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ABSTRACT Urinary tract infections (UTIs) are a major infection of humans, particu-

larly affecting women. Recurrent UTIs can cause significant discomfort and expose

patients to high levels of antibiotic use, which in turn contributes to the develop-

ment of higher antibiotic resistance rates. Most UTIs are caused by uropathogenic

Escherichia coli, which is able to form intracellular collections (termed intracellular

bacterial communities [IBCs]) within the epithelial cells lining the bladder lumen.

IBCs are seen in both infected mice and humans and are a potential cause of recur-

rent UTI. Genetic and molecular studies of IBCs have been hampered both by the

low number of bacteria in IBCs relative to the number extracellular bacteria and by

population bottlenecks that occur during IBC formation. We now report the devel-

opment of a simple and rapid technique for isolating pure IBCs from experimentally

infected mice. We verified the specificity and purity of the isolated IBCs via micros-

copy, gene expression, and culture-based methods. Our results further demonstrated

that our isolation technique practically enables specific molecular studies of IBCs. In

the first such direct measurement, we determined that a single epithelial cell con-

taining an early IBC typically contains 103 viable bacteria. Our isolation technique

complements recent progress in low-input, single-cell genomics to enable future

genomic studies of the formation of IBCs and their activation pathways during re-

current UTI, which may lead to novel strategies to eliminate them from the bladder.
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Urinary tract infections (UTIs) are very common infections in humans, affecting over

half of all women (1). UTIs can affect any part of the urinary tract but are most

commonly found in the bladder (an infection more specifically termed cystitis). Infec-

tions are most frequently caused by some strains of Escherichia coli (thus uropathogenic

E. coli [UPEC]) (2). While antibiotic treatment is effective in most patients, 25% of

patients experience recurrent infection, often with the same strain, within 6 months (3).

A smaller fraction (approximately 3%) of patients suffers chronically from recurrent UTIs,

which in some cases can last many years (4–6). The high number of UTIs overall, in

addition to the high intensity of antibiotic treatment for those suffering from chronic

recurrent UTI, accounts for a significant fraction of antibiotic prescriptions in the

community, further leading to potential public health concerns with respect to driving

higher antibiotic resistance rates (7, 8).

Much research has therefore been dedicated to understanding the mechanisms by

which UPEC causes UTI and in particular how it cause recurrent UTI. A mouse model of

infection has been widely used to understand both host and bacterial characteristics

leading to disease (9, 10). Of note, this murine model enables direct studies of bacterial
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strains, without modification, isolated from human patients, assaying infection through

an analogous ascending inoculation route into the same organ and resulting in host

immune responses that are generally similar to those seen in humans (11, 12). Using

this model, intracellular infection of bladder epithelial cells by UPEC has been proposed

as a hypothesis that can explain many features of human recurrent UTI (8, 13). UPEC

binds to glycosylated surface proteins (uroplakins) present on the intact bladder

epithelium using extracellular type 1 fimbriae (14–25). This binding leads to invasion of

the epithelial cell, from which UPEC can escape into the cytoplasm and proliferate to

form large, dense, intracellular aggregates of bacteria termed intracellular bacterial

communities (IBCs). IBCs are estimated to contain up to 106 bacteria each and have

been described as a type of intracellular biofilm (13, 26, 27). Each IBC is the progeny of

a single invasive founder, enabling high amplification of successful invasion events (28).

IBCs are resistant to antibiotic treatment and host clearance, leading to persistence and

subsequent reemergence to cause subsequent rounds of infection and IBC formation

(16, 18, 29). Upon bacterial emergence (“fluxing”) from the enclosing epithelial cell, the

host immune response induces the SOS response in UPEC, leading to the inhibition of

cell division and the formation of long filaments, which resist killing by host neutrophils

(18, 27, 30, 31).

Besides IBCs, UPEC can form at least one other distinct type of intracellular structure,

the quiescent intracellular reservoir (QIR). QIRs are small collections of UPEC bacteria

(up to 12 bacteria) that are very slowly (or not) growing and present within membrane-

bound LAMP1� (lysosomal-associated membrane protein 1) vesicles. QIRs are known to

persist for weeks to months and can also subsequently reactivate to cause recurrent UTI

(32). Research from the murine model of UTI argues that intracellular infections (both

IBCs and QIRs) are mechanistically plausible pathways for chronic recurrent UTI despite

appropriate antibiotic usage and an intact host immune system (13).

Are intracellular bacteria important for UTI in humans? Structures that are morpho-

logically indistinguishable from IBCs generated in experimental mouse infections have

been observed in the urine sediment of acutely infected humans, based on extensive

histological, microscopic, and ultrastructural characterization, in addition to the reca-

pitulation of IBC formation by the human-infecting strain in an experimental murine UTI

model (33). Several additional studies of intracellular bacteria in both pediatric and

adult UTI patients have been reported (34–36). Other studies of same-strain versus

different-strain recurrence of UTI in humans have shown that some patients suffer from

multiple recurrences caused by indistinguishable strains (for example, see references

37–40), consistent with IBCs being a contributor to recurrent UTI (41). However,

intracellular bacteria are not specifically targeted by any current therapies. Basic

research in the service of finding new mechanistic pathways to target for UTI preven-

tion and treatment has focused on individual host and bacterial pathways but has had

a limited ability to directly probe intracellular populations using high-throughput

molecular assays. For example, single-gene studies have identified genetic require-

ments for IBC formation (for examples, see references 11, 13, 42–44, and 45), and

microscopic studies have demonstrated the presence of a polysaccharide matrix and

the expression of capsule, antigen 43, and type 1 pili within IBCs (26, 46, 47). Unfor-

tunately, direct molecular studies of IBCs have been complicated by the fact that

intracellular bacteria can be a minority of the total bacterial population during acute

stages of infection (16), while high-throughput genetic approaches have been ham-

pered by the strong population bottleneck imposed by IBC formation (28, 48).

