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QUINT: Node embedding using network hashing

Debajyoti Bera, Rameshwar Pratap, Bhisham Dev Verma, Biswadeep Sen, and Tanmoy Chakraborty

Abstract—Representation learning using network embedding has received tremendous attention due to its efficacy to solve

downstream tasks. Popular embedding methods (such as deepwalk, node2vec, LINE) are based on a neural architecture, thus

unable to scale on large networks both in terms of time and space usage. Recently, we proposed BinSketch, a sketching technique for

compressing binary vectors to binary vectors. In this paper, we show how to extend BinSketch and use it for network hashing. Our

proposal named QUINT is built upon BinSketch, and it embeds nodes of a sparse network onto a low-dimensional space using simple

bit-wise operations. QUINT is the first of its kind that provides tremendous gain in terms of speed and space usage without

compromising much on the accuracy of the downstream tasks. Extensive experiments are conducted to compare QUINT with seven

state-of-the-art network embedding methods for two end tasks – link prediction and node classification. We observe huge performance

gain for QUINT in terms of speedup (up to 7000× and space saving (up to 80×) due to its bit-wise nature to obtain node embedding.

Moreover, QUINT is a consistent top-performer for both the tasks among the baselines across all the datasets. Our empirical

observations are backed by rigorous theoretical analysis to justify the effectiveness of QUINT. In particular, we prove that QUINT retains

enough structural information which can be used further to approximate many topological properties of networks with high confidence.

Index Terms—Network embedding, Node classification, Link prediction, Binary sketch, Dimensionality reduction, Sparse network

✦

1 INTRODUCTION

Machine learning tasks that involve networks, such as node classi-

fication, clustering, link prediction, find it challenging to use large

networks due to the difficulty in succinctly representing their struc-

tures. For example, representing the neighborhood information of

a node in an n-node network would require an n-dimensional

binary vector or a k-dimensional real vector in which k indicates

the number of neighbors of any node, and each entry takes log n
bits. This motivated the problem of network embedding, also

known as network representation learning, in which each node

is assigned a low-dimensional vector such that it maintains the

structural or geometric relationship among the nodes.

A number of challenges have been uncovered in the last few

decades that have led to a series of studies to propose efficient

and effective node embedding methods [2]. Most embedding

techniques “learn” an optimal encoding for specific machine

learning tasks. This involves employing an optimization algorithm

(say, gradient descent) which usually lacks worst-case guarantees

and is also difficult to scale for massive networks. Recently, a few

GPU-based approaches were proposed to improve scalability [3].

However, we are interested in CPU-only approaches. Furthermore,

the embeddings obtained thus are optimized for specific tasks and

may not be effective for others. The final challenge is the space

complexity of the embeddings. It is desirable to get a succinct

embedding of nodes because of two reasons: (i) It requires less

storage; e.g., employing 128 dimensional real-valued vectors costs

1KB of storage per node (on a 64-bit machine) which shoots to

1GB for a million node network. (ii) A succinct embedding leads

to faster training and inferencing of machine learning models.
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The current paper is an extension of our recent study [1] on a binary sketching.

Preserving the semantics of latent representation is another

challenge since many proposed techniques are evaluated using

statistical methods on standard datasets which may fail to bring

out the rich structural invariants that these techniques might be

capturing. A few approaches such as deepwalk that captures

short random walks [4] and GraRep that captures powers of an

adjacency matrix [5], explicitly consider certain structural aspects.

However, to the best of our knowledge, how their embeddings fare

on other structural properties of a graph is yet to be established.

Of late, randomization has been proved to be highly effective

in algorithm design; yet, barring a few approaches based on

random walks [4], [6], random projections [7], and random

hashing [8], randomized approaches are not extensively studied in

the domain of graph embedding. Walking along the relatively less

popular path of non-learning based and randomized approaches,

we present QUINT, a QUick thIN and biTty mapping of nodes

in a sparse network to low-dimensional bit-vectors. The prime

takeaway from this work is the affirmation of bit-wise hashing as

a sound alternative to learning based methods. It has theoretical

bounds on the worst-case situations, delivers comparable (and

sometimes better) accuracy with much less space and requires

significantly less time compared to the state-of-the-art. This

work also suggests that sparse data can be analysed better with

sparsity-aware methods; despite many networks being sparse in

nature, we are aware of only a handful of approaches specifically

for them [9], [10], [11].

Major contributions: Our main contribution is QUINT that

takes a large n-node network as an input and outputs a d-bit binary

embedding corresponding to each node. QUINT uses a modified

version of BinSketch [1], a sketching algorithm that we recently

proposed for binary data. Here, d denotes the dimension of the

embedding, and we give a formula to compute it in terms of

the maximum degree of any node of a network (which we will

simply denote by ‘degree’ when the context is clear). We make two

important modifications to BinSketch, one of them being a larger

dimension than what is stipulated by BinSketch; however, it is
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common for real-world networks to have a low degree compared

to the number of nodes, and the best part is that a much smaller

d suffices in practice.

Our approach addresses many of the concerns raised above and

emerges as a strong contender for node embedding in a resource-

constrained scenario — it requires shorter embedding time and

generates small-sized embeddings. We emphasise that QUINT is

designed to handle networks without attributes and weights.

(i) Speedup in embedding: QUINT takes an adjacency matrix

or an edge list of a network as an input and outputs binary

embedding of nodes using just one pass over the network while

doing bit manipulations. Due to its simplicity, it computes the em-

beddings in almost real time. For instance, on the BlogCatalog

network [12] with 10, 312 nodes and 333, 983 edges, QUINT

finishes within 1.6 secs (for d = 1000), about 5 µsec per edge;

in contrast, node2vec, deepwalk, LINE require 23 mins, 19

mins and 32 mins, respectively, for a single epoch. Similarly, on

Flickr [13] network with 80, 513 nodes and 5, 899, 882 edge,

QUINT finished within 30.63 secs (for d = 1000), by taking about

5.2 µsec per edge; on the other hand, node2vec and LINE did

not finished in 10 hours; deepwalk, VERSE and NodeSketch

require 2.1 hr, and 4.8 hr and 18 mins, respectively. Also on

Youtube network [13] with 1, 138, 499 nodes and 2, 990, 443
edges, QUINT finished within 35.06 secs (for d = 1000), about

11.7 µsec per edge; whereas, node2vec , deepwalk, LINE,

VERSE did not finished in 10 hours and NodeSketch require 15
mins.

(ii) Less space overhead: Popular embedding methods output

real-valued embedding, generally 128 or 256 dimensional real-

valued vectors, whereas QUINT generates binary embeddings con-

suming d bits for a d-dimensional embedding of a node. In the link

prediction task (aka. link discovery) on BlogCatalog, we find

that node2vec, NodeSketch, LINE and deepwalk generate

128-dimensional real-valued vectors that consume 128 × 64 =
8,192 bits, and these embeddings generate a maximum AUC

score of 66. In contrast, QUINT with d = 1000 uses only

a tenth of that space (1000 bits) to achieve 84.4 AUC-ROC.

Similarly, on Youtube dataset node2vec and NodeSketch for

128-dimension embedding achieve a maximum AUC score of

65.1, whereas QUINT with d = 100 achieve 90 AUC-ROC value,

while using only 1/80 of space in comparison.

(iii) State-of-the-art accuracy: We compare QUINT with

seven recently proposed state-of-the-art embedding methods –

node2vec [6], deepwalk [4], LINE [14], Verse [15],

NetMF [16], NodeSketch [17], and SGH [18], for link pre-

diction and node classification, and on altogether ten real-world

publicly available datasets and several LFR generated synthetic

graphs. For our experiments we perform the end tasks considering

the embeddings obtained from the competing methods. QUINT

remains one of the top performers in terms of accuracy across

all the networks and end tasks. We attribute this to BinSketch
that has displayed the ability to generate succinct representations

which simultaneously “preserve” multiple similarities [1].

(iv) Supporting theoretical analysis: We also present a

rigorous theoretical analysis of the appealing properties that give

QUINT an edge over the existing techniques. Embedding obtained

from QUINT is essentially a compressed form of the neighborhood

information of a node. We show that the embedding, even though

compressed, retains information about the network structure such

as the degrees, the number of common neighbors, the number of

even length paths, etc. More generally, we discuss how any even

power of an adjacency matrix can be approximately computed

from the embedding with a large confidence and accuracy. Not

surprisingly, our embedding allows us to perform link prediction

and node classification as good as the others, and sometimes better.

We hope that similar performance would be observed for other

machine learning tasks (e.g., clustering) that rely only on the

structural properties of a network, i.e., without using any metadata.

(v) Sparsity-aware design: Many real-world networks are

sparse in nature. However, to the best of our knowledge, most

of the embedding approaches do not tend to include optimisations

specific to sparse data or provide theoretical guarantees that de-

pend on its sparsity, except a few, e.g., NetSMF [9], STRAP [10],

SSNE [11]. QUINT is designed keeping sparse networks in mind.

Both the empirical and analytical results explain how QUINT

leverages the notion of sparsity of a network, which we quantify

by the largest degree among all nodes.

(vi) QUINT vs. uncompressed representation: Since QUINT

emdeddings are compressed forms of rows of an adjacency matrix,

one may wonder about the payoffs when the uncompressed adjan-

cency lists or the adjacency rows (rows of an adjacency matrix)

are instead used as “embeddings”. Adjacency lists of sparse

networks are no doubt compact, but are not immediately suitable

due to unequal number of neighbors, complete dependence of

the embedding on the ordering of nodes, etc. Adjacency rows

avoid these problems but are verbose; nevertheless we compare

it with QUINT. Quite surprisingly, we find that the classification

and prediction performances of QUINT almost match the accuracy

using uncompressed adjacency matrix. In fact, on Enron, QUINT

achieves 94.75 AUC score (with d = 4000) which is close to

that with the adjacency matrix (95.42 AUC). This shows that

our compression retains many of the useful information in its

embedding. Notice that the uncompressed embedding, for Enron,

is a 36,692-dimensional binary vector, which is almost 9 times

the size of that with QUINT with d = 4000 and can become

embarrassingly large for large sparse networks. Compression also

improves the training time, e.g., training during link prediction

runs out of memory on an uncompressed embedding of Gowalla.

Organisation: We formally state our problem and briefly

discuss our earlier work, BinSketch, in this context in Section 2.

Related works are discussed in Section 3. Our QUINT embedding

method is presented in Section 4 whose theoretical properties and

a few related algorithms are discussed in Section 5. In Section 6,

we present the results of our empirical evaluation on several

real-world datasets against state-of-the-art algorithms. Section 7

concludes the paper with several open questions.

Reproducibility: The datasets that were used are described

along with the specific experiments and are publicly available. We

have made available the source codes of the techniques that we

used, including that of QUINT, on an accessible server [19].

