 10
ST segment (ms) 11
T duration (ms) 12

T height (nV) 13
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successfully operational on all of them. The arguments
were needed to be changed for different categories.
A minimum of five PQRST complexes were averaged and
then were operated upon by the TDMG algorithm;
similarly, the corresponding complexes in the reconstructed
signals were averaged and TDMG was then applied on
them. ECG is approximately a periodic signal; however,
while traversing through the leads it was found that some
PQRST complexes were distorted in shape significantly
compared to the adjacent complexes, and hence for
evaluation if these particular complexes were selected,
they may lead to unreliable and inaccurate results. Hence,
the mean was obtained over a minimum of five complexes
before applying TDMG. The results obtained for the
original and reconstructed signal from the TDMG
algorithm were then compared using RMSE. Figure 6 in
Appendix presents the MATLAB code snippet for the
implementation of all the three aforementioned functions
i.e. nqrsdetect-m, select_train-m and tdmg-m.

4. Results and discussion

In this section, we attempt to provide a detailed
examination of the quality of reconstruction obtained
from various RL systems. The 12 leads of the S12 system
have been divided into two lead sets: set 1 comprises of
leads I, II, III, aVR, aVL, aVF and set 2 comprises of the
precordial leads. The FRM involves a total of six R3L
system and SRM involves one, i.e. FV system; therefore, a
total of seven RL systems. Table 1 shows the denotations
of these seven RL systems. We have used ‘I’, ‘II’, etc. in
bold letters to denote R3L systems with precordial leads
Vi, Va, etc. as the basis leads in the R3L systems,
respectively (Table 1). FV system has been denoted by FV
in bold. Table 1 also shows the denotations of 13 different
features that were extracted using TDMG for comparison
starting from 1 to 13 in bold letters.

Table 2 presents the mean RZ, correlation and
regression coefficient values of the FRM i.e. R3L systems
to S12 system for the reconstruction of lead set 2. The last
column of Table 2 shows the mean R* values over all the
12-leads of patients in the corresponding categories using
FRM. As leads I and IT are involved in the basis lead sets of
all the six R3L systems, the resulting R?, r, and b, values
of lead set 1 when FRM is used are 100%, 1.0 and 1.0,
respectively. Better results have been obtained when the
precordial lead in the basis lead set are V, or V3 followed
by V; or V4 and V5 or Vs The proximity effect as
mentioned in (Feild et al. 2008) can be seen from the
Table 2. Leads which are close to the basis leads have
better reconstruction compared to those far from them. As
for an illustration, row 1 of the ‘BB’ case in Table 2, basic
lead of RL system i.e. I (comprising of lead I, IT and V; as
per the definition given in Table 1) is used to reconstruct

Mean R?, r, and b, values of various categories for the transformation of FV system to S12 system.

Table 3.
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V-V, in standard 12-lead ECG system. It is apparent
from the row 1 that R?, correlation (r,) and regression (b,)
for the reconstruction of V; is 100%, 1 and 1 respectively;
V5 is 83.36%, 0.91 and 0.872, respectively and so on. In
this way, all rows of Table 2 for different diseased classes
as well as Healthy Control can be read and interpreted.

Table 3 shows the reconstruction results from SRM,
i.e. FV to S12 system with average values mentioned in the
last row. Figure 2 shows bar plots of mean R* values for
lead set 1 (Figure 2(a)) and lead set 2 (Figure 2(b)). From
Figure 2, we can see that FV system has consistently
reconstructed all the leads, especially, the precordial leads.
From Figure 2 along with Tables 2 and 3, it can be seen
that the FRM outperforms SRM for lead set 1 as leads I
and II constitute the basis lead set and other four dependent
leads can be derived from them using simple linear
algebraic relations. However, still second methodology
produces more than 90% R* value for all these leads. For
leads Vs and Vi, second methodology (i.e. FV to S12)
outperforms all others except where the same leads
themselves form the basis leads. For rest of the four
precordial leads, the performance of R3L systems are
inconsistent compared to FV system.