Recent advances in genomics have led to several applications of genome-wide

transcriptional profiling of bacteria in infected mouse bladder tissue and urine as well

as in infected human urine (49–53). Those studies have all performed analyses on the

bulk infecting population, including both intracellular and extracellular bacteria. One

notable study used laser capture microdissection to directly isolate RNA from IBCs from

frozen tissue sections (54). That study found that bacteria within IBCs had high

expression levels of iron acquisition systems, which is consistent with the known host

response to limit iron availability to infecting bacteria; however, iron starvation is also
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a feature of extracellular bacteria present in urine (50, 51, 55) and is therefore not

specific to IBCs. That laser capture study also showed that bacteria within IBCs are

under aerobic conditions based on the relative expression levels of two genes, cyoB and

frdA; in contrast, bacteria in human and mouse urine generally do not utilize aerobic

metabolism (49, 50, 54, 56). However, the authors of that study were unable to obtain

enough RNA to perform genome-wide studies of bacterial gene expression. Further-

more, this technique requires specialized laser capture microdissection equipment,

making it technically demanding and laborious.

To facilitate the study of intracellular stages of UTI, we developed a simple and rapid

method for the isolation of individual infected bladder epithelial cells from laboratory

mice. This technique requires a dissecting microscope capable of fluorescence imaging

and less than US$50 of standard laboratory materials. We are able to isolate hundreds

of IBCs in a single session using our micropipetting technique. The isolated cells carry

bona fide IBCs containing viable bacteria based on morphology, gene expression, and

culture. In the first such direct measurement, we demonstrate that early IBCs (6 h

postinfection [hpi]) typically contain approximately 103 bacteria. This technique is

applicable to any mouse strain and most UPEC strains and therefore should facilitate

further molecular and genomic studies of intracellular stages of UTI.

RESULTS

Traditional micropipetting can be used to isolate IBCs. Micropipetting with glass

capillaries has been used to isolate single eukaryotic cells for several decades (57–59).

While the size of superficial bladder epithelial cells (50 to 120 �m) (60) precludes their

isolation from fluorescence-activated cell sorter (FACS) machines (typical nylon filters

for FACS analysis exclude particles larger than 40 to 50 �m), the larger size should

actually be a benefit for manual isolation. We performed transurethral infection of the

bladders of 7- to 9-week-old female C57BL/6 mice using UTI89 (a cystitis isolate)

expressing vsfGFP (v-superfolder green fluorescent protein) (61, 62). At 6 hpi, when IBC

numbers are typically maximal (13, 27, 28, 53, 63), mice were sacrificed and their

bladders were aseptically removed (Fig. 1A). IBCs form in the epithelial cells lining the

luminal surface of the bladder; therefore, inversion of the bladder enabled direct

visualization of GFP-expressing IBCs under a fluorescence dissecting microscope (Fig.

1B). IBCs, along with uninfected epithelial cells and other cells in the bladder, were then

released by gentle scraping with forceps (Fig. 1C). With this suspension of cells,

standard micropipetting using hand-pulled glass capillaries was used to isolate indi-

vidual GFP-positive epithelial cells (Fig. 1D).

We first verified by microscopy that the expected cell populations were present

among the scraped cells. As shown in Fig. 2A, the total scraped cell population

contained cells of various sizes, ranging from 10 to 150 �m in diameter. The larger cells

stained with an antiuroplakin antibody, and many appeared to have multiple nuclei

(Fig. 2A, white arrows), as expected for superficial bladder epithelial cells. There were

also smaller cells (�20 �m) (Fig. 2A, green arrows) that stained positively for uroplakin

and were likely underlying transitional epithelial cells. Among the uroplakin-positive

cells, some were also seen to stain with an anti-E. coli antibody (Fig. 2A, yellow arrows).

Besides epithelial cells, we expected that, based on previous studies, some immune

cells might also be present; these cells should stain for CD45. However, in many of our

samples, we saw very few cells staining positively for CD45. We first verified that our

CD45 staining protocol was able to stain both RAW macrophage cells (see Fig. S1 in the

supplemental material) as well as immune cells isolated from the bone marrow (BM) of

infected mice (Fig. S2). We also verified that CD45 staining was not somehow inhibited

in the context of the scraped cells by staining a mixed sample of scraped bladder cells

and bone marrow-derived immune cells (Fig. S3). As additional controls, we also

verified that our anti-E. coli and antiuroplakin stainings were specific for E. coli and

bladder cells, respectively, by staining cultured RAW cells, bone marrow aspirates,

scraped bladder cells (Fig. S4), and in vitro-cultured E. coli (data not shown). Based on

these controls, we concluded that the scraped bladder samples indeed had very few
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immune cells. The relative paucity of immune cells is perhaps partially because they are

eliminated when the urine of sacrificed mice is expressed with gentle pressure prior to

euthanasia and partially because, at 6 hpi, immune cells such as neutrophils are only

beginning to enter the bladder and its lumen (27).

We then characterized the putative IBCs isolated by micropipetting. We found that

GFP-positive cells all stained with antiuroplakin and anti-E. coli, as expected (a repre-

sentative image is shown in Fig. 2B). Isolated cells that were positive for E. coli staining

were uniformly negative for CD45 staining and often contained more than one nucleus

(Fig. 2C). From these staining experiments, we estimated that our putative isolated IBCs

were �90% pure (i.e., 2/24 [8%] 4=,6-diamidino-2-phenylindole [DAPI]- or uroplakin-

positive cells had no E. coli staining).