2 PROBLEM STATEMENT AND BACKGROUND

Let G = 〈V,E〉 be an unweighted undirected network with

|V | = n nodes and |E| = e edges. The network can also be

represented by the adjacency matrix A ∈ {0, 1}n×n, where

Ai,j = 1 implies that there is an edge between node i and node

j, and is set to 0 otherwise. We use Ai to denote the i-th row

of A, which in turn represents a |V |-dimensional binary vector

for the node i. The sparsity of Ai indicates the number of ones
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in it, representing the degree of that node, and the sparsity of a

network, denoted ψ, is defined as the largest sparsity of any Ai.

Node embedding problem: Our aim is to compute a binary

embedding of the nodes of a network, essentially an n × d
binary matrix where d (typically d ≪ n) is the dimension of the

embedding, in a manner that preserves local network structures.

These structures can be categorized into first, second, third-order

proximities and so on, based on their coverage [20].

First-order proximity. The first-order proximity between nodes

i and j, denoted by s
(1)
ij , captures the presence of an edge between

them and is set to Aij for unweighted networks.

Second and higher order proximities. The k-th order proximity

is defined inductively. Let s
(k)
i = [s

(k)
i1 , s

(k)
i2 , . . . , s

(k)
in ] denote the

k-th order proximity between node i and the other nodes. Then

the (k + 1)-th order proximity s
(k+1)
ij between nodes i and j is

computed using a suitable “similarity function” between s
(k)
i and

s
(k)
j . A common practice, for example, is to use the inner product

for computing similarity.. It should be noted that a high (or low)

k-th order proximity between two nodes may not automatically

establish a high (or low) (k+1)-th order proximity between them.

Therefore, different embedding techniques target proximities of

specific orders [20]. However, we shall explain later how QUINT,

in some manner, ensures proximities of multiple orders.

Extension to Binsketch: Recently, we proposed a random-

ized sketching technique for binary data, named BinSketch [1]. It

compresses high-dimensional sparse binary vectors to extremely

compact binary sketches. The sketch of a vector a ∈ {0, 1}n
is a d-dimensional binary vector σa whose i-th bit is set to∨

j:π(j)=i

aj , where π is a random mapping from {1, 2 . . . , n} →

{1, 2, . . . , d}. We also proved that these sketches allow efficient

estimation of inner product similarity and a few other similarity

metrics.

Theorem 1 (Theorem 1, [1]). The inner product of two binary vec-

tors with sparsity at most ψ can be estimated from their sketches

with probability at least (1−ρ) and accuracy O
(√

ψ ln 6
ρ

)

if we

set the size of the sketches to d = ψ
√

ψ
2 ln 2

ρ .

The motivation behind QUINT is the observation that the rows

of the adjacency matrix of a network could be embedded in the

above manner to low-dimension binary vectors. Further, since

the inner product between two adjacency vectors represents the

number of common neighbors of the corresponding nodes, it is

possible to estimate the number of common neighbors between

any two nodes from their embedding vectors. However, it is

not clear whether this idea is practical, i.e., whether it would

stand up for the common uses of node embedding in different

downstream tasks, or even theoretically sound. The contribution

of the current paper is an emphatic ‘yes’ to this question, along

with the modifications necessary towards this goal.

BinSketch consists of two major players – an algorithm to

generate a sketch and a suite of estimators for several distance

measures. The estimator for inner product distance was deemed

suitable for node embedding. Our first modification to QUINT

is to set a larger embedding dimension in Algorithm 1 for

generating a sketch. The second modification is an added check

in Algorithm 3 for estimating the number of common neighbors

from embeddings, which turns out to be equivalent to the inner

product similarity. Though a much smaller dimension appears to

be effective in practice, the larger dimension, along with the check,

is required to prove the theoretical guarantees on the embeddings

offered by QUINT, in particular Theorem 6 and Theorem 10.

In our earlier work on BinSketch, we were solely concerned

with sparse binary vectors and estimation of similarity values.

Now, with all the modifications stated above, in this work we

are interested in the performance of BinSketch sketches when

the binary vectors come from the adjacency vectors of a network.

For example, we prove that when our neighborhood estimation

algorithm is used, various structural properties of the network

can be determined solely from the embeddings. We further report

results of network analytics, namely node classification and link

prediction, on real networks.

3 RELATED WORK

Popular node embedding methods can be broadly classified into

four categories: (1) data independent hashing, (2) learned hashing,

(3) factorization based approaches, and (4) deep learning based

approaches. Our method falls in the first category which creates

small randomized sketches (also known as signatures in literature)

without any “learning” from the data. The sketches are designed

to allow fast computation of similarity in a suitable space. Lack

of any learning step makes these efficient in time; however, the

challenge is to ensure that proximities, especially those of the

higher orders, can also be computed apart from the similarities.

NodeSketch [17] addresses this problem by using “consistent

weighted sampling” that can be used to estimate a weighted variant

of Jaccard similarity. Our technique, at its core, uses BinSketch

[1] which can be used to estimate Jaccard, Hamming, and a few

other similarity measures at the same time.

The learned hashing techniques, on the other hand, create

randomized embeddings using a data dependent hash function that

is learned from the data. Spectral Hashing [21] uses Lapla-

cian of the corresponding graph, whereas, Scalable Graph

Hashing (SGH) [18] avoids computation of the entire node-to-

node similarity matrix by doing a feature transformation followed

by a sequential learning step.

Factorization based methods represent graph property, e.g.

pairwise similarity of nodes, in the form of a matrix and

factorize this matrix to obtain node embedding [22], [23].

GraRep [5] factorizes the k-th order transition matrix, HOPE [24]

and LQANR [25] factorize up to-k-order proximity matrix, and

NetMF [16] factorizes a matrix obtained using random walks.

Recently, INH-MF [26] was proposed to specifically learn a

binary embedding using matrix factorization. These techniques

come with elegant theoretical promises, but suffers from high

complexity in practice due to the optimization steps, e.g., during

factorization [27], [28], [29].

Deep learning based approaches for graph embedding broadly

fall into two categories. In the first category, a graph is ex-

plored using different exploration methods, and then the con-

texts of the nodes obtained from the random walks are fed

into the skip-gram model [30]. Deepwalk preserves higher-

order proximity between nodes. It uses depth-first search to

generate random walks. node2vec was later proposed based

on the same idea, but with the difference that it employs bi-

ased random walks that provide a trade-off between breadth-

first search and depth-first search exploration strategies. Choos-

ing the right balance between these two enables node2vec to
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preserve community structure and structural equivalence between

nodes. metapath2vec [31] extends a similar approach for

Heterogeneous Networks by performing meta-path based random

walks to construct the heterogeneous neighborhood of a node

and then leverages a heterogeneous skip-gram model to perform

node embeddings. A major limitation of such methods is that

it only considers a local context within a path. Moreover, it is

difficult to determine the optimal sampling strategy. The second

category of algorithm does not use any random walk; instead,

they model variable-sized subgraph structures in homogeneous

graphs. Some examples are GCN [32], GraphSAGE [33], and

struc2vec [34]. To summarise, the advantage of deep learning

based methods is that they are effective and robust and don’t

require feature engineering, but the downside is that they incur

a high computational cost.

Slightly less popular, but relevant nonetheless, are matrix-

based methods. They are usually difficult to scale without intricate

optimizations. For example, RandNE [7] applies SVD to billion-

scale networks for which they use Gaussian random projection

and the Johnson-Lindenstrauss (JL) Lemma [35]. It should be

noted that the JL Lemma is applicable primarily to real vectors

and for Euclidean distance; however, we work on binary vectors,

and hence, require similarity metrics relevant for binary vectors.

To take advantage of bitwise operations that are known for speed

and space efficiency, we use our own algorithm, BinSketch [1].

Recently, sketching-based techniques have been explored for

generating node embeddings of large networks. Chen et al. [36]

proposed an algorithm for computing node embedding of large

networks using very sparse random projections [37]. FREDE [38]

generates linear space embedding of nodes using deterministic

matrix sketching [39], and InstantEmbedding [40] computes

node embedding using local PageRank computation. However, all

these results lead to real-valued embedding in contrast to the space

efficient binary embedding obtained via our approach.

It is common for networks to have attributes associated with

their nodes or edges or both. Several solutions have been proposed

for embedding such networks. For example, BANE [41] proposes

binary embedding of attributed network by joint representation

learning of node links and attributes. Along the similar lines,

ASNE [42] too generates embedding that tries to retain both

structural and attribute proximities, and GNN [29] uses a graph

neural network. DNE (Discrete Network Embedding) [43] is a

supervised technique which learns binary node representations

to speed up node classification by jointly learning the discrete

embedding and classifier within a unified framework. While these

are all supervised techniques, an unsupervised technique named

NetHash was proposed recently that uses a recursive hashing

approach for embedding an attributed network [8]. In contrast,

QUINT is designed to embed nodes without any attributes.

The “Feature hashing” algorithm due to Weinberger et al. [44]

takes high-dimensional real-valued data as input and outputs low-

dimensional real-valued vectors (sketch) which closely approxi-

mates the original pairwise inner product similarities. If we naively

apply Feature hashing on our adjacency matrix, the sketch may

not remain binary (node2hash [45] builds upon this idea).

BinSketch offers a similar guarantee but generates binary sketches.

In this manner, BinSketch can be seen as Feature hashing for

binary data that outputs binary vectors and allows approximation

of the inner product similarity, the cosine similarity, the Jaccard

similarity, and the Hamming distance.

Many of the above techniques generate real-valued embed-

dings, whereas QUINT generates binary embeddings. There are a

few more ways in which our approach follows a quite different

trajectory compared to the above approaches. First, we avoid

direct operations on the adjacency matrix which can be extremely

huge. Secondly, the above approaches try to learn the optimal

embedding that minimizes a difference function; the difference

function captures the desideratum of accurately obtaining some

graph property (e.g., neighborhood of a node) or the effectiveness

of the embedding for a certain machine learning task. QUINT

deviates from the norm and generates a random embedding

upfront in an unsupervised manner. It leaves the heavy duty of

using it effectively to algorithms for estimating graph properties,

e.g., the degree of a node or the number of length-2 paths between

two nodes. We feel that the key factor behind the effectiveness

of QUINT is the effective use of the low-sparsity nature of the

networks that it was designed for. None of the above techniques

are explicitly designed for such networks.

4 QUINT EMBEDDING

QUINT uses the BinSketch sketching algorithm that is appro-

priately designed for node embedding and modified to obtain

theoretical guarantees. We describe it in Algorithm 1. It uses a

random mapping, denoted π, that maps every vertex to a uniformly

chosen bin among d bins. To embed a node v, it puts the endpoints

of all the edges from v into a uniformly and identically chosen bin

using π. The embedding of v is a binary vector indicating which

of the d bins are non-empty.

