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1. Introduction

Throughout this paper we work over the field of complex numbers C. Let X be a d-dimensional smooth 

projective variety. Unless mentioned otherwise, OX(1) will always denote an ample and globally generated 

line bundle on X.

Definition 1.1. A locally free sheaf (vector bundle) E on X is said to be Ulrich with respect to OX(1) (or 

simply Ulrich when the bundle OX(1) is understood) if the following two conditions are satisfied

(1) Hi(X, E(−i)) = 0 for all i > 0,

(2) Hj(X, E(−j − 1)) = 0 for all j < n.

We refer the reader to [3, §2] for basic definitions. In the literature authors usually define Ulrich with 

respect to a very ample line bundle, kindly see the next section for some remarks related to this. A conjecture 

* Corresponding author.

E-mail addresses: ronnie@math.iitb.ac.in (R. Sebastian), amittr@gmail.com (A. Tripathi).

https://doi.org/10.1016/j.jpaa.2021.106823
0022-4049/© 2021 Elsevier B.V. All rights reserved.



2 R. Sebastian, A. Tripathi / Journal of Pure and Applied Algebra 226 (2022) 106823

of Eisenbud and Schreyer [11] states that every smooth projective variety supports an Ulrich bundle. Several 

people have constructed Ulrich bundles on particular varieties and we list a few. They have been shown 

to exist on complete intersections by [14], on curves and del Pezzo surfaces by [11], on K3 surfaces by [2]

and [12], on abelian surfaces by [4], on ruled surfaces by [1], on regular surface by [6], [8], on surfaces with 

pg = 0 and q = 1 by [7], on surfaces of maximal Albanese dimension and some irregular surfaces by [15], 

[16]. The above list is far from being complete and we refer the reader to the above papers, for example [7], 

and the references therein for more results. In [10, Theorem 4.3] the authors show, over the field of complex 

numbers, the existence of Ulrich bundles of rank two in a sufficiently ample embedding.

Recently Narayanan and Parameswaran [17] studied the existence of Ulrich line bundles on a double plane 

π : X → P
2 branched along a smooth curve B ⊂ P

2 of degree 2s. In [17, Theorem 1.5], they prove that for 

each s ≥ 3, there are special classes of double planes which admit Ulrich line bundles. In [17, Theorem 1.4]

they show that a double plane branched along a generic smooth curve of degree 2s, where s ≥ 3, does not 

support an Ulrich line bundle.

Let X be a surface and let KX be the canonical line bundle. An Ulrich bundle E of rank 2, with respect to 

OX(1), is called special Ulrich if it also satisfies det(E) ∼= KX ⊗ OX(3). Let π : X → P
2 be a degree 2 cover 

which is branched along a smooth curve B ⊂ P
2 of degree 2s. For such a map denote OX(1) := π∗OP 2(1)

and by an Ulrich (respectively, special Ulrich) bundle on X we will always mean Ulrich (respectively, special 

Ulrich) with respect to OX(1). In this note we show the following.

Theorem 1.2. Let π : X → P
2 be a double cover branched along a generic smooth curve B ⊂ P

2 of degree 

2s, where s ≥ 3. Then X admits a special rank 2 Ulrich bundle.

To prove the above result we use two inputs. The first is the well known correspondence between zero 

dimensional subschemes satisfying the Cayley-Bacharach property and global sections of a rank 2 vector 

bundle, see [19, §5]. Let F be the degree 2s homogeneous polynomial which defines B. Using [19] we first 

prove

Theorem 1.3 (Theorem 2.7). Let π : X → P
2 be a degree 2 cover which is branched along a smooth curve 

B ⊂ P
2 of degree 2s, where s ≥ 3. Let F denote the polynomial of degree 2s which defines B. Assume that 

there are two polynomials F1 and F2 of degree s such that F ∈ (F1, F2). Then X supports a special Ulrich 

bundle of rank 2.

The second input is the first point in [9, Theorem 5.1] which enables us to conclude that for the general 

degree 2s hypersurface F we can find degree s hypersurfaces F1 and F2 such that F ∈ (F1, F2). We do not 

know if this holds for all smooth degree 2s hypersurfaces.

It has been brought to our attention that Mohan Kumar, P. Narayanan and A.J. Parameswaran have 

proved, using a different method, that every double plane cover supports a rank 2 Ulrich bundle.

Acknowledgements. We thank Enrico Carlini and Luca Chiantini for several helpful discussions related 

to their article [9]. We thank Gianfranco Casnati for several useful comments. We thank the referee for 

an extremely careful reading of this article and for numerous useful suggestions which have improved the 

exposition.

2. Existence of Ulrich bundles

To show that a bundle E on X is Ulrich we will use the following criterion.