FIG 1 Schematic diagrams and associated photographs of the steps involved in micropipetting individ-

ual IBCs from infected mouse bladders. Shown are a harvested whole bladder (A), an inverted whole

bladder exposing GFP-expressing IBCs (B), a closeup of the edge of a scraped bladder showing individual

IBCs in suspension in the adjacent buffer (C), and a single isolated IBC pipetted into a tube (D). Red arrows

in panel B indicate examples of GFP-positive IBCs on the luminal surface of the bladder. The red dotted

line in panel C indicates the right border of the inverted bladder (indicated as “BL”); red arrows in panel

C indicate apparently individual GFP-positive epithelial cells that have been scraped off the bladder

surface. The white dotted line in panel D indicates a micropipetted submicroliter droplet containing an

isolated IBC, which is indicated by a white arrow. Bars, 2 mm.
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Isolated IBCs contain aerobic UPEC. The primary goal of IBC isolation is to be able

to perform downstream, intracellular niche-specific studies, including gene expression

in particular. One potential issue is that gene expression can change within minutes

(64–66). Our isolation procedure takes approximately 10 min from mouse sacrifice to

the collection of the first IBC; this time is comparable with practical limits on how soon

human urine, for example, can be preserved for transcriptional studies (50, 52). How-

ever, our isolation procedure results in the exposure of the bladder lumen to ambient

temperature, atmospheric oxygen, phosphate-buffered saline (PBS), and physical shear

forces from scraping with forceps. To provide some assurance that these conditions do

not drastically alter gene expression in the time frame required for isolation, we

examined the expression levels of the cyoB (cytochrome oxidase B) and frdA (fumarate

reductase subunit A) genes, both of which were previously quantified specifically in

IBCs (54).

We anticipated that an individual isolated IBC would contain a small amount of

bacterial mRNA. We therefore first characterized the sensitivity of our quantitative

reverse transcription-PCR (qRT-PCR) assays using serial dilutions of UTI89 genomic DNA

FIG 2 Confocal microscopy of IBC-containing cells. (A and B) Images of scraped bladder cells (unpurified, prior to micropipetting) stained with

antiuroplakin and anti-E. coli antibodies (A) and with anti-CD45 and anti-E. coli antibodies (B). White arrows indicate superficial epithelial cells

containing two nuclei, green arrows indicate transitional epithelial cells with single nuclei, yellow arrows indicate E. coli-containing cells, and red

arrows indicate immune cells. (C and D) Images of individual micropipetted GFP-positive cells stained with antiuroplakin and anti-E. coli antibodies

(C) and with anti-CD45 and anti-E. coli antibodies (D). Low-magnification images of individual channels are shown on the left, with high-

magnification merged images on the right. Bars are indicated in the merged images. DNA is stained with DAPI and represented in the blue

channel. Anti-E. coli is stained with a secondary antibody conjugated to fluorescein isothiocyanate and represented in the green channel.

Antiuroplakin (A and C) and anti-CD45 (B and D) are stained with a secondary antibody conjugated to tetramethylrhodamine isothiocyanate

(TRITC) and represented in the red channel.
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(see Fig. S5 in the supplemental material). Based on results from negative-control

samples and examinations of amplification curves and melting temperatures, we

determined that our qRT-PCR assays were reliable for CT (threshold cycle) values below

30 for the 16S gene and below 34 for the cyoB and frdA genes. To further ensure reliable

quantification, for all subsequent experiments, we considered samples to have detect-

able gene expression only if the CT values were below these thresholds, the melting

temperatures were identical to those of the corresponding positive controls, and the

amplification curves passed manual screening for quality (based on the baseline, curve

shape, and fluorescence intensity range).

We next replicated previously reported results showing that cyoB and frdA expres-

sion levels can differentiate between E. coli bacteria cultured in vitro under aerobic

conditions and those cultured under anaerobic conditions (Fig. 3). We obtained CT
values of �30 for all qRT-PCR targets for these in vitro mRNA samples (Fig. S6). We

indeed saw that the expression level (expressed as a fold change normalized against

the last [stationary-phase] anaerobic sample, labeled “An3”) of cyoB (�100-fold) was

much higher than that of frdA (approximately 10-fold) under aerobic conditions for the

first two time points, while the cyoB expression level (�10-fold) was lower than that of

frdA (10- to 100-fold) under anaerobic conditions for the first two time points. These

results closely mirrored previously reported results (54).

We then tested our ability to detect mRNA expression in isolated IBCs. We per-

formed the same qRT-PCR assays on samples containing 5 to 100 individually isolated,

pooled IBCs (Fig. S7). Based on CT, melting temperature, and amplification curve

analyses, we saw detectable amounts of 16S, cyoB, and frdA RNAs even in samples

containing only 5 isolated and pooled IBCs. We further verified the specificity of our

qRT-PCR assay by testing 100 isolated and pooled IBCs, unpurified cells scraped from an

infected bladder, and urine from infected mice, collected just prior to sacrifice (Fig. 3).

We also tested a series of samples that should not contain bacteria: 100 pooled

GFP-negative epithelial cells isolated from the bladders of the same infected mice,

unpurified cells scraped from PBS-treated, mock-infected bladders, and urine from

mice, collected prior to infection (Fig. S8). As expected, all of the samples containing

bacteria gave detectable levels of 16S, cyoB, and frdA RNAs, while all of the samples that

should not contain bacteria had CT values above our previously determined cutoff, in

addition to different melting temperatures.