First enhancement to BinSketch: The first modification that

we make is a larger embedding dimension; we set d =

ψ2
√

ψ
2 ln 2

ρ , where ψ is an upper bound on the degree of any

node. This enables us to show that the sketches preserve the higher

order proximities with reasonable accuracy (see Theorem 10).

Algorithm 1 QUINT embedding all nodes of a graph

Input: undirected unweighted graph G = 〈V,E〉
Parameter: probability of error ρ

1: Compute ψ ← upper bound on degree of G

2: Embedding dimension d← ψ2
√

ψ
2 ln 2

ρ ⊲ Increased from

BinSketch
3: π ← a random mapping from {1, . . . , |V |} to {1, . . . , d}

4: For all i = 1 . . . |V |, initialize σi as the vector

d
︷ ︸︸ ︷

00 . . . 0
5: Set L← list of edges E
6: for all edge (i, k) ∈ L do

7: Determine j = π(k)
8: Set the j-th bit of σi to 1

9: end for

10: return embeddings {σ1, σ2 . . .} of all nodes

QUINT falls under the “direct encoding approaches” in a

recent categorization of graph representation methods [2]. The

“encoding” of a node i, represented by its adjacency vector Ai,
is given by the matrix-vector product P · ATi where P is a

d × n matrix. For QUINT, we choose P as a random sparse

binary matrix with n ones such that there is exactly one 1 in

any column. For the matrix product, we use a Boolean-logic

equivalent of standard matrix product, i.e., the i-th entry of the

product of a binary matrix M , and a binary vector is computed as
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π :





1→ 1 2→ 3
3→ 2 4→ 2
5→ 3 6→ 2









100000
001101
010010



·[010110]T = [011]T

Fig. 1. QUINT embedding of a node with edges to 2, 4, 5 is 011. The
mapping π is shown on the left.

∨n
k=1(Mik ∧ vk). An example illustrating this notion is given in

Figure 1.

5 ANALYSING QUINT

In this section, we analyse the theoretical properties of QUINT that

make it suitable for embedding graphs while retaining information

about its structural properties, and this, we believe, helps in node

classification and link prediction. It will be helpful to remember

that the embedding of a node i is a d-dimensional binary vector

which is denoted σi and is defined as:

j-th coordinate of σi: (σi)j =
∨

k:π(k)=j Aik
where π denotes a random mapping from {1, 2, 3, . . . , n} to

{1, 2, 3, . . . , d} and A is the adjacency matrix.

5.1 Time and space complexity

The random mapping can be generated once and stored as a fast-

lookup table or can be implemented using an efficient hashing

algorithm. Let S denote the space required and T denote the time-

complexity to compute π(·); for a lookup table stored in RAM,

S = O(n log d) and T = O(1). Apart from the overhead of π,

QUINT only involves bit manipulations which makes it extremely

efficient. We assume that G is stored as an adjacency list (which

has asymptotically same space complexity as that of an edge-list

representation).

Lemma 2. Algorithm 1 runs in time Θ(T · |E|), returns an

embedding using d · |V | bits and requires an additional space

S for the embedding.

We point out that π does not need to be stored once a graph

is embedded. While the node embeddings can be stored in RAM,

another alternative is to not store the embedding, but to store only

π and generate σi on demand; this approach is also efficient given

the lightweight embedding algorithm.

Lemma 3. The embedding of a single node i uses only d bits

and can be computed in time O(T ·n(i)), where n(i) denotes the

degree of i, and without any additional space overhead.

Taking T and d to be constant for practical scenarios, both

these approaches take constant time per edge of the network and

use constant space per node of the network.

5.2 Estimating number of neighbors

The number of neighbors of a node can be easily estimated from

its embedding by re-using a result that was proved by us for

BinSketch except that we use a larger d compared to what was

used there. Choosing a larger reduced dimension obviously does

not adversely affect the accuracy.

Lemma 4 (Lemma 8, [1]). There is a linear-pass algorithm

to estimate the number of neighbors of a node i with at most

4
√

ψ
2 ln 2

δ additive inaccuracy and probability at least 1− δ.

5.3 Estimating lower order proximities

We used the “inner product” similarity measure for node classifi-

cation and link prediction. The first-order proximity between two

nodes, say s
(1)
ij , is always the presence of an edge between them,

i.e., same as Aij . To compute the second-order proximity, observe

that s
(1)
i = [s

(1)
i1 , s

(1)
i2 , . . . s

(1)
in ] which is identical toAi. Now, s

(2)
ij

is the inner product of s
(1)
i and s

(1)
j and this is same as the inner

product of Ai and Aj . Further, the latter can be easily shown to

be the number of common neighbors of i and j — denoted ni,j
(this can also be represented as the (i, j)-th entry of A2). Note

that ni,j ≤ ψ, degree of the graph.

First we show that QUINT allows us to estimate the first-order

proximity for the inner product similarity measure. The first-order

proximity between nodes i and j indicates the presence of an

edge between them. There was no mention of anything similar

in BinSketch so we show how this can be estimated from their

sketches σ(i) and σ(j) using Algorithm 2.

Algorithm 2 Estimate presence of an edge between nodes i, j

Input: Nodes i and j
Input: Embeddings σi of i and σj of j

1: Compute a = π(i)
2: Compute b = π(j) ⊲ a, b could be same or different

3: if b-th bit of σi and a-th bit of σj are both 1 then

4: return true

5: else

6: return false

7: end if

It is obvious that if there is an edge between nodes i and j
then Algorithm 2 is correct, since ij = ji = 1 and that implies

that the b-th bit of σi is 1 and so is the a-th bit of σj . The other

case of no edge between i and j is covered by Lemma 5.

Lemma 5. Algorithm 2 is always correct when there is an edge

between i and j and has a probability of error at most
2ψ
d ≤

2
√
2

ψ
√
ψ ln 2/ρ

when there is no such edge.

Proof. The proof of the first case is given above. The proof of the

second case is obtained by bounding the probability of events

Ei = “π(k) 6= π(j) for all neighbor k of i” (there are at

most ψ neighbors) and Ej is defined similarly for j. Note that

the probability that the estimator is correct can be expressed as

Pr[Ei ∪ Ej ] which is at least Pr[Ei] + Pr[Ej ] − 1. The proof

follows from the observation that Pr[Ei] ≥ (1− 1
d )
ψ .

Next we show that QUINT allows us to estimate the second-

order proximity using the above similarity measure – the number

of common neighbors. We describe this approach in Algorithm 3.

Given embeddings σi and σj of nodes i and j, respectively, the al-

gorithm first determines the number of ones in those embeddings.

Observe that the number of ones in the i-th row of A determines

the degree of i. Conceptually the algorithm will use the number

of ones in σi to determine the number of ones in Ai, albeit with

some inaccuracy, and thereby estimate its degree.

Then the algorithm computes the number of common indices

where both σi and σj are one, denoted n̂si,j . Once again, the

number of common indices where both Ai and Aj are one is

exactly the number of common neighbors they have, and, will

be estimated from n̂si,j . It turns out this estimation requires the

degrees of i and j whose approximate values we calculated above.
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Algorithm 3 EstCN (number of common neighbors ni,j)

Input: Nodes i and j
Input: Embeddings σi of i and σj of j
Parameter: Embedding dimension d

1: Compute n̂si = |σi| ⊲ |v|: number of ones in vector v
2: Compute n̂sj = |σj |
3: Compute n̂si,j = 〈σi, σj〉 ⊲ 〈u, v〉: inner prod. of u and v
4: if n̂si,j = 0 then

5: return n̂i,j = 0 ⊲ Enhancement from BinSketch
6: end if

7: Set n̂i = ln(1− n̂s
i

d )/ ln(D) ⊲ D denotes 1− 1
d

8: Set n̂j = ln(1− n̂s
j

d )/ ln(D)
9: return estimated number of common neighbors

n̂i,j = n̂i + n̂j − 1
lnD ln

(

Dn̂i +Dn̂j +
n̂si,j
d
− 1

)

The next theorem formalizes our claim that the embeddings

preserve the second order proximities.

Theorem 6. Let ψ be an upper bound on the degree of G and

ρ be the desired probability of error. If the embedding dimension

d is chosen as ψ2
√

ψ
2 ln 2

ρ , then EstCN ensures that its output

satisfies the following with probability ≥ 1− ρ.

(1) ni,j − 14

√

ψ

2
ln

6

ρ
< n̂i,j < ni,j + 14

√

ψ

2
ln

6

ρ

(2) Furthermore, if ni,j > 0 then n̂i,j > 0, and if ni,j = 0 then

n̂i,j = 0 with probability at least 1−
√

2/(ψ ln 2
ρ ).

Second enhancement to BinSketch: We quickly discuss the

role of the enhancements to BinSketch in proving this theorem.

The first part about the accuracy of EstCN in Theorem 6 is known

to be a feature of the BinSketch algorithm (refer to Theorem 1),

except that the embedding dimension used there was ψ
√

ψ
2 ln 2

ρ .

Our first modification was a larger value ψ2
√

ψ
2 ln 2

ρ . But since

the embedding dimension has increased, there are now even lesser

chances of collision in the computation of π(·) and higher chances

that a particular bit of an embedding is set by only one bit of

an input vector. Intuitively speaking, this will only result in a

better accuracy and lower probability of error during an estimation

compared to the that by the BinSketch algorithm.

The second part says that, with high probability, ni,j = 0 iff

n̂i,j = 0. This is important, since otherwise, the estimated number

of common neighbors of i and j could be as large as 14
√

ψ
2 ln 6

ρ

even when i and j share no common neighbor. The enhancement

in Line 5 of Algorithm 3 is crucial to prove the second part.

Both the modifications in Algorithm 1 and Algorithm 3 are

neither cosmetic nor heuristic but are necessary to prove Theo-

rem 6, especially that n̂i,j is concentrated around nij in the second

part. This, in turn, enables us to prove Theorem 10 which says that

certain higher order proximities are preserved by QUINT.

Proof sketch for the first part. We present a sketch of the proof

here; for the detailed calculations, please refer to our earlier work

on BinSketch [1].

Due to the uniform nature of the random mapping π used in

Algorithm 1, it is easy to show that E[n̂si ] = d
(
1 − Ddeg(i)

)
in

which deg(i) denotes the degree of the node i; a similar identity

also holds for n̂sj . These formulæ allow us to express deg(i) in

terms of E[n̂si ].
Next, observe that the t-th bit of both σi and σj can be set

only in one of two ways.