The mean R values of reconstruction of precordial
leads (lead set 2) from R3L systems are 1-91.24%, II-
93.8735%, II1-94.4031%, 1V-91.1372%, V-83.4569%,
VI-80.6942% and for FV system is 95.8141%. We can
see that for lead set 2 SRM outperforms FRM. For lead
set 1, it is =100% (FRM) versus 94.51% (SRM). The
aforementioned mean values and the values used in
Figure 2 were taken over the complete database (all 275
patients). The overall mean (taken over all the patients and
12 leads) R” values for R3L systems and FV system were:
95.52% (I), 96.85% (II), 97.14% (III), 95.51% (IV),
91.67% (V), 90.29% (VI) and 95.16% (FV), respectively.

A 110
100 |
90 |
80 F
70+
60 -

50

Mean R2 values

40

30

20

1 1 it aVR aVL aVF

B

Mean R2 values

Figure 3(a)—(c) present reconstructed signal (red)
overlapping the original signal (blue), obtained using SRM,
of three different patients with worst (71.3%), 80% and best
case (99.61%) mean R? values for lead set 1. The R values
of corresponding leads are mentioned in the figure. The
quality of reconstruction that a particular R*> value
corresponds can be observed from Figure 3. From Figure 3
we can see that when R? values are low, then except the QRS
complex the rest of the original signal, i.e. P and 7' wave is
almost completely retraced by the reconstructed signals.
The main difference between the reconstructed and original
signals with low R? values is that peaks and nadirs of QRS
complexes are not accurately retraced, and this can also be
seen from the comparison of features extracted from both
the signals (discussed later in this section). Figure 3(d)—(i)
presents a similar comparison for lead set 2 for both FRM
and SRM, where the first six boxes in all the sub-figures
correspond to FRM in the order of R3L systems with
leads Vi, V,, V5, V4, Vs and Vi as the precordial lead in
the basis lead set and the last box corresponds to SRM.
Figure 3(d) corresponds to reconstruction of Vi, similarly,
Figure 3(e) corresponds to reconstruction of V, and so on.

Figure 4 provides the box plot of lead-wise mean
RMSE for 13 different features extracted using TDMG
over the complete database. Each sub-figure in Figure 4,
i.e. a—h, presents 13 boxes numbered 1-13 each
corresponding to a particular feature. The correspondence
between the labels in the horizontal axis and features has
been described in Table 1. Figure 4(a)—(f) follows from
the reconstruction results of RL systems for lead set 2 with
basis lead following the order: a—Vy, b—V,, c-V3, d—V,,
e—Vs and f-V, (all of these basis lead sets essentially
contain leads I and II). Figure 4(g),(h) follows from the
results of SRM for lead set 2 and lead set 1, respectively.
The edges of the box are the 25th and 75th percentiles, the

110

V1 V2 V3 V4 \'Al '

Figure 2. (Colour online) Bar plot of lead wise mean R? values. (a) RL to S12 (blue) versus FV to S12 (green) for lead set 1 i.e. I, 11, 111,
aVR, aVL and aVF. (b) Comparison between all the seven reconstruction methodologies for reconstruction of precordial leads (lead set 2):
leftmost to sixth bar correspond to RL systems with basis lead in the order V, (blue), V; (green), V3 (magenta), V, (yellow), Vs (red), Ve
(black) and the rightmost corresponds to FV (cyan) system, respectively.
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Figure 3.

(Colour online) Comparison between the reconstructed (red) and the measured (blue) ECG signal. a—c Shows the

reconstruction of lead set 1 using SRM, i.e. FV to S12 for the worst, 80% and the best case mean R? values. d—i show the reconstruction of
lead set 2 (V,—Vj) for all the RL systems with the basis leads starting from V; (top) to Vg and FV system (bottom).

whiskers extend to = 2.7 standard deviation (o) and rest
are plotted individually (http://www.mathworks.in/help/s
tats/boxplot.html). Table 4 provides the mean RMSE
values for all the seven methodologies. It can be seen that
higher values of error has mainly occurred when height or
depth of a peak was measured in comparison to the
features measuring the horizontal intervals. Among the
R3L systems, R3L systems with basis leads V, and V3 have
outperformed the others. SRM has outperformed FRM for
lead set 2; however, the results are otherwise for lead set 1.