Finally, we compared the relative expression levels of cyoB and frdA in isolated IBCs

to those in in vitro-cultured aerobic and anaerobic bacteria. We verified that only the

sample containing isolated IBCs appeared to be aerobic, with high normalized cyoB

(�100-fold) and low frdA (�10-fold) expression levels, while bulk scraped infected

bladders and urine from infected bladders showed an expression pattern more similar

to that of anaerobically grown E. coli (Fig. 3).

Direct quantification of bacteria within single IBCs. Previous estimates of the

number of bacteria within individual IBCs were made by using volume calculations

based on IBC size, as measured microscopically (30). With our isolation technique, we

can now directly measure the number of viable bacteria per IBC. The determination of

titers in serial dilutions of individual IBCs led to a wide range (�3 logs) of values for

bacterial quantification, with a median value of 2.2 � 0.91 log10 CFU/IBC (Fig. 4A).

Since their identification, IBCs have been described as biofilm-like structures; one

possibility for the wide variation in IBC titers is that bacteria tend to remain stuck to

each other (due to being enclosed within an epithelial cell membrane or within a

biofilm-like matrix) during serial dilutions. To explore this, we first incubated individual

isolated IBCs in PBS with 0.1% Triton X (to lyse the enclosing epithelial cell) for 10 or 30

min. We indeed saw a slight decrease in variability between IBCs but no significant

change in the median (2.5 � 0.83 log10 CFU/IBC after 10 min and 2.3 � 0.6 log10
CFU/IBC after 30 min) (Fig. 4A). Importantly, Triton treatment had no effect on bacterial

viability for cells cultured in vitro (Fig. 4B) or for bacteria isolated from the urine of

infected mice (Fig. 4C). Furthermore, uninfected epithelial cells isolated from the same
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infected mouse bladders and treated for 10 min with Triton X nearly always (29/32

isolated cells [91%]) had CFU at the limit of detection (Fig. 4A, right lane).

As an alternative test that should not be affected by a potential biofilm matrix, we

performed quantitative PCR (qPCR) to quantify bacterial genomic DNA from aliquots of

the same serial dilutions that we used determine titers in individual IBCs (Fig. 4D). We

again found high inter-IBC variation (range, �2.5 logs). The median number of bacteria

(measured as log10 genome equivalents [GE]) was 3.04 � 0.5 log10 GE/IBC, about 3 to

6 times higher than the values obtained by the direct determination of titers. A similar

assay on isolated uninfected epithelial cells gave consistently low numbers (1.18 � 0.3

FIG 3 qRT-PCR expression profiles of cyoB and frdA in bacterial UTI89 cultures grown aerobically (Ae1 to

Ae3) and anaerobically (An1 to An3), 100 isolated IBCs, cells scraped from whole bladder, and urine from

mice with UTI. The expression level of each gene is normalized against the last (stationary-phase)

anaerobic sample, labeled “An3.” The RNA samples for the in vitro cultures were extracted at an OD600

of 0.5 (Ae1 and An1), at an OD600 of 0.9 (Ae2 and An2), and at the overnight time point (OD600 of �2)

(Ae3 and An3), for 100 isolated IBCs from 100 individually isolated and pooled IBCs, unpurified cells

scraped from a UTI-infected inverted whole bladder, and urine from �200 �l of pooled urine collected

at 6 hpi, prior to sacrifice. Error bars represent standard deviations from 4 independent experiments for

aerobic (Ae1 to Ae3) and anaerobic (An1 to An3) bacterial cultures and 100 isolated IBCs and from 3 sets

of independent experiments for scraped whole bladder and urine.
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log10 GE/IBC). These results further validated that we were able to reliably isolate both

IBC-containing and uninfected epithelial cells. These findings also argue that extracel-

lular bacteria attached to epithelial cells are a quantitatively small if not negligible

problem (most values for uninfected epithelial cells are at the limit of detection). Finally,

the higher values obtained by qPCR for genome equivalents could indicate either that

some nonviable cells or viable but nonculturable cells are present in IBCs or that

bacteria in IBCs indeed tend to stay aggregated despite the lysis of their enclosing

epithelial cell and incubation in PBS, perhaps due to the enclosing biofilm matrix.

DISCUSSION

We have developed a simple and direct method for isolating infected bladder

epithelial cells seen during acute experimental UTI. Gene expression levels within

isolated IBCs match previously reported data, arguing that experimental manipulation,

to the extent that we can currently measure, has no gross effect on this population. Our

procedure can be applied to any mouse strain and any IBC-producing UPEC strain and

in principle can be performed at any time point during infection. The primary limitation

FIG 4 CFU and qPCR validation of successful isolation of IBCs. (A) Enumeration of bacterial CFU in individually

isolated IBCs processed immediately or after 10 or 30 min of incubation in 0.1% Triton X. Data are combined for

IBCs isolated from 3 separate experiments. The limit of detection was 0.7 log10 CFU/IBC. Red dots plotted at the

limit of detection indicate samples for which no colonies were recovered. All IBC-containing samples are not

significantly different (P � 0.05 by a Mann-Whitney test); the data for uninfected epithelial cells are significantly

different from the IBC (10 min) data (P � 0.001 by a Mann-Whitney test). (B) Comparison of bacterial quantification

using titer determination for bacterial cultures versus qPCR for genome equivalents with or without 10 min of

incubation in 0.1% Triton X. Lines connect data for the same sample. There is no significant difference between the

groups (P � 0.4 by a Wilcoxon signed-rank test). (C) Comparison of bacterial titers measured in urine of infected

mice at 6 hpi with and without incubation for 10 min in 0.1% Triton X. Each point represents data for a sample of

pooled urine from 5 mice; data are combined across 3 separate experiments. Lines connect data for the same

sample. The limit of detection was 2 log10 CFU/ml of urine. There is no significant difference between the groups

(P � 0.5 by a Wilcoxon signed-rank test). (D) Quantification of bacteria using qPCR on individual IBCs and

uninfected epithelial cells following a 10-min incubation in 0.1% Triton X (*, P � 0.0001 by a Mann-Whitney test;

n � 4). The limit of detection is 1.18 log10 bacterial genome equivalents/IBC. Red dots indicate samples for which

no colonies were recovered upon titer determination in panel A.
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is the requirement for a fluorescent marker to aid in the identification of infected cells,

which precludes the direct application of our technique to human infections. However,

for studies of experimental infections, recently improved tools for engineering fluores-

cent UPEC strains provide high brightness with no measurable defects in infection

phenotypes (61, 67), which would complement this isolation technique.