Lemma 2.1. Let X be a d-dimensional smooth projective variety and let π : X → P
d be a surjective and 

finite map of degree e. A bundle E on X is Ulrich with respect to π∗OP d(1) if and only if π∗E ∼= O
e·rank(E)

P d .
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Proof. Let us first assume that π∗E ∼= O
e rank(E)

P d . Since the map is finite, and using projection formula, we 

have Hi(X, E(k)) = Hi(P d, π∗E(k)) for all i, k ∈ Z. Since π∗E ∼= O
e rank(E)

P d it is clear that the conditions 

in Definition 1.1 are satisfied.

Conversely, assume that E satisfies the conditions in Definition 1.1. Then it follows that π∗E and (π∗E)∨

are 0-regular of rank e · rank(E). Thus, both of them are m-regular for all m ≥ 0. From this it easily follows 

that Hi(P d, π∗E(k)) = 0 for all k ∈ Z and for all 1 ≤ i ≤ d − 1, that is, π∗E is an ACM bundle. Now 

applying Horrocks criterion, see [13] or [18, Theorem 2.3.1] where it is stated more precisely, we get that 

π∗E is a direct sum of line bundles. If OP d(a) is a summand of π∗E then we get that Hi(P d, OP d(a − i)) = 0

for all i > 0 and Hj(P d, OP d(a − j − 1)) = 0 for all j < d. In particular, by taking i = d and j = 0 it follows 

that a = 0. This shows that π∗E ∼= O
e·rank(E)

P d . �

As mentioned before, authors usually define Ulrich bundles with respect to very ample line bundles. 

However, the existence of an Ulrich bundle with respect to an ample and globally generated line bundle 

L ensures that there are Ulrich bundles with respect to L⊗n for all n > 0, see [3, Proposition 3] and the 

remarks following it.

2.2. Double covers of P
2. We briefly recall the main properties of double covers which we will use. A 

general reference for this is [5, §17]. Let B ⊂ P
2 be a smooth curve of degree 2s defined by a homogeneous 

polynomial F . Let π : X → P
2 be the double cover of P 2 branched along B, the construction of which we 

briefly explain for the benefit of the reader. Let A denote the total space of the line bundle A = OP 2(s), 

π : A → P
2 the projection and

T ∈ H0(A, π∗A) (2.3)

be the tautological section. Define X to be the subvariety of A defined by the section T 2 − π∗F ∈

H0(A, π∗A⊗2) = H0(A, π∗OP 2(2s)). We will abuse notation and denote the composite X ⊂ A → P
2

also by π. Then π is a finite map of degree 2 between projective varieties. We list the important properties 

of double covers that we will use, see [5, Lemma 17.1, Lemma 17.2].

(1) If B is smooth then X is smooth, this is explained in the sentence preceding [5, Lemma 17.1].

(2) Let R ⊂ X denote the reduced divisor π−1(B). Then π∗OP 2(s) ∼= OX(R).

(3) The canonical bundle KX
∼= OX(s − 3).

(4) π∗OX = OP 2 ⊕ OP 2(−s).

2.4. Existence of Ulrich bundles. In this section we shall prove that a general double plane cover supports 

a special Ulrich bundle of rank 2. We will use the result in [19, Theorem 10] to construct a rank 2 bundle 

on X. For the benefit of the reader we state the main result from [19] that we need, but first we recall some 

definitions from [19, page 2]. Given a subscheme Z2 ⊂ Z1, the “complement” Z of Z2 in Z1 is the canonical 

closed subscheme Z ⊂ Z1 with sheaf of ideals IZ = [IZ1
: IZ2

], that is, for any open set U ⊂ X, we define

IZ(U) := {g ∈ OX(U) | gIZ2
(U) ⊂ IZ1

(U)} .

We call Z the residual subscheme of Z2 in Z1 and denote it by Z = Z1 − Z2 in the statement of the next 

theorem, which is [19, Theorem 10]. There are three equivalences, but we state only two of these.

Theorem 2.5 (Theorem 10, [19]). Let X be a complex smooth projective variety of dimension n ≥ 2. Let 

Z ⊂ X be a subscheme of pure codimension 2. Then the following are equivalent:

(1) Z is the zero subscheme of a section of a rank 2 vector bundle E.
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(2) There are hypersurfaces D1, D2, D3 such that D1 and D2 have no common components, Z = D1 ∩ D2 −

D1 ∩ D2 ∩ D3 and such that D1 ∩ D2 ∩ D3 is of pure codimension 2 and is Cohen-Macaulay.

Further, if (1) and (2) hold then det(E) ≡ OX(D1 + D2 − D3).

With notation as above let E be the bundle which sits in the following short exact syzygy sequence, this 

is explained just before [19, Theorem 10].