1) Both i and j have an edge to some node k which is

mapped by π to t.
2) Nodes i and j do not share a common neighbor but the

t-th bit is set due to some neighbor a of i for which

π(a) = t and due to some neighbor b of j for which

π(b) = t.

Once again the uniform nature of π allows us to express the

expected number of bits that are set in both σi and σj by the

following formula.

E[n̂si,j ] = d
(

1−Ddeg(i) −Ddeg(j) +Ddeg(i)+deg(j)+ni,j

)

This expression allows us to express ni,j in terms of E[n̂si,j ],
deg(i) and deg(j), and further, in terms of E[n̂si,j ], E[n̂

s
i ] and

E[n̂sj ] using the two formulæ given above. This is precisely

what Algorithm 3 does. Of course, it does not have the actual

expectation values. But fortunately we can show that the observed

values of n̂si,j , n̂
s
i and n̂sj are tightly concentrated around their

expectations. In other words, it suffices to use the observed values

in place of their expectations in lieu of some inaccuracy in n̂(i, j);
the inaccuracy too can be bounded by carefully combining the

concentration bounds of n̂si,j , n̂
s
i and n̂sj .

Proof of second part. For the first claim, we observe that if

ni,j > 0, then there must be some k such that Aik = Ajk = 1.

Let t denote π(k); then both (σi)t = (σj)t will be set to 1.

Thus, n̂si,j = 〈σi, σj〉 > 0. By way of contradiction, assume that

n̂i,j = 0. But then we can derive the following identities based on

Algorithm 3.

n̂i + n̂j =
1

lnD ln

(

Dn̂i +Dn̂j +
n̂si,j
d
− 1

)

Dn̂i ·Dn̂j = Dn̂i +Dn̂j +
n̂si,j
d
− 1

(

1− n̂si
d

)(

1−
n̂sj
d

)

=

(

1− n̂si
d

)

+

(

1−
n̂sj
d

)

+
n̂si,j
d
− 1

n̂si · n̂sj
d2

=
n̂si,j
d

=⇒ |σi|
d
· |σj |
d

=
〈σi, σj〉
d

The last identity may not always hold. For example, consider a

scenario in which σi ∼ σj with the number of ones in each much

less than d; in this case |σi| ≈ |σj | ≈ 〈σi, σj〉 and |σi| ≪ d, thus

contradicting the identity. This proves that n̂i,j > 0.

For proving the second claim, take any i and j such that ni,j =
0, i.e., there is no k such that both Ai,k = Aj,k = 1. For the sake

of contradiction, assume that n̂i,j > 0, i.e., there is some x such

that (σi)x = (σj)x = 1; this means that there must be some k1
and k2 such that Ai,k1 = Aj,k2 = 1 and π(k1) = π(k2) = x.

The probability for the latter event, denoted E, is same as the

probability that in a group of |Ai| men and |Aj | women, there

exists at least one pair with a common birthday, which can be

shown to be

1−
|Ai|∑

k=1

(

D

k

)

k!S|Ai|,k(d− k)|Aj |/d|Ai|+|Aj |
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in which S·,· denotes Stirling’s number of the second kind [46].

Getting a closed form of this is difficult; therefore, we show a

different technique of bounding the probability of E.

Let Ex be the event that (σi)x = (σj)x = 1. It can be shown

that E(Ex) =
(

1−D|Ai|
)

·
(

1−D|Aj |
)

[1, Lemma 5]. Since

|Ai| and |Aj | are both at most ψ, and D < 1,

E(Ex) ≤ (1−Dψ)2 =

(

1−
(

1− 1

d

)ψ
)2

≤
(
ψ

d

)2

which implies that E[
∑

xEx] = d
(
ψ
d

)2
=

√
2

√

ψ ln 2

ρ

≪ 1

LetEall denote
∑

xEx;Eall is a random variable that denotes

the number of positions x such that (σi)x = (σj)x = 1 and

whose expectation we computed above. Since E is equivalent to

“Eall ≥ 1”, we apply Markov’s inequality to bound it.

For the rest of this section, we will use the fact that EstCN

estimates non-zero ni,j values with a small additive error and

accurately identifies ni,j = 0 values (both of these happen with

non-negligible probability which we would not explicitly state to

simplify calculations).

The above theorem allows us to accurately quantify the loss

function (aka. objective function) that is used by most node

embedding algorithms to learn the embedding [2]. Using the

mean-squared-error (MSE) to compute the loss function, we can

represent it as

L =
1

T

∑

(i,j)∈T⊆V×V
|ni,j − EstCN(i, j)|2.

Here T represents a “training set of edges” that is traditionally

used to learn an embedding. Our proposed technique does not

involve any learning; nevertheless, for the sake of comparison we

present an explicit upper bound on L — it follows directly from

Theorem 6.

Lemma 7. Using QUINT for embedding and EstCN for estimat-

ing node similarity, L is upper bounded by 196ψ2 ln 6
ρ .

5.4 Estimating higher-order proximities

Many node embedding algorithms operate on the paths in a graph,

often up to a certain length. For example, both the random-

walk based approaches, deepwalk and node2vec, consider

two nodes to be similar if their presence in short random walks on

the graph are highly correlated. Here we show that QUINT also

“preserves” path information in a certain manner. The key obser-

vation here is that the square of the adjacency matrix precisely

contains the nij values.

Observation 8. For any i, j, A2
i,j = ni,j .

This holds due to the following calculation.

n∑

k=1

AikAkj = |{k ∈ V : (i, k) ∈ E, (k, j) ∈ E}|.

This observation along with Theorem 6 implies that EstCN

can approximately compute A2.

Lemma 9. EstCN(σi, σj) approximately computes A2
i,j with a

small additive error. If A2
i,j = 0 EstCN(σi, σj) outputs 0.

Next we show how to translate the above lemma to higher even

powers of A. We first show the result for the 4-th power, A4, each

of whose entry, say A4
i,j , denotes the number of paths between i

and j using 4 nodes (and 3 edges).

We use ǫ2 to denote the small additive error mentioned in

Lemma 9. To maintain consistency of notations, we will use n̂2i,j
to denote n̂i,j ; by construction, n̂2 is symmetric.

Theorem 10. Let n̂4i,j denote the expression
∑n
k=1 n̂2i,k · n̂2k,j

for all i, j = 1 . . . n. Then n̂4i,j approximately computes A4
i,j

with a small additive error. If A4
i,j = 0 then n̂4i,j outputs 0.

Proof. Recall that A4
i,j =

∑n
k=0A

2
i,kA

2
k,j =

∑n
k=0A

2
i,kA

2
j,k,

and further more, each term in the summation is non-negative.

Therefore, A4
i,j = 0 implies that A2

i,k = 0 and A2
j,k = 0 for

every k = 1 . . . n. We know from Lemma 9 that, in this case,

n̂2i,k = 0 and n̂2j,k = 0 for all k. Clearly, n̂4i,j = 0 too — this

proves the second part of the theorem.

For the first part, take any x, y such that A4
x,y > 0.

That is,
∑n
k=1A

2
x,kA

2
y,k > 0. From Lemma 9 we know that

|n̂2x,y −A2
x,y| ≤ ǫ2; using z to denote the left-hand side, we can

write n̂2x,y = A2
x,y + z where −ǫ2 ≤ z ≤ ǫ2.

We now state a technical result about A.

Claim 11.
∑n
u=1A

2
x,u ≤ ψ2.

Proof. ψ being an upper bound on the degree of any node, the

total number of length-2 paths from x is at most ψ2. A2
x,u is

the total number of length-2 paths from x to u and
∑

uA
2
x,u is

the total number of length-2 paths from x to any node, which is,

therefore, upper bounded by ψ2. �

The next observation is applicable to sparse graphs in general

but immensely beneficial to graphs where ψ2 ≪ n.

Observation 12. Since the entries of A2
x,u are non-negative,

Claim 11 implies that at most ψ2 entries are non-zero in the x-th

row of A2, i.e, among A2
x = {A2

x,u : u ∈ {1, 2, . . . , n}}. That

is, at least n− ψ2 entries of A2
x are zero.

This observation, along with Lemma 9, implies that for any x,

at most ψ2 values in the set {n̂2x,u : u ∈ {1, 2, . . . n}} are non-

zero. We use (
∑n
u=1)

≤ψ2

to denote the fact that in a summation

with n summands, at most ψ2 terms are non-zero. Getting back to

proving the theorem,

n̂4x,y =
n∑

u=1

n̂2x,u · n̂2y,u

=(
n∑

u=1

)≤ψ
2

(A2
x,u + z) · (A2

y,u + z)

=
n∑

u=1

A2
x,u ·A2

y,u + z ·
n∑

u=1

A2
x,u

+ z ·
n∑

u=1

A2
y,u + (

n∑

u=1

)≤ψ
2

z2

=A4
x,y + 2zψ2 + z2ψ2 (Using Claim 11)

Thus we get,

∣
∣n̂4x,y −A4

x,y

∣
∣ =

∣
∣2z + z2

∣
∣ ψ2 =

{
3|z|ψ2 if |z| < 2
2z2ψ2 if |z| ≥ 2

Since |z| ≤ ǫ2 and the additive error ǫ2 for n̂2x,y is Õ(
√
ψ) from

Theorem 6 (here Õ() hides log(1/ρ) factors), so both |z|, z2 is

Õ(ψ). Therefore, the additive error for n̂4x,y is Õ(ψ3).
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TABLE 1
Datasets used for link prediction.

Dataset Nodes Edges Max. degree

Gowalla 196,591 950,327 14,730
Enron Emails Network 36,692 183,831 1,383

Facebook 4,039 88,234 1,045
BlogCatalog 10,312 333,983 3,992

Flickr 80,513 5,899,882 5,706
Youtube 1,138,499 2,990,443 28,754

TABLE 2
Comparison of space required for storing embeddings

Method dimension # of binary bits

node2vec, deepwalk, LINE,
VERSE, NetMF, NodeSketch

128 128× 64 = 8, 192
(64-bits for floating pt.)

QUINT, SGH d d

Uncompressed |V | |V | (no. of nodes)

Theorem 10 can be generalized to show that entries of A2t ,

for t ≥ 1, can be approximated with additive error Õ(poly(ψ)).
Since any even power of A can be written as a product of A raised

to a power of 2, we have established that our QUINT embedding

effectively preserves all even powers of the adjacency matrix A,

and therefore, can approximate information about paths of even

lengths in G.

6 EMPIRICAL EVALUATION

We first describe our experimental setup. Then we report how our

proposed solution performs on two end tasks – node classical and

link prediction, with specific emphasis on speed and quality.