IBCs and other intracellular bacteria have been hypothesized to be the key popu-

lations contributing to UPEC persistence and UTI recurrence in humans, based on data

from extensive studies in mouse infection models (13, 16, 26–28, 53) and a growing

number of morphological studies in humans (33–36). Substantial effort has been

expended on investigating the mechanism by which UPEC establishes, maintains, and

emerges from these reservoirs. Recently, dramatic improvements in genomics tech-

niques have led to direct genomics studies of acute UTI (42, 51, 52). The formation of

IBCs and other intracellular structures, however, presents unique challenges to standard

genetic and genomic approaches; two critical hurdles are the numerical dominance of

extracellular bacteria during acute UTI (16) and the strong population bottleneck that

occurs during the establishment of intracellular infection (28). The fact that intracellular

bacteria are a quantitatively minor population during acute stages of UTI (16) means

that genomics studies of whole urine from mice (49) and humans (51, 52) or of whole

mouse bladders (53) are likely largely measuring extracellular bacterial gene expression.

In addition, the presence of a strong population bottleneck limits the feasibility of

powerful genetic approaches, such as signature-tagged mutagenesis (48, 49) and

transposon insertion sequencing (Tn-Seq) (68), for probing intracellular infection in

animal models. While such studies have certainly provided novel insights into specific

bacterial genes and host-mediated selection pressures in the urinary tract, we have

specific molecular information only for individual genes or proteins in IBCs (26, 30, 47,

54, 69–71). Therefore, a conceptual gap remains in our global understanding of the

intracellular population of UPEC during acute UTI. We propose that, combined with

advances in low-input genomics technologies, such as transcriptome sequencing (RNA-

seq) or proteomics, our isolation technique will now enable niche-specific studies of the

genetics and regulation utilized by UPEC for forming IBCs, thereby facilitating an

understanding of chronic and recurrent UTIs. Specifically, single-cell RNA-seq is now

routine (with enrichment for mRNA transcripts) for eukaryotic cells, which are estimated

to have 100- to 1,000-fold more total RNA than a single bacterium (72). Given our

estimate that each IBC contains approximately 103 bacteria, we speculate that RNA-seq

for both host and bacterial gene expression might eventually be performed on single

isolated IBCs, perhaps once ribosomal depletion strategies have been optimized.

Early studies of IBCs focused on morphological mapping of the developmental

cascade through which UPEC progresses during infection (16, 26, 27). By using an

elegant ex vivo system, microscopic images were used to estimate the volume of typical

IBCs and their constituent bacteria, leading by calculation to an estimate of up to 106

UPEC bacteria per mature IBC (13, 27). Combined with the subsequent proof that

individual IBCs arise from the invasion of a single UPEC cell into an epithelial cell (28),

a rapid doubling time of 30 to 35 min was estimated for UPEC during the initial 8 h of

infection (27), suggesting that nutrient availability was very high. This was further

supported by the observation that UPEC bacteria within IBCs showed evidence of

aerobic metabolism (54). We have now quantified, using two methods, the number of

UPEC bacteria within individual IBCs at 6 hpi, arriving at a median of 103 UPEC

bacteria/IBC by measuring genomic DNA. We also observed that isolated IBCs are

aerobic and calculated a similar estimated doubling time of approximately 35 min

during the first 6 h of infection, assuming that each IBC arises from a single founder

bacterium. The growth rate may very well vary as UPEC bacteria become more

numerous within a single epithelial cell; furthermore, the time that it takes for an

individual UPEC cell to invade an individual epithelial cell is not accounted for in this

estimate. However, our results are in excellent agreement with previously reported

observations of IBCs.

Regarding the nearly 1,000-fold difference in our estimates of the number of
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bacteria per IBC, we note that previously reported estimates appear to have calculated

the maximal number of bacteria that could be contained in observed IBCs, based on

size, across all time points stretching out to 24 hpi (13, 27). In contrast, we have

reported the median CFU measured and have focused on the 6-hpi time point.

Together, these two differences might account for much of the discrepancy. Further-

more, while IBC formation is a common feature of experimental UTI in mice, there are

notable variations in the numbers, sizes, and kinetics of formation of IBCs depending on

the mouse and bacterial strains used (63). Differences in experimental infection proto-

cols as well as time points studied also certainly would impact IBC size and bacterial

numbers, in addition to the quantitative contribution of IBCs and other intracellular

bacteria to overall infection (previous studies reported that intracellular bacteria ac-

count for as little as 3% to as much as 80% of the total amount of bacteria in the

bladder at 6 hpi) (16, 53, 70). The isolation technique that we report here now provides

the technical capability to explore these quantitative differences, which may provide

further insight into relevant host and pathogen pathways impacting IBC formation and

UTI in general.