0 → E(−D1 − D2) →
⊕

i

OX(−Di) → ID1∩D2∩D3
→ 0 . (2.6)

Theorem 2.7. Let π : X → P
2 be a degree 2 cover which is branched along a smooth curve B ⊂ P

2 of degree 

2s, where s ≥ 3. Let F denote the polynomial of degree 2s which defines B. Assume that there are two 

polynomials F1 and F2 of degree s such that F ∈ (F1, F2). Then X supports a special Ulrich bundle of rank 

2.

Proof. First let us note that there is no non-constant polynomial H which divides both F1 and F2, or else 

H will divide F , contradicting the smoothness of B. Thus, the subscheme of P 2 defined by the ideal (F1, F2)

is 0-dimensional and is contained in B. We denote this by Z ′ the subscheme defined by the ideal (F1, F2). 

Consider the scheme theoretic inverse image Z1 := π−1(Z ′).

For i = 1, 2 take Hi = π∗Fi ∈ H0(X, OX(s)). If Di denotes the divisor defined by Hi then Z1 = D1 ∩ D2

in the notation of Theorem 2.5. Take H3 = T ∈ H0(X, OX(s)) (see equation (2.3), by abuse of notation 

we denote the restriction of T to X also by T ) and Z2 to be the subscheme of Z1 defined by H3, thus, 

Z2 = D1 ∩ D2 ∩ D3, where D3 is the divisor defined by H3. Let us compute the ideal IZ := [IZ1
: IZ2

].

If x, y, z are homogeneous coordinates on P 2 then let C[x, y] (we abuse notation here and denote the 

affine coordinates also by x and y) denote the coordinate ring of the open set {z �= 0}. Denote by f the 

equation F in C[x, y], similarly, for the other polynomials. The inverse image of this open set in X has 

coordinate ring

C[x, y, t]/(t2 − f) .

The ideal IZ1
= (f1, f2) and the ideal IZ2

= (f1, f2, t). If I ⊂ J are two ideals in a ring then it is clear that 

I ⊂ [I : J ]. Thus, IZ1
⊂ IZ . We claim that t ∈ [IZ1

: IZ2
]. An element of IZ2

looks like λf1 + µf2 + θt. Since 

t2 = f ∈ (f1, f2) it follows that t(λf1 + µf2 + θt) ∈ IZ1
that is, t ∈ [IZ1

: IZ2
]. Thus, IZ = (f1, f2, t). In 

particular, Z = Z2 = D1 ∩ D2 ∩ D3. Thus, in the notation from [19, §1, page 2], we may write

Z = D1 ∩ D2 − D1 ∩ D2 ∩ D3 .

Moreover, D1 ∩ D2 ∩ D3 is of pure codimension 2 and is Cohen-Macaulay (since both depth and dimension 

are 0). Thus, there is a bundle E which sits in the short exact sequence (2.6) and has a global section

OX → E (2.8)

whose vanishing gives Z. The line bundles OX(Di) are all isomorphic to OX(s). Thus, det(E) = OX(s). 

Twisting the short exact sequence (2.6) by OX(2s) we get a short exact sequence

0 → E → OX(s)⊕3 → IZ(2s) → 0 . (2.9)

Consider the commutative diagram
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0 IZ′

i

OP 2

π#

OZ′ 0

0 π∗IZ π∗OX π∗OZ 0 .

In the notation we used above, the coordinate ring of Z ′ is C[x, y]/(f1, f2) and the coordinate ring of Z is 

C[x, y, t]/(f1, f2, t) ∼= C[x, y]/(f1, f2). Thus, the right vertical arrow is an isomorphism, which proves that 

the cokernel of π# and i are isomorphic.

Let σ denote the involution of X interchanging the two sheets of the double cover. One has the trace 

map Tr : π∗OX → OP 2 defined as follows. Let U ⊂ P
2 be open and let f ∈ OX(π−1(U)). Define Tr(f) :=

f + f ◦ σ ∈ OP 2(U). Now if f ∈ OX(π−1(U)) and f vanishes at a point p ∈ Z, then since Z ⊂ B and σ is 

the identity on B, it follows that f ◦ σ also vanishes at p. From this it is clear that Tr maps π∗IZ to IZ′ .