Hardware description: We performed most of our exper-

iments on a laptop with the following configuration: Intel(R)

Core(TM) i7-4710MQ CPU @ 2.50GHz x 8, 7.5 GB RAM,

Ubuntu 18.04 64-bits OS. The experiments on the Gowalla [47],

Youtube [13], and Flickr [13] datasets were performed on

a server with the following configuration: Intel(R) Xeon(R) CPU

E5-2650 v3 @ 2.30GHz, 94 GB RAM, Ubuntu 64-bits OS.

Baseline methods: We evaluated our approach against seven

state-of-the-art node embedding methods – node2vec [6],

deepwalk [4], LINE [14], VERSE [15], NetMF [16],

NodeSketch [17], and SGH [18]; SGH generates binary em-

bedding like QUINT. Since QUINT generates the embedding of

a node by compressing its adjacency vector, we also performed

experiments using the uncompressed adjacency matrix where the

i-th row of the matrix is used as the embedding of the i-th node;

we refer to this method as “Uncompressed”.

For node2vec, we used the implementation provided by

its authors1. We did a grid search over its parameters p and

q ∈ [0.25, 0.5, 1, 2, 4], which is equivalent to running 25 different

experiments. Here we only report the result for the optimum

choice of p and q. deepwalk is a special case of node2vec

when p = q = 1 [6], so the earlier node2vec implementation

was used here with the specified parameters. For LINE, we

used a standard implementation available online 2 and performed

experiments considering both first and second order proximity

— and reported the best result. VERSE [15] 3 uses the idea

of personalised PageRank to compute the embedding of nodes.

1. https://github.com/aditya-grover/node2vec

2. https://github.com/shenweichen/GraphEmbedding

3. https://github.com/xgfs/verse

NetMF [16]4 unifies the idea of sampling based algorithms such

as node2vec, deepwalk, LINE in the matrix factorisation

framework to generate embeddings. NodeSketch [17]5 is built

on top of an efficient sketching technique, and it outputs em-

beddings which preserve higher-order proximity via a recursive

approach. SGH [18]6 learns the binary embedding of nodes by

minimizing the difference between the similarity of a pair of

nodes and the Hamming similarity of the corresponding binary

hash codes.

The embeddings obtained from QUINT, SGH, and full ad-

jacency matrix representation are binary, whereas the other al-

gorithms output real-valued vectors. A real-valued vector that

is represented using 64-bit floating point numbers (a common

configuration) takes 64× more space as compared to a binary

vector of the same dimension. We summarise this in Table 2. For

all the algorithms which give real-valued embeddings, we report

the results of embedding in 128 dimensions in this section. The

results for embedding in 256 dimensions are similar and are given

in Tables 9, 10, and 12 in Supplementary.

6.1 Comparing performance on link prediction

In the link prediction problem, we are given a network with a

certain fraction of missing edges, and the task is to predict these

missing edges. It can be recast as a classification problem where

the goal is to train a classifier that, given a pair of nodes, outputs

if there is an edge between them.

For the purpose of classification, we generated a labeled

dataset of edges by splitting a dataset into training and testing

partition in 70 − 30 ratio. To generate the positive training

and testing samples, we randomly sampled 30% of edges and

removed them. During the removal of edges, we made sure that

the residual graph obtained after edge removal remains connected.

If the sampled edges do not ensure this, we chose a different edge.

We then generated “missing edges” equal in number to those

in the original dataset — these are “edges” that are absent in

the graph. We split the generated missing edges into training and

testing partition in 70 − 30 ratio to form negative training and

testing samples, respectively. We computed inner product for all

the edges and labeled them 0 or 1 depending on whether it is a

missing edge or an actual edge. Then we combined the positive

and negative test samples to form the test data.

We learned embedding of the graph using all the candidate

algorithms on our training samples. To measure the performance

of the classifier on the embeddings, we calculated the inner

product similarity among the embeddings of a pair of nodes from

the test data; for QUINT, we used the EstCN algorithm to

estimate similarities. We trained a logistic regression on the final

training data considering AUC-ROC as our evaluation metric.

Datasets: Gowalla [47] is a location-based social network-

ing website where users share their locations by checking-in.

The dataset consists of a total of 6, 442, 890 check-ins of these

users over the period of Feb. 2009 - Oct. 2010. Enron Emails

Network [47] covers all the email communication within a

dataset of around half million emails. Nodes of the network

are email addresses and if an address i sent at least one email

to address j, the graph contains an undirected edge from i

4. https://github.com/xptree/NetMF

5. https://github.com/eXascaleInfolab/NodeSketch

6. 4https://github.com/jiangqy/SGH-IJCAI2015

8



TABLE 3
Comparison on AUC-ROC and compression time of QUINT and other baselines (using 128 dimensions) for the link prediction experiments. For the

datasets on which QUINT outperformed the baselines, we have reported the performance of QUINT on the smallest dimension at which it
outperformed the latter; for the other datasets we have reported the best performance of QUINT (see Table 11 in Supplementary for the results for
all the dimensions). We stopped baselines that took 10 hours or more and indicate them by DNS; OOM indicates baselines that ran out of memory.

Smaller datasets were embedded to a maximum of 4000 dimensions. The best AUC-ROC among the baselines and for QUINT are bolded.

Method Gowalla Flickr Youtube
Dim. AUC-ROC Time(s) Dim. AUC-ROC Time(s) Dim. AUC-ROC Time(s)

node2vec 128 75.48 7827 128 76.4 8706.8 128 65.1 30899.28
deepwalk 128 74.79 7075 128 67.7 4978.64 128 − DNS

LINE 128 − DNS 128 − DNS 128 − DNS

VERSE 128 87.35 4902.8 128 91.6 9469.08 128 − DNS

NetMF 128 − OOM 128 − OOM 128 − OOM

NodeSketch 128 50.02 328.30 128 50.03 770.65 128 50.04 538.81
SGH 128 − OOM 128 − OOM 128 − OOM

QUINT 1000 87.71 7.15 100 86.7 7.41 100 90 8.86

Uncompressed − OOM − − OOM − − OOM −

Method Enron BlogCatalog Facebook
Dim. AUC-ROC Time(s) Dim. AUC-ROC Time(s) Dim. AUC-ROC Time(s)

node2vec 128 67.13 560 128 63.12 979.02 128 93.64 63.98
deepwalk 128 66.7 515.36 128 61.00 774.31 128 93.10 54.39
LINE 128 75.87 4216 128 66.08 2379 128 83.41 250.25
VERSE 128 97.20 1058.42 128 74.24 351.38 128 94.32 88.34
NetMF 128 83.98 62.29 128 71.68 7.7 128 94.86 2.02
NodeSketch 128 49.99 44.07 128 50.00 75.53 128 50.00 10.69

SGH 128 71.49 31.28 128 70.05 7.53 128 92.20 5.3
1600 68.00 106.01 2400 75.36 84.74 1800 88.89 50.32

QUINT 4000 94.75 9.05 100 81.60 0.88 4500 95.30 0.53

Uncompressed − 95.42 − − 86.46 − − 95.44 −

to j. BlogCatalog [12] is the social blog directory which

manages the bloggers and their blogs. The dataset contains the

friendship network crawled and group memberships. Here, nodes

represent users, and edges represent a friendship relation between

any two users. In the Facebook [47] network, nodes represent

users, and edges represent friendship relations between users.

We used two social network datasets – Flickr and

YouTube [13]. Flickr dataset is of photo-sharing social net-

work, where labels represent the self-identified interests of par-

ticular users and edges correspond to the messages between two

users. YouTube dataset is a video-based social network of user

interactions where labels indicate interest in a particular video

genre. We use these datasets, and BlogCatalog, for both node

classification and link prediction experiments. Statistics of these

datasets are summarised in Table 1.

Empirical results and insights: Table 3 summarizes the

comparative analysis (Table 11 in Supplementary has the complete

details). We observed significant speedup for QUINT in compres-

sion time, along with better accuracy as compared to the other

candidate algorithms. For instance, on the Gowalla dataset (using

1000 dimensions for QUINT), we obtained 46× to 104× speedup

on the compression times w.r.t. the other candidate algorithms. Our

embedding also saves on space as well (see Table 2).

It is evident that AUC-ROC for QUINT is comparable with

the best among the baselines (a tie on Gowalla and Facebook

and a close second on Flickr and Enron), and sometimes

even better (on Youtube, BlogCatalog), but always using

a fraction of their times. VERSE turns out to be worthy alternative

for all the datasets but Youtube, but it is a lot slower because it

learns an embedding by running a single-layer neural network.

An attractive property of BinSketch is the ability to recover

TABLE 4
Datasets used for node classification. The first three datasets are also

used for link prediction.

Dataset # Nodes # Edges # Classes Max. degree

Flickr 80,513 5,899,882 195 5706
Youtube 1,138,499 2,990,443 35 28,754

BlogCatalog 10,312 333,983 39 3,992
IMDB 19,773 3,86,124 1000 540

Pubmed 19,717 44,338 3 171
Citeseer 3,327 4,732 6 26

Cora 2,708 5,429 7 5

different types of similarities from its sketches, e.g., inner product,

cosine similarity, etc. QUINT inherits them too. We conducted link

prediction experiments using three other similarity measures —

cosine similarity, ℓ1 and ℓ2 norm, and observed a similar trend

that QUINT offered significant speedup in the compression time

while offering comparable AUC-ROC scores with respect to the

baselines (see Table 7 in Supplementary). This shows that QUINT

embeddings may be applicable for multiple similarity measures.

6.2 Comparing performance on node classification

For node classification, every node is assigned one or more labels

from a given set. The dataset is randomly divided into 70%

and 30% for training and testing, respectively. We repeated the

experiment 10 times for each network and report the average

accuracy. We used logistic regression as classifier. Unlike the

experiments on link prediction where a subgraph with 70% edges

is embedded to generate training data, embedding of the entire

network is first computed for the node classification experiments;

this shows up in the form of larger compression times.

Datasets: Some of the datasets used for link prediction are

not labelled and hence, they are not suitable for node classifi-
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TABLE 5
Comparison on Micro F1, Macro F1 and compressions time of QUINT and other baselines (using 128 dimensions) for the task of node

classification. For the datasets on which QUINT outperformed the baselines, we have reported the performance of QUINT on the smallest
dimension at which it outperformed the latter; for the other datasets we have reported the best performance of QUINT (see Tables 8 and 10 in

Supplementary for the results for all the dimensions). We stopped baselines that took 10 hours or more and indicate them by DNS; OOM indicates
baselines that ran out of memory. The best Macro F1 scores among the baselines and for QUINT are bolded.

Method Flickr Youtube IMDB
Dim. MicroF1 MacroF1 Comp. Dim. MicroF1 MacroF1 Comp. Dim. MicroF1 MacroF1 Comp.