We note that culture-based quantification yielded approximately 3-fold-lower esti-

mates of the numbers of CFU per IBC. While not approaching an order of magnitude,

this may have some implications for the experimental quantification of bacterial loads

during in vivo infections. Typically, mouse bladders are homogenized prior to bacterial

quantification (in the presence of Triton X in some reports); this is presumed to disrupt

the epithelial cells enclosing any intracellular bacteria and furthermore to separate

individual CFU within IBCs. Biofilms can be quite recalcitrant to disruption, however,

and there has been no way to assess whether UPEC bacteria within IBCs are fully

separated during homogenization. For our measurements, it was impractical to use a

homogenizer on individual IBCs; therefore, we estimate that the 3- to 6-fold difference

between CFU measured by titer determination and genome equivalents measured by

qPCR is a maximal difference. Besides an incomplete separation of aggregated bacteria,

another possibility is that some of the bacteria within the IBC are either dead or viable

but nonculturable. We did not systematically explore either of these possibilities.

However, our data suggest that the current standard of homogenization of bladders is

generally effective for quantifying overall bacterial loads, both intracellular and extra-

cellular, with a maximal error of only 3- to 6-fold (which is relatively minor given that

most researchers measure bladder CFU on a logarithmic scale).

In summary, we have developed a simple and rapid method for the direct

isolation of IBCs from experimentally infected mouse bladders. We can verify that

these are bona fide IBCs based on microscopic and gene expression analyses. We

can also verify that “contaminating” extracellular bacteria are very nearly undetect-

able. This technique scales well enough to isolate hundreds of IBCs with good purity

(�90%); this is sufficient for numerous types of downstream microbiological and

molecular studies. We anticipate that our technique will enable further specific

genomic studies of the intracellular stages of UTI aimed at discovering novel

strategies for preventing recurrent UTI.

MATERIALS AND METHODS

Bacterial strains. The wild-type (wt) E. coli UTI89 cystitis strain was used as a standard for in vitro RNA

expression experiments. Strain SLC-638 (UTI89 carrying a vsfGFP-9-expressing plasmid conferring kana-

mycin and ampicillin resistance) was used for all in vivo infections (61).

Cell cultures. The murine macrophage cell line RAW264.7 (ATCC TIB-71; ATCC, Singapore) was

cultured in Dulbecco’s modified Eagle’s medium (DMEM) (catalog no. 11965-092; Gibco, Life Technolo-

gies, Singapore) supplemented with 10% fetal bovine serum (FBS) (catalog no. SV30160.03; HyClone,

Singapore) together with 1% penicillin-streptomycin (catalog no. 10378-016; Gibco, Life Technologies,

Singapore). All cultures were maintained at 37°C in a humidified atmosphere containing 5% (vol/vol) CO2,

cultured in sterile 25-cm2 flasks (Corning), and subcultivated (1:4) three times a week; the medium was

replaced every 48 h. Subconfluent monolayers were dissociated with 0.01% trypsin (catalog no. 15400-

054; Gibco, Life Technologies, Singapore) and washed with 1� PBS three times before being transferred

to a Cytofunnel (EZ single Cytofunnel, catalog no. A78710003; Thermo Scientific, Singapore).

Mouse infections. All studies involving mice were approved by the A*STAR Institutional Animal Care

and Use Committee (IACUC), under IACUC protocol no. 130853 and 161148. Infections were performed
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as previously described (9). Briefly, bacteria were grown under type 1 fimbria-inducing conditions by two

consecutive 24-h periods of static culture in LB broth bacterial culture medium (catalog no. Bio-4000; 1st

BASE, Singapore), with a 1:1,000 dilution into fresh medium after the first 24 h. Seven- to nine-week-old

female C57BL/6J mice (In Vivos, Singapore) were anesthetized with isoflurane (IsoThesis, catalog no.

900-8931; Henry Schein, Singapore) and inoculated with a 50-�l suspension containing 1 � 107 to 2 �

107 CFU/ml of the bacterial isolate in 1� PBS (prepared from 10� PBS) (catalog no. BUF-2040; 1st BASE,

Singapore) via a transurethral catheter (Intramedic Clay Adams tubing [catalog no. 427401; BD, Singa-

pore] and a 30-gauge precision-glide needle, [catalog no. 305107; BD, Singapore]).

Harvesting of bone marrow cells. Bone marrow cells were harvested from the femurs of euthanized

mice. In brief, femurs were taken from mice and cut open on both ends by using surgical scissors. BM

cells were then flushed from the cut bone with 5 ml of PBS, using a syringe fitted with a 30-gauge needle

(same as the catheter needle). The mixture was then centrifuged at 1,200 rpm (253 relative centrifugal

force [rcf]), and the cell pellet was resuspended in 1 ml of ACK (ammonium chloride-potassium) lysis

buffer (catalog no. A1049201; ThermoFisher Scientific, Singapore) for 2 min on ice to lyse red blood cells.

ACK buffer was then neutralized with 9 ml of PBS, and the mixture was centrifuged to remove the liquid.

Cell pellets were then resuspended in PBS and either added to a petri dish containing scraped bladder

cells or transferred directly into a Cytofunnel as appropriate.

Isolation of individual IBCs by micropipetting. At 6 hpi, urine was expressed and collected from

mice by the application of gentle pressure to the suprapubic area. Mice were then euthanized by

anesthesia with isoflurane, followed by cervical dislocation. Bladders were aseptically removed, inverted

by using two pairs of fine forceps, and placed into 1 ml of PBS in a petri dish. Each bladder was visualized

by fluorescence microscopy (magnification, �2 to �6.5) (MVX10; Olympus, Singapore) to check for foci

of GFP fluorescence. The bladder was then held with one pair of fine forceps while the areas containing

GFP fluorescence were gently scraped with the curved back edge of a second closed pair of fine forceps

(so that no sharp edges or points came into contact with the bladder). Individual cells (either GFP

fluorescent or not) were then manually aspirated by using microcapillary pipettes attached to an

aspirator tube assembly (aspirator tube assemblies for calibrated microcapillary pipettes) (catalog no.