The map Tr gives a splitting of the map π#. Since Tr maps π∗IZ to IZ′ it follows that Tr gives a splitting 

of the map i. Thus, π∗IZ is isomorphic to the direct sum of IZ′ and the cokernel of i. We saw above that 

the cokernel of π# and the cokernel of i are isomorphic. Since π∗OX = OP 2 ⊕ OP 2(−s), see property (4) in 

subsection 2.2, it follows that the cokernel of π# is isomorphic to OP 2(−s). Thus, it follows that

π∗IZ
∼= IZ′ ⊕ OP 2(−s) . (2.10)

Thus, we have

h0(X, IZ(2s)) = h0(P 2, IZ′(2s)) + h0(P 2, OP 2(s)) . (2.11)

Using the short exact sequence

0 → OP 2(−2s) → OP 2(−s)⊕2 → IZ′ → 0 , (2.12)

we get that h0(P 2, IZ′(2s)) = 2h0(P 2, OP 2(s)) − 1. Using equation (2.11) we get

h0(X, IZ(2s)) = 3h0(P 2, OP 2(s)) − 1 .

Next we will compute H0(X, E). Taking dual of (2.8) we get an exact sequence

0 → det(E)∨ → E∨ → IZ → 0 .

Since det(E) = OX(s) and E is of rank 2, we get E∨ = E ⊗ det(E)∨, which gives

0 → OX → E → IZ(s) → 0 .

Applying π∗ to this we get

0 → π∗OX → π∗E → π∗IZ(s) → 0 . (2.13)

Using (2.12) we get h0(P 2, IZ′(s)) = 2 and using (2.10) we get that

h0(P 2, π∗IZ(s)) = 3 .

From this it follows that h0(P 2, π∗E) = 4. Applying π∗ to (2.9) and taking cohomology we get
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h1(P 2, π∗E) = h0(P 2, π∗IZ(2s)) + h0(P 2, π∗E) − 3 − 3h0(P 2, OP 2(s))

= 3h0(P 2, OP 2(s)) − 1 + 4 − 3 − 3h0(P 2, OP 2(s))

= 0 .

Consider the commutative diagram

H0(P 2, π∗E) H0(P 2, π∗IZ(s))

H0(P 2, OP 2)

The vertical arrow is the projection in equation (2.10) and is surjective. The horizontal arrow is surjective 

as is easily seen by taking cohomology of the sequence (2.13). Thus, we have a map π∗E → OP 2 which 

induces a surjection on global sections. This shows that this map is split. Thus,

π∗E = G ⊕ OP 2 ,

where G is a locally free sheaf and sits in a short exact sequence

0 → π∗OX → G → IZ′(s) → 0 .

We will now show that G is trivial. Consider the following pullback diagram.

0 π∗OX F

a

O⊕2
P 2

b

0

0 π∗OX G IZ′(s) 0

From this it follows that F = O⊕3
P 2 ⊕ OP 2(−s) since Ext1(OP 2 , π∗OX) = 0. We may split the top row and 

compose the splitting with a to get a diagram

0 OP 2(−s)

d

O⊕2
P 2

c

IZ′(s) 0

0 π∗OX G IZ′(s) 0

Suppose Ker c �= 0, then the image of c is a sheaf of rank 1, which surjects onto IZ′(s). This forces that the 

image is isomorphic to IZ′(s), which defines a splitting of the bottom row. However, since G is locally free, 

this is not possible. Thus, Ker c = 0.

Now let us consider the left vertical arrow d : OP 2(−s) → OP 2 ⊕ OP 2(−s). If the cokernel is OP 2 then 

we get that G is the trivial bundle. The only other possibility for the cokernel is OC ⊕ OP 2(−s), where C

is a hypersurface of degree s in P 2. In this case, G sits in a sequence

0 → O⊕2
P 2 → G → OC ⊕ OP 2(−s) → 0 .

Since G is a summand of π∗E and H1(P 2, π∗E) = 0, it follows that H1(P 2, G) = 0. This forces that

H1(P 2, OC) = 0 .
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But now using 0 → OP 2(−s) → OP 2 → OC → 0 we get 0 = H1(P 2, OC) = H2(P 2, OP 2(−s)) =

H0(P 2, OP 2(s − 3))∨, which is not possible if s ≥ 3. Thus, the cokernel of d is OP 2 and so G and π∗E

are trivial. This proves that E is an Ulrich bundle on X.

Recall from (3) that the canonical line bundle of X is OX(s − 3). Since det(E) ∼= OX(s) = OX(s − 3) ⊗

OX(3), it follows that E is a special Ulrich bundle. �

Proof of Theorem 1.2. For the convenience of the reader we recall the statement from [9] that we are using. 

Their main result gives a description of all the possible complete intersections of codimension r that can 

be found on a general hypersurface of degree d in P n when 2r ≤ n + 2. In our situation n = r = 2 and 

d = 2s. In this situation the first point in [9, Theorem 5.1] enables us to conclude that for the general degree 

2s hypersurface F we can find degree s hypersurfaces F1 and F2 such that F ∈ (F1, F2). Now we apply 

Theorem 2.7 and get that X supports a special Ulrich bundle of rank 2. This proves Theorem 1.2. �
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