Score Score time(s) Score Score time(s) Score Score time(s)

node2vec 128 − − DNS 128 − − DNS 128 51.91 51.6 117
deepwalk 128 41.2 29.61 2.1 hr 128 − − DNS 128 50.68 50.34 118
LINE 128 − − DNS 128 − − DNS 128 41.25 40.56 1850
VERSE 128 41.52 31.41 4.8 hr 128 − − DNS 128 63.09 63.08 1194.10
NetMF 128 − − OOM 128 − − OOM 128 60.30 51.88 21.72
NodeSketch 128 22.37 7.1 1057.30 128 37.55 26.98 902.68 128 55.69 46.64 6.98

SGH 128 − − OOM 128 − − OOM 128 70.83 70.75 110.78
3000 − − OOM 128 − − OOM 3000 74.51 74.49 174.12

QUINT 20000 37.04 29.99 59.89 3000 37.80 33.40 67.53 2000 83.88 83.85 3.89

Uncompressed − OOM OOM − − OOM OOM − − 94.90 95.91 −

Method Citeseer Cora Pubmed BlogCatalog
Dim. MicroF1 MacroF1 Comp. Dim. MicroF1 MacroF1 Comp. Dim. MicroF1 MacroF1 Comp. Dim. Mic.F1 Mac.F1 Comp.

Score Score time(s) Score Score time(s) Score Score time(s) Score Score time(s)

node2vec 128 29.77 21.90 1.75 128 52.76 41.31 1.72 128 43.2 31.34 5.88 128 38.90 23.19 1359.25
deepwalk 128 25.05 17.06 1.77 128 44.15 28.64 1.49 128 42.46 35.15 5.78 128 41.82 28.24 1167.95
LINE 128 36.72 32.72 17.14 128 56.33 53.51 15.72 128 58.19 53.81 840.25 128 20.17 10.15 1898.23
VERSE 128 32.93 29.18 71.83 128 52.27 46.70 53.2 128 42.29 31.93 806.98 128 41.78 29.04 847.4
NetMF 128 49.69 44.06 1.39 128 57.68 52.65 1.43 128 66.00 53.85 19.88 128 43.45 29.05 72.39
NodeSketch 128 25.65 21.26 0.41 128 39.72 30.39 0.5 128 43.79 33.77 4.31 128 19.76 8.66 66.36

SGH 128 37.77 33.37 2.79 128 56.45 52.96 2.54 128 51.10 44.80 67.67 128 13.20 4.05 18.25
2000 38.77 35.60 53.68 2000 57.93 56.07 36.33 2000 54.83 49.68 122.77 3000 9.02 4.74 120.27

QUINT 3500 50.68 45.99 0.286 1000 61.62 60.43 0.055 2000 68.27 65.50 2.50 10000 37.70 25.51 2.35

Uncompressed − 51.40 47.06 − − 65.75 66.66 − − 76.52 74.98 − − 38.23 25.65 −

cation. So we used three additional citation datasets — Cora,

Citeseer and Pubmed [48] for the experiments. Here, citation

relationships are viewed as directed edges. Attributes associated

with nodes are extracted from the title and the abstract of the

each article and are presented as sparse bag-of-word vectors,

after removing the stop words and low-frequency words. Each

article in these datasets has only one label representing the class it

belongs to. We also considered IMDB-BINARY [49], [50], which

is a movie collaboration dataset where actor/actress and genre

information of different movies on IMDB are collected. Nodes

represent actors/actresses, and an edge between them signifies a

joint appearance in some movie. Collaboration graphs is generated

on the “action” and the “romance” genres and ego-networks are

derived for each actor/actress. A movie can belong to both genres

at the same time, therefore movies from the romance genre are

discarded if they are already included in the action genre. Each

ego-network is labeled with the genre graph it belongs to. The

task is then simply to identify which genre an ego-network graph

belongs to. All the datasets are summarised in Table 4.

Empirical results and insights: Table 5 summarizes the per-

formance of the competing algorithms (see Table 8 for complete

details) which show a similar trend as in the link prediction

experiments. Many baselines failed to generate an embedding of

Flickr and/or Youtube datasets within 10 hours, or ran out of

memory; however, QUINT did not have any such difficulty and

was able to comfortably finish all embedding tasks within a few

minutes, mostly taking a few seconds.

Compared with the baselines that could finish embedding

within 10 hours, QUINT achieved a higher Macro F1 on

Youtube, IMDB, Citeseer, Cora, Pubmed and was

a close second on Flickr. It fell behind by 10-15% on

BlogCatalog which could be due its network characteristics;

even Uncompressed, that which QUINT tries to improve upon,

was unable to obtain a high score on that network. The general

conclusion that we can draw is that QUINT offers significant

speed-up during node embedding while offering comparable accu-

racy for node classification when compared with the state-of-the-

art techniques.

6.3 Comparing Uncompressed with QUINT.

We also want to draw attention towards the Uncompressed

embedding. However naı̈ve it may sound, empirically it appears

that the neighborhood of a node, when represented as an array, is

a reasonably good embedding for the purposes of link prediction

and node classification (see the last rows of Tables 3 and 5). The

challenge is that training on such embeddings of a large network

(e.g., Flickr with 80K nodes) is almost impossible on off-the-

shelf hardware. Even for smaller networks, the training time is

significantly higher compared to the QUINT embeddings. We list

out the speed-up in training time of QUINT over Uncompressed

in Table 6. QUINT embeddings are a compressed version of

Uncompressed embeddings, and we can safely conclude that

it is able to strike a good balance between speed and accuracy.

6.4 Performance on training size

We varied the training size in our experiments to show how the

competing algorithms react to this variation. For this we split
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TABLE 6
Comparison on speedup in training time on embeddings generated using QUINT vs. Uncompressed. We choose the embedding dimension of

QUNIT on which it outperforms (or reaches sufficiently close to) the best baselines.

Dataset Gowalla Flickr Youtube Enron BlogCatalog Facebook IMDB Pubmed Citeseer Cora
Link pred. node class.

Dim. of QUINT 1000 100 100 2000 100 5000 1000 1000 1000 2000 1000
Speedup (training time) OOM OOM OOM 96.16× 86.4× 24.8× 31.25× 77.65× 10.48× 2.80× 4.92×

the datasets into various ratios of training and test partitions,

starting at 10% training and 90% test partitions, and moving to

90% training and 10% test partitions at intervals of 10%. We

ran node classification and link prediction on these partitions

and observed the Micro F1 and AUC-ROC scores, respectively.

We compared the performance of QUINT w.r.t. other candidate

algorithms for these experiments, and report the results for two

datasets in Figure 2. The results for the other datasets were similar.

We noticed that for node classification on the Cora dataset

the Micro F1 score always remains higher as compared to the

other candidate algorithms (we obtained a similar result on Macro

F1 score as well). For link prediction on the Enron dataset, we

noticed that the AUC-ROC score is comparable to that of VERSE

and significantly better than the other baselines. This essentially

confirms that even on small training data, QUINT maintains its

competitive advantage w.r.t. other baselines.

Fig. 2. Performance of the baselines on various training/test splits.
Figure (a) summarises the Micro F1 scores vs % of training data of
various baselines on node classification for the Cora dataset. Figure
(b) summarises the AUC-ROC scores vs % of training data of various
baselines on link prediction for the Enron dataset.

6.5 Scalability experiments

Due to the bitwise operations and simplicity of Algorithm 1, the

time taken by QUINT increases very slowly in the embedding

dimension. This was evident in our experiments on the real-life

datasets (see Section A and Tables 8 and 11 in Supplementary).

To evaluate the effect of the size of a network, we ex-

perimented with link prediction on synthetically generated LFR

graphs [51] of varied nodes and edges generated using Python

NetworkX with parameters µ = 0.1, τ1 = 2, τ2 = 1.1. The first

set of experiments were on graphs with 10K to 100K nodes and

second were on graphs with 50K nodes and 1000K to 10,000K

edges; the AUC-ROC scores and compression times of QUINT and

the baseline algorithms are plotted in Figures 3 and 4, respectively.

We observed that in both the experiments, QUINT, when embed-

ded on 1000 − 4000 dimensions, is consistently producing a

high AUC-ROC along with node2vec, deepwalk, VERSE

and netmf. Few of the baselines, including netmf, did not run

Fig. 3. Comparing link prediction performance of QUINT and the base-
line algorithms on LFR graphs by varying the number of nodes in a
network. The left plot compares the AUC-ROC scores and the right plot
compares the corresponding compression times. SGH gives OOM error
for 70K and 100K nodes, and NetMF gives OOM error for 100K nodes.

for the graph with 1000K nodes, and QUINT exhibited one to four

orders of speedup for the rest.

7 CONCLUSION AND OPEN QUESTIONS

In this work, we proposed QUINT which takes a large scale graph

as input and outputs succinct low-dimensional binary embedding

for each node. The major advantage of QUINT is that it is

extremely fast – it computes the embedding of a large graph

in almost real time. QUINT does not have a strong hardware

requirement and consumes less space for computing and storing

the embedding of a graph. In fact, most of our experiments

were conducted on an off-the-shelf laptop. We evaluated the

performance of QUINT on the task of node classification and

link prediction and noticed that QUINT offers massive speed

up in compression time while offering comparable performance

with respect to the state-of-the-art algorithms. Moreover, our

embedding is binary which makes it space efficient as compared to

the real-valued embeddings generated by the most of the baselines.

QUINT has a few added advantages that could be explored

further. First is applicability in the sense that the same embedding

can be used for both link prediction and node classification, and

Fig. 4. Comparing link prediction performance of QUINT and the base-
line algorithms on LFR graphs by varying the number of edges in a
network with 50K nodes. The left plot compares the AUC-ROC scores
and the right plot compares the corresponding compression times.
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we conjecture that the same would be applicable to other machine

learning tasks based on structural properties of networks, like node

clustering. The second advantage comes from the bitwise nature

of QUINT. It maybe possible to use QUINT in a distributed setting

where embeddings of different groups of nodes are generated on

different machines and then combined. Observe that the combina-

tion of multiple QUINT embeddings is simply their bitwise-OR.

The final advantage is in regards to evolving networks. We do

not consider them in this work but we do make the observation that

QUINT embeddings are easy to update. This is since an addition of

a new edge, say between nodes i and j, essentially leads to setting

one bit each in the embeddings of i and j and this can be done

independently. To the best of our understanding, most learning-

based algorithms would require solving an optimization problem

afresh which may mean running their entire algorithm once again.

Our work leaves open the possibility of several future direc-

tions. First, we wonder if our results can be extended to efficiently

embed hypergraphs? Hypergraphs are a common choice to model

non-binary relationships but are difficult to analyse due to high

complexity of even simple tasks. A few solutions have been

proposed for clustering, classification, and other data analytic

tasks based on spectral techniques [52] and random walk [53]. A

binary embedding technique ala. QUINT would make hypergraphs

considerably easy to handle.