A5177; Sigma-Aldrich, Singapore) and ejected as needed into individual tubes, sterile PBS, or other

sample storage devices as appropriate.

Microscopy. The primary antibodies (and their corresponding dilutions) used were rabbit anti-

uroplakin III antibody (catalog no. ab157801; Abcam, Singapore) (1:800 dilution), rat anti-CD45 antibody

(catalog no. ab23910; Abcam, Singapore) (1:500), and goat anti-E. coli antibody (catalog no. ab25823;

Abcam, Singapore) (1:500). Secondary antibodies were donkey anti-rabbit (Alexa Fluor 594, catalog no.

A21207; Invitrogen), donkey anti-rat (Alexa Fluor 594, catalog no. A21209; Invitrogen), and donkey

anti-goat (Alexa Fluor 488, catalog no. A11055; Invitrogen) antibodies from Molecular Probes, Singapore,

all at 1:500 dilutions. For nonisolated (bulk) cell populations, 750 �l of the cell suspension in PBS was

transferred into Cytofunnels and spun onto polylysine-coated glass slides (Polysine slides, catalog no.

J2800AMNZ; Thermo Scientific, Singapore) or silane-coated slides (catalog no. 0810000; Marienfeld,

Germany) by using a cytospin machine (Shandon Cytospin 4, catalog no. A78300101; Thermo Scientific,

UK). The cytospun glass slides were removed from the funnel and allowed to air dry for 5 min.

Individually isolated cells were pipetted directly onto the glass slides immediately after isolation and

allowed to air dry in a laminar flow hood.

Cells on the slides were then fixed with 3% PFA (paraformaldehyde) (catalog no. 15,812-7; Sigma-

Aldrich, Singapore) in PBS for 15 min. Glass slides were then washed 3 times with PBS (2 min each time)

by repeated immersion using a slide staining rack and dish setup (catalog no. H444-D-GY-X; PST,

Singapore). Fixed cells were blocked for 30 min at room temperature with blocking buffer (1% BSA

[bovine serum albumin] [catalog no. A2153; Sigma-Aldrich, Singapore] in PBS-T [prepared in-house from

PBS and Tween 20] [catalog no. 20605; USB Corp., USA]). The cells were then incubated with the primary

antibody (or antibodies for dual staining) diluted in blocking buffer for 2 h at room temperature. Slides

were washed for 2 min in deionized (DI) water (using a slide staining rack and dish setup), after which

they were immersed in TBS-T (prepared in-house from 20� Tris-buffered saline [TBS] [catalog no. 3030;

1st BASE, Singapore] and Tween 20) and placed onto a Bellydancer instrument (catalog no. 20177; Stovall

Life Science Inc., USA) at 50 rpm for 5 min. The slides were then incubated with the secondary antibody

(or antibodies) diluted in blocking buffer for 30 min at room temperature in a dark room. The slides were

washed again in DI water (2 min), immersed in TBS-T, placed onto a Bellydancer instrument at 50 rpm

for 5 min, and allowed to air dry. The slides were then counterstained with 1,000� DAPI in PBS (catalog

no. D9542; Sigma-Aldrich, Singapore) for 5 min and washed with PBS (immersed in PBS and shaken on

a Bellydancer instrument at 50 rpm for 5 min).

The slides were then dried, 2 �l of mounting medium (Calbiochem FluorSave reagent, catalog no.

345789; Merck, Singapore) was placed onto the stained cells, and the cells were covered by using

coverslips (High Precision Deckglaser; Marienfeld, Germany). Confocal images were obtained by using an

Olympus FluoView FV1000 laser scanning confocal microscope (Olympus, Japan), using a 20�/0.7 or a

60�/1.0 water objective with argon ion (488-nm) and HeNe (543-nm) lasers as the excitation source. All

confocal images in a single experiment were captured by using the same image acquisition parameters

for all slides at the same magnification. Raw data were collected as 12-bit images; these images were

downsampled linearly to an 8-bit grayscale color space by using FV10-ASW 1.7 software and then

processed by resizing without further modification of brightness, contrast, or gamma correction using

Adobe Illustrator.

RT-qPCR quantification of gene expression. A culture from a single colony of wt UTI89 bacteria

grown overnight was subcultured in LB broth at a 1:1,000 dilution under aerobic and anaerobic
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conditions. Aerobic cultures were grown at 37°C with vigorous agitation; samples were taken at 4 h

(optical density at 600 nm [OD600] of �0.5), 6 h (OD600 of �0.9), and 24 h (OD600 of �2, the overnight

time point). Anaerobic cultures were grown without agitation at 37°C under a thick layer of mineral oil

(catalog no. 163-2129; Bio-Rad, Singapore); both aerobic and anaerobic cultures were set up simultane-

ously, and samples from anaerobic cultures were aliquoted at the same time as the aerobic samples.

At each time point, a 500-�l aliquot of the respective culture was pipetted into 1 ml of RNAprotect

bacterial reagent (catalog no. 1018380; Qiagen, Singapore) and then mixed thoroughly by vortexing.

Individually isolated IBCs or isolated GFP-negative epithelial cells were pooled directly after isolation in

a 1.5-ml Eppendorf tube and stabilized with 200 �l of RNAprotect. RNA from samples stabilized in

RNAprotect was extracted by using the RNeasy minikit (catalog no. 74104; Qiagen, Singapore). DNA was

removed by the addition of 4 �l of DNase I for 4 �g of the RNA extracted in a final volume of 20 �l (using

RNase-free water) according to the manufacturer’s protocol (Ambion DNase I [RNase free], catalog no.