The transformation coefficients depend on the follow-
ing: position of electrodes, age, sex, size, shape, body fat

distribution, homogeneity and several cardiac disorder
faced by the patient (Feild et al. 2008). It can be realised
that due to these factors, accurate and reliable lead
reconstruction cannot be anticipated from population-
based coefficients or DT (Dower 1968). Heart-vector
projection theory considers an approximate and simplistic
model of heart and hence the accuracy that can be
achieved is limited. Furthermore, automated ECG
interpretation algorithms are sensitive to minute changes
which may be difficult to perceive through the human eye.
Hence, all these limitations combined require a very
accurate form of reconstruction which, as our results
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Figure 4. Box plot of RMSE values. Starting from left to right with R3L systems I-VI for lead set 2. The left sub-figure last row
corresponds to lead set 2 and right sub-figure corresponds to lead set 1 when S12 was reconstructed from FV. The labels 1-13 on the
horizontal axis corresponds to the respective features extracted from TDMG as mentioned in the text. For details about denotations, please

refer Table 1.

present, can be achieved by Personalised Transformations coefficients are generated for the best suitable RL system
(PT) using our proposed methodology. Let us consider that in a personalised fashion using our proposed methodology,
a patient who 1is registered in a hospital/ health-centre, is diagnosed initially at the hospital/health-centre itself

whose standard 12-lead ECG has been obtained and by the medical practitioners. This standard 12-lead ECG

Table 4. Mean RMSE values of the ECG features extracted using TDMG algorithm for all the RL systems.

Sr. Feature (unit) I 1I 1111 v A% VI FV
1 P duration (ms) 6.700 5.536 5.423 5.644 5.888 6.357 9.750
2 P height (WV) 55.47 40.04 37.30 51.00 82.70 86.57 60.24
3 PR interval (ms) 9.058 8.639 9.281 10.96 11.80 12.27 17.20
4 PR segment (ms) 8.982 8.567 8.595 9.36 10.68 11.45 15.81
5 Q peak (V) 63.60 51.33 44.34 61.49 116.4 150.6 97.75
6 QRS length (ms) 5.997 4.710 4.355 4.966 7.407 8.527 9.400
7 QT interval (ms) 11.97 11.26 10.64 12.41 14.38 15.98 21.41
8 R height (uV) 79.96 65.48 54.85 65.47 102.3 133.1 92.78
9 S peak (uV) 14.25 12.87 16.67 20.79 42.10 59.59 29.73
10 ST interval (ms) 10.94 9.889 9.629 10.94 12.69 14.72 19.32
11 ST segment (ms) 10.45 9.542 9.316 10.96 13.36 15.00 18.49
12 T duration (ms) 13.33 11.85 11.03 12.04 12.21 14.88 21.16
13 T height (wV) 52.42 38.26 33.79 54.17 95.76 98.51 53.61
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Table 5. Comparison of FRM and SRM in context of remote healthcare applications.

FV system

R3L system

1 Five electrodes

2 Three leads

3 Inconsistent reconstruction of precordial leads.

4 Comparatively bad reconstruction of Vs and Vg

5 Leads I, II, III, aVR, aVL and aVF are obtained with
approximately no information loss

6 Not much change in already existing acquisition system
is required

7 Online and offline registration possible

8 Only S12s are available and have to rely on inverse DT to

obtain VCG which is inaccurate

Eight electrodes

Three leads

Consistent reconstruction of precordial leads

Comparatively better reconstruction of Vs and Vg

Comparatively less accurate and information is lost in the
reconstructed signal

A different system is required which can acquire both ECG
and VCG

Online registration difficult

Both VCG and ECG are present, and hence the advantages
of VCG can be obtained directly