On the theoretical side it would be worth exploring what

specific structural features of networks can be efficiently estimated

from their embeddings. For example, global clustering coefficient

of nodes could be one such candidate since it is basically the ratio

of the number of triangle and an expression involving degree of

each node. The number of triangles involving a pair of nodes, say

u and v, can be written as nu,v · Eu,v , in which nu,v denotes

the number of other nodes that are connected to both u and v,

and Eu,v is an indicator variable denoting the presence of an edge

between u and v. We have shown earlier how to estimate nu,v
(Theorem 6) and Eu,v (Lemma 5). Thus we conjecture that it

should be possible to estimate global clustering coefficient with

reasonable accuracy.

There is obviously the question of what other practical ap-

plications QUINT, rather BinSketch, is capable of? One way to

extend QUINT would be by making it use the attributes associated

with nodes and edges of a graph. Randomization may once again

prove beneficial but we do not have a solution in sight. Given

the affinity of QUINT towards sparse graphs, we wonder whether

QUINT can be successful for graphs that are sparse for individual

features but dense otherwise. We hope that our simple yet powerful

technique can be easily adapted to bring forth efficient solutions

to challenging graph embedding problems.
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QUINT: Node embedding using network hashing
(Appendix)

Fig. 5. Figure (a) shows the dimensions at which QUINT’s node clas-
sification performance on the IMDB dataset matches that of various
baselines, and Figure (c) shows the time QUINT takes to do so. Figures
(b) and (d) show the same for link prediction on the BlogCatalog dataset.

APPENDIX A

EFFECT OF EMBEDDING DIMENSION

The optimum embedding dimension for QUINT on any dataset

is theoretically upper-bounded by an expression on its sparsity

(the largest degree of a node). However, it is evident from

Tables 3 and 5 that much lower dimensions works in practice.

Further, we observed that embedding on a higher dimension is not

much slower and requires at most a few additional seconds (see

Tables 11 and 8 in Supplementary for the compression times on

all dimensions).

To illustrate this observation further, we plot the performance

and compression times of QUINT against embedding dimension

for the IMDB dataset and the BlogCatalog dataset, for node

classification and link prediction, respectively. Figures 5(a) and

5(c) show the embedding dimensions of QUINT at which it

matches the performance of the other baselines. Figures 5(b)

and 5(d) show the times taken by QUINT when it matches the

baselines. These figures show that QUINT is able to match the

performance of the baselines for node classification on IMDB and

link prediction on BlogCatalog, and that too in only a few seconds

(similar figures can be inferred from Tables 3 and 5 for the other

datasets and baselines that QUINT matches).

15



TABLE 7
Result of link prediction on the BlogCatalog dataset where instead of inner product, we use few other similarity measures.

Method BlogCatalog (cosine similarity) BlogCatalog (ℓ1 norm) BlogCatalog (ℓ2 norm)
Dim. AUC-ROC Time (s) Dim. AUC-ROC Time (s) Dim. AUC-ROC Time (s)

node2vec 128 65.93 979.02 128 75.09 979.02 128 75.36 979.02
deepwalk 128 61.6 774.31 128 82.66 774.31 128 82.83 774.31
LINE 128 65.07 2379 128 65.15 2379 128 36.79 2379
VERSE 128 79.3 351.38 128 61.32 351.38 128 62.47 351.38
NetMF 128 62.18 7.7 128 79.54 7.7 128 79.84 7.7
NodeSketch 128 61.12 75.53 128 50.00 75.53 128 50.00 75.53

SGH 128 49.95 7.53 128 49.99 7.53 128 49.95 7.53

QUINT 100 84.88 0.88 100 65.65 0.88 100 65.74 0.88
128 84.77 0.92 128 72.18 0.92 128 72.82 0.92
200 84.10 0.99 200 80.98 0.99 200 81.16 0.99
256 83.87 1.02 256 83.8 1.02 256 84.24 1.02
1000 79.69 1.28 1000 85.48 1.28 1000 86.4 1.28
2000 77.3 1.45 2000 85.22 1.45 2000 86.36 1.45
3000 76.18 1.62 3000 85.07 1.62 3000 86.31 1.62
4000 75.29 1.77 4000 85.02 1.77 4000 86.29 1.77

Uncompressed − 74.63 − − 84.60 − − 86.16 −
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TABLE 8
Comparison on Micro F1, Macro F1 and compressions time of QUINT and other baselines (using 128 dimensions) for the task of node

classification. We stopped baselines that took 10 hours or more and indicate them by DNS; OOM indicates baselines that ran out of memory.
Smaller datasets were embedded to a maximum of 3000 dimensions. The best Macro F1 scores among the baselines and for QUINT are bolded.

Method Flickr Youtube IMDB
Dim. MicroF1 MacroF1 Comp. MicroF1 MacroF1 Comp. Dim. MicroF1 MacroF1 Comp.

Score Score time(s) Score Score time(s) Score Score time(s)

node2vec 128 − − DNS − − DNS 128 51.91 51.6 117
deepwalk 128 41.2 29.61 2.1 hr − − DNS 128 50.68 50.34 118
LINE 128 − − DNS − − DNS 128 41.25 40.56 1850
VERSE 128 41.52 31.41 4.8 hr − − DNS 128 63.09 63.08 1194.10
NetMF 128 − − OOM − − OOM 128 60.30 51.88 21.72
NodeSketch 128 22.37 7.1 1057.30 37.55 26.98 902.68 128 55.69 46.64 6.98

SGH 128 − − OOM − − OOM 128 70.83 70.75 110.78
3000 − − OOM − − OOM 3000 74.51 74.49 174.12

QUINT 100 19.59 5.4 20.86 28.66 16.65 17.90 100 40.37 39.78 0.72
128 21.08 7.3 23.11 30.38 20.10 20.46 128 42.82 41.35 0.756
200 23.58 10.68 23.88 32.31 22.76 20.80 200 46.91 46.48 0.76
256 25.41 12.46 25.80 32.67 24.10 26.74 256 53.89 52.45 0.78
1000 28.04 18.61 30.63 35.22 31.63 35.06 1000 70.7 70.58 1.04
2000 30.12 21.76 33.65 36.56 31.69 51.57 2000 83.88 83.85 1.61
3000 31.52 23.58 36.07 37.80 33.40 67.53 3000 89.76 89.81 2.1
4000 32.35 25.05 38.47 38.93 35.12 83.37
6000 33.98 26.54 41.85 39.61 35.89 111.52
8000 34.66 27.31 44.86 40.94 37.06 140.08
10000 35.08 28.10 46.87 41.20 37.46 167.94
16000 36.86 29.75 55.23 42.41 38.01 250.03
20000 37.04 29.99 59.89 43.26 38.68 325.48

Uncompressed − OOM OOM − OOM OOM − − 94.90 95.91 −

Method Citeseer Cora Pubmed
Dim. MicroF1 MacroF1 Comp. MicroF1 MacroF1 Comp. MicroF1 MacroF1 Comp.

Score Score time(s) Score Score time(s) Score time(s)

node2vec 128 29.77 21.90 1.75 52.76 41.31 1.72 43.2 31.34 5.88
deepwalk 128 25.05 17.06 1.77 44.15 28.64 1.49 42.46 35.15 5.78
LINE 128 36.72 32.72 17.14 56.33 53.51 15.72 58.19 53.81 840.25
VERSE 128 32.93 29.18 71.83 52.27 46.70 53.2 42.29 31.93 806.98
NetMF 128 49.69 44.06 1.39 57.68 52.65 1.43 66.00 53.85 19.88
NodeSketch 128 25.65 21.26 0.41 39.72 30.39 0.5 43.79 33.77 4.31

SGH 128 37.77 33.37 2.79 56.45 52.96 2.54 51.10 44.80 67.67
2000 38.77 35.60 53.68 57.93 56.07 36.33 54.83 49.68 122.77

QUINT 100 34.3 28.42 0.024 44.65 38.58 0.02 47.71 39.27 0.2
128 34.95 28.75 0.029 46.37 41.71 0.021 48.63 42.55 0.21
200 36.51 28.98 0.035 51.78 47.87 0.024 50.62 43.12 0.23
256 38.55 29.80 0.038 54.12 50.55 0.027 52.96 47.58 0.25
1000 44.16 38.79 0.076 61.62 60.43 0.055 63.28 59.63 1.23
2000 48.28 43.16 0.112 63.59 61.64 0.094 68.27 65.59 2.50
3000 49.15 43.98 0.214 64.945 64.32 0.124 69.25 66.32 3.75
3500 50.68 45.99 0.286

Uncompressed − 51.40 47.06 − 65.75 66.66 − 76.52 74.98 −
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TABLE 9
Comparison on Micro F1, Macro F1 and compressions time of QUINT and other baselines (using 256 dimensions) for the task of node

classification. We stopped baselines that took 10 hours or more and indicate them by DNS; OOM indicates baselines that ran out of memory.
Smaller datasets were embedded to a maximum of 3000 dimensions. The best Macro F1 scores among the baselines and for QUINT are bolded.

Method Flickr Youtube
Dim. MicroF1 MacroF1 Comp. Dim. MicroF1 MacroF1 Comp.

Score Score time(s) Score Score time(s)

node2vec 256 − − DNS 256 − − DNS

deepwalk 256 41.26 30.06 16286 256 − − DNS

LINE 256 − − DNS 256 − − DNS

VERSE 256 41.29 30.95 23498.55 256 − − DNS

NetMF 256 − − OOM 256 − − OOM

NodeSketch 256 21.56 0.688 2530.36 256 36.29 26.11 2233.81

SGH 256 − − OOM 256 − − OOM

QUINT 100 19.59 0.54 20.86 100 28.66 16.65 17.90
128 21.08 0.73 23.11 128 30.38 20.10 20.46
200 23.58 10.68 23.88 200 32.31 22.76 20.80
256 25.41 12.46 25.80 256 32.67 24.10 26.74
1000 28.04 18.61 30.63 1000 35.22 31.63 35.06
2000 30.12 21.76 33.65 2000 36.56 31.69 51.57
3000 31.52 23.58 36.07 3000 37.80 33.40 67.53
4000 32.35 25.05 38.47 4000 38.93 35.12 83.37
6000 33.98 26.54 41.85 6000 39.61 35.89 111.52
8000 34.66 27.31 44.86 8000 40.94 37.06 140.08
10000 35.08 28.10 46.87 10000 41.20 37.46 167.94
16000 36.86 29.75 55.23 16000 42.41 38.01 250.03
20000 37.04 29.99 59.89 20000 43.26 38.68 325.48

Uncompressed − OOM OOM − − OOM OOM −

Method IMDB Pubmed
Dim. MicroF1 MacroF1 Comp. Dim. MicroF1 MacroF1 Comp.