AM2222; Life Technologies, Singapore). For cDNA synthesis, the Superscript II kit was used, with 0.42 �l

of random hexamers added to 500 ng of purified RNA in a final volume of 20 �l (using RNase-free water),

according to the manufacturer’s protocol (Superscript II reverse transcriptase, catalog no. 1821032;

Invitrogen, Singapore).

Each quantitative PCR was performed with a total volume of 10 �l: 5 �l 2� Kapa master mix (Kapa

SYBR Fast universal qPCR kit; Kapa Biosystems, Singapore), 0.2 �l each of forward and reverse primers (10

�M each), 1.5 �l cDNA, and 3.1 �l of RNase-free water. The following primers were used: AACGCGAAG

AACCTTAC (V6) and CCTTTGAGTTCCCGGCC (R2) for 16S rRNA, 5=-ATGCCTTTCGTTATCGGTCTGAT-3= and

5=-CAACGGTAAACCAGAAGCTTAAGTT-3= for cyoB, and 5=-CGTCGATCCGGTTAAAGAA-3= and 5=-CAGACC

TTTAATGCGGGTTTCA-3= for frdA (54). For a single biological replicate, RT-qPCRs were run in triplicate on

a LightCycler 480 instrument (Roche, Singapore) with the following protocol: 95°C for 5 min followed by

40 cycles of 95°C for 30 s and 60°C for 30 s. A melting curve was run immediately afterwards with the

following protocol: 95°C for 5 s, 65°C for 1 min, and a continuous acquisition step to 97°C with 20

acquisitions/°C. Each experiment was performed with at least three biological replicates.

Based on examinations of CT values, melting temperatures, and amplification curves using serial

dilutions of purified genomic DNA, maximum CT values of 30 for the 16S rRNA gene and 34 for the cyoB

and frdA genes were set as the limits of detection. All data analyzed for expression levels not only passed

this CT value threshold but also were verified to have the correct melting temperature and a reasonable

amplification curve profile (based on manual examination of the baseline, curve shape, and fluorescence

intensity range). Samples with detectable RNA expression for all measured genes based on these criteria

were then analyzed by normalizing the cyoB and frdA expression levels to the 16S rRNA expression level.

Fold changes for cyoB and frdA expression levels were then calculated (as 2	ΔΔCT) relative to the

overnight time point for the in vitro anaerobic culture, as reported previously (54).

Quantification of E. coli bacteria from isolated epithelial cells. (i) Uninfected and infected

epithelial cell samples. Fifty microliters of 0.1% Triton X was added to a tube containing a single

isolated epithelial cell, and the tube was then vigorously vortexed at maximum speed for 15 s and

incubated for the indicated times (0 to 30 min). The sample was then centrifuged at maximum speed

(Capsulefuge, catalog no. PMC-860; Fisher Scientific, Singapore), and the supernatant was removed. The

pellet was then processed as required for either serial dilution and titration or qPCR.

For titration, 100 �l of PBS was added, and titers were determined by using 10-fold serial dilutions

in PBS on LB plates containing kanamycin sulfate (50 �g/ml) (catalog no. 420311; Merck, Singapore) by

spotting 10 �l from each dilution in duplicate.

For preparation of the qPCR template, 12 �l of PBS was added to the pellet, which was then heat

boiled at 95°C for 20 min to release DNA, followed by cooling to 12°C.

(ii) Preparation of urine samples. A 50-�l aliquot of mouse urine (typically pooled from 1 to 5 mice)

was centrifuged, and the supernatant was removed. Fifty microliters of 0.1% Triton X in PBS was added,

and the mixture was incubated for 0 or 10 min. The sample was then centrifuged, and the titer was

determined as described above for individual epithelial cells.

(iii) Preparation of bacterial cultures. An individual colony of SLC-638 was inoculated into 2 ml LB

broth with kanamycin and incubated at 37°C with agitation until the mid-log phase was reached (OD600

of 0.5). Aliquots of this culture were then diluted 1,000-fold and 10,000-fold with PBS to yield bacterial

samples for controls. The control samples were then diluted 10-fold with PBS, and the titer was

determined as described above following the addition of Triton (0 and 10 min). Aliquots (50 �l) of the

control samples were heat boiled as described above for qPCR preparation.

(iv) qPCR protocol. A bacterial culture of UTI89 (fresh mid-log-phase culture) was serially diluted to

1 � 102 CFU, heat boiled at 95°C for 20 min, cooled down to room temperature, and centrifuged at

maximum speed for 5 min to pellet the cells. The supernatant was transferred to a fresh tube. qPCRs were

done by using the following recipe (final volume of 20 �l): 10 �l 2� Kapa master mix, 0.4 �l Rox low dye

(50�), 4 �l primer mix from 16S rRNA (V6 and R2 [mentioned above]) (1 �M each), 2 �l DNA template,

and 3.6 �l water. Reactions were run on a 7500Fast system (Applied Biosystems, Singapore) under the

following conditions: 95°C for 3 min, 40 cycles of 95°C for 10 s and 60°C for 10 s, and then a final

extension step at 60°C for 30 s.

(v) Statistical analyses. All qRT-PCR and bacterial titer data were plotted on a log scale. Bacterial

titers were summarized using the median and compared between samples by using a 2-tailed Mann-

Whitney U test. For qRT-PCR assays, within each experiment, the mean of data from triplicate technical

replicates was used as the value for the single biological replicate for that sample. A fold change value

was calculated for each biological replicate and then summarized using the mean across biological

replicates and compared by using 2-tailed Student’s t test.
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