information is stored and maintained in the hospital as the
patient’s database. Afterwards, when remotely patients’
ECGs are received from the prescribed RL system, these
are first used to reconstruct the corresponding standard 12-
lead ECG using our proposed methodology. This
reconstructed ECG and the originally stored standard 12-
lead ECG are compared using the evaluation metrics as
shown in Section 3.4. If the performance is above the
expected threshold, patients’ health can be considered to
be fine. If it falls below this threshold, this may raise an
alarm at the medical practitioners’ end so that proper and
immediate personalised action can be initiated. Therefore,
if the patient initially is diagnosed as ‘normal’, however
he/she develops ‘MI’ type changes, and it will have an
immediate impact on the performance of the reconstructed
standard 12-lead ECG. Hence, this personalised approach
will be able to give an immediate hint about the
degradation of the patient health condition. Our results
show that PT has produced 96.73% mean R> value as
compared to 84.79% (Bousseljot et al. 1995) for HC
subjects and 94.73% versus 80.77% (Nelwan, Kors, et al.
2004) for other patients when SRM was used (see Table 3).
The mean correlation coefficient for the best lead subset as
produced by (Bousseljot et al. 1995; Riera et al. 2007) is
0.983 versus 0.985 (for I, IT and V3) and 0.983 (for I, IT and
V5>) when FRM was used (see Table 2). The maximum
value achieved by PT was 0.997 as compared to 0.990
(Bousseljot et al. 1995; Riera et al. 2007).

One important inference can also be drawn from the
present study regarding the data compression as mentioned
in Section 1. Assuming no sophisticated data-compression
algorithm as proposed in (Brechet et al. 2007; Alesanco and
Garcia 2008; Biswas et al. 2012; Sharma et al. 2012) is
applied at the sensing, processing or data-transmission
levels and given the number of samples per channel remains
the same, if three channels are transmitted instead of 12
(corresponding to 12 leads), 75% compression is achieved.
Under the same assumption, instead of sending all 12
channels, if only the eight channels (corresponding to eight
independent leads viz. Lead I, IT and 6 precordial leads V;—
V) are transmitted, then 62.5% compression is obtained.

Therefore, just by reducing the number of leads to 3 and
ensuring robust and reliable reconstruction of standard 12-
lead ECG signals of medically acceptable quality at the
receiver end using our proposed methodology, it is apparent
that significant amount of compression can be achieved. It is
therefore imperative to say that if the existing sophisticated
data compression techniques are applied on these three
channels, further compression can be accomplished.

5. Conclusion

This paper can be summarised as follows:

e Use of personalised transformations (PT) and a
preprocessing module has considerably improved the
reconstruction performance as shown in Section 4.

e This paper has presented a comprehensive compari-
son between transformations of RL systems involving
FV and R3L systems to S12 system, to the best of our
knowledge, for the first time.

e This paper has attempted to quantify the technical and
non-technical difficulties that are, generally, encoun-
tered in all telemonitoring applications. Generally, ECG
compression algorithms (Brechet et al. 2007; Alesanco
and Garcia 2008; Sharma et al. 2012) are used to provide
a solution to the technical problems; however, they have
limitations which can be mitigated by using a RL
system. The non-technical constraint can be mitigated
using the proposed lead reconstruction technique.

e This work has enumerated the important parameters that
will determine the selection of a particular RL system
and provide a technical methodology for their selection.