Score Score time(s) Score Score time(s)

node2vec 256 49.16 50.81 138.79 256 41.39 29.99 6.77
deepwalk 256 47.33 46.12 256.61 256 42.51 35.23 12.29
LINE 256 41.65 40.85 4205.38 256 55.21 50.64 1781.6
VERSE 256 61.56 60.74 1845.915 256 41.46 31.17 1070.63
NetMF 256 60.35 51.91 29.54 256 65.49 53.23 28.66
NodeSketch 256 54.86 44.27 17.05 256 43.27 33.14 9.924

SGH 256 70.56 70.21 125.91 256 49.35 40.62 74.54

QUINT 100 40.37 39.78 0.72 100 47.71 39.27 0.2
128 42.82 41.35 0.756 128 48.63 42.55 0.21
200 46.91 46.48 0.76 200 50.62 43.12 0.23
256 53.89 52.45 0.78 256 52.96 47.58 0.25
1000 70.7 70.58 1.04 1000 63.28 59.63 1.23
2000 83.88 83.85 1.61 2000 68.27 65.59 2.50
3000 89.76 89.81 2.1 3000 69.25 66.32 3.75

Uncompressed − 94.90 95.91 − − 76.52 74.98 −

Method Citeseer Cora
Dim. MicroF1 MacroF1 Comp. Dim. MicroF1 MacroF1 Comp.

Score Score time(s) Score Score time(s)

node2vec 256 28.13 21.53 2.03 256 51.22 40.56 1.98
deepwalk 256 23.88 16.34 3.2 256 42.55 28.18 2.83
LINE 256 36.26 31.51 37.62 256 56.25 53.37 34.85
VERSE 256 33.04 29.43 109.62 256 50.15 45.34 64.17
NetMF 256 49.75 44.12 2.064 256 57.59 52.47 1.813
NodeSketch 256 22.73 19.67 0.981 256 36.49 28.13 1.2

SGH 256 36.15 32.52 3.05 256 53.62 50.42 2.81

QUINT 100 34.3 28.42 0.024 100 44.65 38.58 0.02
128 34.95 28.75 0.029 128 46.37 41.71 0.021
200 36.51 28.98 0.035 200 51.78 47.87 0.024
256 38.55 29.80 0.038 256 54.12 50.55 0.027
1000 44.16 38.79 0.076 1000 61.62 60.43 0.055
2000 48.28 43.16 0.112 2000 63.59 61.64 0.094
3000 49.15 43.98 0.214 3000 64.945 64.32 0.124
3500 50.68 45.99 0.286

Uncompressed − 51.40 47.06 − − 65.75 66.66 −

18



TABLE 10
Performance evaluation of node classification on BlogCatalog

Method BlogCatalog
Dim. MicroF1 MacroF1 Comp.

Score Score time(s)

node2vec 128 38.90 23.19 1359.25
256 39.5171 23.2856 1607.86

deepwalk 128 41.82 28.24 1167.95
256 40.3932 27.8693 2457.24

LINE 128 20.17 10.15 1898.23
256 17.5174 9.3982 4349.56

VERSE 128 41.78 29.04 847.4
256 40.55 28.05 1204.72

NetMF 128 43.45 29.05 72.39
256 43.98 30.905 101.26

NodeSketch 128 19.76 8.66 66.36
256 19.0264 9.9705 175.527

SGH 128 13.20 4.05 18.25
256 10.6008 4.608 20.45
2000 8.09 4.42 111.50
3000 9.02 4.74 120.27

QUINT 100 23.78 10.05 0.84
128 23.74 11.87 0.88
200 25.86 13.73 0.96
256 26.42 14.86 1.19
1000 31.66 20.32 1.55
2000 34.69 21.50 1.59
3000 34.28 22.50 1.64
4000 35.64 22.83 1.69
5000 36.23 23.36 1.85
6000 36.05 24.04 1.95
8000 36.82 24.95 2.13
10000 37.70 25.51 2.35

Uncompressed − 38.2254 25.647 −
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TABLE 11
Comparison on AUC-ROC score and compression time of QUINT and other baselines (using 128 dimensions) for the link prediction experiments.

We stopped baselines that took 10 hours or more and indicate them by DNS; OOM indicates baselines that ran out of memory. Smaller datasets
were embedded to a maximum of 4000 dimensions. The best AUC-ROC among the baselines and for QUINT are bolded.

Method Gowalla Flickr Youtube
Dim. AUC-ROC Time(s) Dim. AUC-ROC Time(s) Dim. AUC-ROC Time(s)

node2vec 128 75.48 7827 128 76.4 8706.8 128 65.1 30899.28
deepwalk 128 74.79 7075 128 67.7 4978.64 128 − DNS

LINE 128 − DNS 128 − DNS 128 − DNS

VERSE 128 87.35 4902.8 128 91.6 9469.08 128 − DNS

NetMF 128 − OOM 128 − OOM 128 − OOM

NodeSketch 128 50.02 328.30 128 50.03 770.65 128 50.04 538.81

SGH 128 − OOM 128 − OOM 128 − OOM

QUINT 100 84.93 4.2 100 86.7 7.41 100 90.00 8.861
128 84.63 4.38 128 86.67 7.69 128 89.64 9.05
200 83.99 4.69 200 86.2 8.47 200 88.6 9.31
256 87.02 4.89 256 86.14 9.18 256 87.94 9.45
1000 87.71 7.15 1000 85.7 11.07 1000 83.3 17.77
2000 87.49 9.91 2000 86.1 13.74 2000 80.7 24.61
3000 87.28 12.58 3000 86.4 14.83 3000 79.3 33.97
4000 87.15 15.28 4000 86.6 15.5 4000 78.39 41.62

Uncompressed − OOM − − OOM − − OOM −

Method Enron BlogCatalog Facebook
Dim. AUC-ROC Time(s) Dim. AUC-ROC Time(s) Dim. AUC-ROC Time(s)

node2vec 128 67.13 560 128 63.12 979.02 128 93.64 63.98
deepwalk 128 66.7 515.36 128 61.00 774.31 128 93.10 54.39
LINE 128 75.87 4216 128 66.08 2379 128 83.41 250.25
VERSE 128 97.20 1058.42 128 74.24 351.38 128 94.32 88.34
NetMF 128 83.98 62.29 128 71.68 7.7 128 94.86 2.02
NodeSketch 128 49.99 44.07 128 50.00 75.53 128 50.00 10.69

SGH 128 71.49 31.28 128 70.05 7.53 128 92.20 5.3
1600 68.00 106.01 2400 75.36 84.74 1800 88.89 50.32

QUINT 100 84.23 0.55 100 81.60 0.88 100 81.69 0.075
128 84.65 0.58 128 82.18 0.92 128 82.98 0.096
200 84.35 0.61 200 83.26 0.99 200 84.39 0.105
256 85.6 0.64 256 83.71 1.02 256 85.50 0.12
1000 92.88 0.99 1000 84.38 1.28 1000 93.85 0.18
2000 94.26 5.39 2000 85.36 1.45 2000 94.09 0.24
3000 94.51 7.12 3000 85.64 1.61 3000 94.26 0.32
4000 94.75 9.05 4000 86.29 1.77 4000 94.58 0.45
35000 95.23 28.47 4500 95.30 0.53

Uncompressed − 95.42 − − 86.46 − − 95.44 −
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TABLE 12
Comparison on AUC-ROC score and compression time of QUINT and other baselines (using 256 dimensions) for the link prediction experiments.

We stopped baselines that took 10 hours or more and indicate them by DNS; OOM indicates baselines that ran out of memory. Smaller datasets
were embedded to a maximum of 4000 dimensions. The best AUC-ROC among the baselines and for QUINT are bolded.

Method Gowalla Flickr Youtube
Dim. AUC-ROC Time(s) Dim. AUC-ROC Time(s) Dim. AUC-ROC Time(s)

node2vec 256 74.22 9174.34 256 72.5 10210.63 256 65.4 35612
deepwalk 256 74.82 14235.79 256 66.25 9473.68 256 − DNS

LINE 256 − DNS 256 − DNS 256 − DNS

VERSE 256 86.88 7005.9 256 86.42 11416.7 256 − DNS

NetMF 256 − OOM 256 − OOM 256 − OOM

NodeSketch 256 50 770.3 256 49.99 1930.74 256 48.84 1265.8

SGH 256 − OOM 256 − OOM 256 − OOM

QUINT 100 84.93 4.2 100 86.7 7.41 100 90.00 8.861
128 84.63 4.38 128 86.67 7.69 128 89.64 9.05
200 83.99 4.69 200 86.2 8.47 200 88.6 9.31
256 87.02 4.89 256 86.14 9.18 256 87.94 9.45
1000 87.71 7.15 1000 85.7 11.07 1000 83.3 17.77
2000 87.49 9.91 2000 86.1 13.74 2000 80.7 24.61
3000 87.28 12.58 3000 86.4 14.83 3000 79.3 33.97
4000 87.15 15.28 4000 86.6 15.5 4000 78.39 41.62

Uncompressed − OOM − − OOM − − OOM −

Method Enron BlogCatalog Facebook
Dim. AUC-ROC Time(s) Dim. AUC-ROC Time(s) Dim. AUC-ROC Time(s)

node2vec 256 66.34 653.92 256 62.5 1158 256 91.59 74.09
deepwalk 256 64.59 1043.8 256 58.42 1559.03 256 92.78 108.1
LINE 256 71.26 9132.6 256 60.45 5053.17 256 81.13 567.77
VERSE 256 94.87 1629.15 256 73.19 452.78 256 91.48 138.1
NetMF 256 83.13 95.86 256 71.32 10.29 256 93.65 2.563
NodeSketch 256 50 113.22 256 49.99 192.11 256 50.02 24.87

SGH 256 70.66 34.86 256 65.56 7.92 256 90.49 5.658
1600 68.00 106.01 2400 75.36 84.74 1800 88.89 50.32

QUINT 100 84.23 0.55 100 81.60 0.88 100 81.69 0.075
128 84.65 0.58 128 82.18 0.92 128 82.98 0.096
200 84.35 0.61 200 83.26 0.99 200 84.39 0.105
256 85.6 0.64 256 83.71 1.02 256 85.50 0.12
1000 92.88 0.99 1000 84.38 1.28 1000 93.85 0.18
2000 94.26 5.39 2000 85.36 1.45 2000 94.09 0.24
3000 94.51 7.12 3000 85.64 1.61 3000 94.26 0.32
4000 94.75 9.05 4000 86.29 1.77 4000 94.58 0.45
35000 95.23 28.47 4500 95.30 0.53

Uncompressed − 95.42 − − 86.46 − − 95.44 −
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