With the help of Figure 3 and in consultation with the
cardiologists, we assume that any reconstruction with more
than 80% R? value can be considered to have significant
diagnostic value and R” values more than 90% can be
assumed to have high diagnostic value. Table 5 presents a
comparison between FRM and SRM in the context of
remote healthcare monitoring applications. Usinf FRM,
lead positions V5 and Vg have comparatively under-
performed. Among the R3L systems, usually lead positions
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for V3 and V, are avoided to leave the left chest open for
bandaging, accessibility to defibrillator pads, echocardio-
graphy transducers and other non-ECG testings (Gregg
et al. 2008). Hence, nontechnical factors suggest the usage
of R3L system with basis lead V,, which is also one of the
most examined precordial lead. R3L systems also provide
the flexibility of using any basis lead as per the suggestion of
the cardiologist. FV system, on the other hand, can provide
valuable information contained in both VCG and ECG and
can help in the accurate and reliable diagnosis of the patient.
A complete 3D visualisation of heart can provide important
information regarding the condition of heart (Dawson et al.
2009; Yang 2011). VCG has been found to be better than
S12 system in several diseases including myocardial
ischemia, inferior myocardial infarction, Brugada syn-
drome, etc. (Bergmann and McGregor 2011; Correa et al.
2013). One of the major problems that lie in the
implementation of FV system is the unconventional
placement of electrodes, i.e. in the neck and back of the
patient. However, this limitation can be mitigated by using
wearable wireless sensors (Scanaill et al. 2006; Bergmann
and McGregor 2011) which have been designed intending
comfort of the patients. This paper proposes a solution to
technical limitations of ECG acquisition using clinically
accepted S12 system for PRHM applications by providing
the flexibility of using one of seven RL systems, i.e. six R3L
and FV system; however, the selection of appropriate RL
system will be ultimately determined from the medical
perspective of the cardiologists.
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[c,t] = wavedec(x,9,sym10’); %Decomposition of signal
signal = wrcoef(‘a’ ,c,t,‘syml()’ ,9); %Reconstruction of signal from the approx. coefficients
BW,removed,signal =X — signal; %Subtracting the BW from original signal

Figure 5.

qmf = MakeONFilter(‘Symmlet’,8);
denoised_signal = recTI(BW _removed _signal,'"H’,qmf);

Snippet of MATLAB code for implementation of preprocessing module.
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dataset_range = 1000:16000; d_length = 100; d_time = 99; bd = [4:8]; fz = 1300;

% From the dataset considered i.e. first 2t samples, about 15000 - 20000 samples (dataset_range) were taken from each lead of patients
% from various categories which consisted of about 10-15 PQRST complexes. Out of these complexes the ones mentioned in the variable
% “bd’ i.e. complezes 4 to 8 were taken and averaged. This was done so that there are no conflicts and all the patients in a particular

VG
Ve
%

% of the window (d_-length) are regulated and tuned according to the cardiologic disorder (categories). This fine tuning was

% performed upon visual examination of the complete process for all the 12 leads of all the patients category wise. FP= nqrsde-
tect(Original signal(dataset_range),1000); % Extraction of fiducial points (FP) from Original signal (OS)

PQRST= select_train(Original_iignal(dataset_range),FP,length(FP),1,0,0.5,0,fz); % Ezxtraction of PQRST complezes from
OS and FP

len = length(PQRST);

FO = tdmg(mean(PQRST(bd,d length:len)),1000,1:1:len-d_time); %Feature extraction of Original signal (FO)

clear FP;clear PQRST;

FP= nqrsdetect(Reconstructed_signal(dataset_range),1000);% Extraction of fiducial points (FP) from Reconstructed signal
(RS)

PQRST= seclect_train(Reconstructed signal(dataset_range),FP,length(FP),1,0,0.5,0,{z);% Eatraction of PQRST com-
plezes from RS and FP

len = length(PQRST);

FR = tdmg(mean(PQRST(bd,d-length:len)),1000,1:1:len-d_time);%Feature extraction of Reconstructed signal (FR)

S

category can be operated upon using similar values as arguments. The output from select_train function is a window which includes
a particular section of the ECG signal and to include/limit exactly one PQRST complex in that window the variables: bd,

S

dataset_range, fz, starting point of the window to be considered(d_time) and end point

NN

Figure 6. Snippet of MATLAB code for implementation of ngrsdetect-m, select train-m and tdmg-m.
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