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Abstract

The concept of Variable angle tow placement is explored for enhancing the
buckling resistance of composite plates subjected to axial compression under
different plate boundary conditions. The buckling problem of VAT plate is
complicated because of variation in stiffness properties across planform of the
plate due to curvilinear fiber path distribution. The problem requires pre-
buckling analysis to be performed first to determine the non-uniform stress
distribution and then the buckling analysis of VAT plates. In the present
work, a solution methodology based on the Differential quadrature method
(DQM) is developed for solving the partial differential equations of VAT
plates with linear fiber angle orientations. Within the framework of DQM,
a stress function formulation for inplane analysis and displacement formula-
tion for buckling analysis was employed to derive the governing differential
equations based on classical laminated plate theory. The novel aspect of
the present work is the use of Airy’s stress function to model the prebuck-
ling analysis of VAT plates which considerably reduces the problem size and
computational effort. This approach provides more generality to handle pure
stress and mixed boundary conditions more effectively when compared to the
exisiting analytical models. Furthermore, the governing differential equation
derived for buckling analysis of VAT panels considers the effect of bending-
twist coupling terms on the buckling load. DQM was applied first to solve the
inplane elasticity problem of VAT plates subjected to cosine distributed com-
pressive loads. DQM was then extended to solve the inplane problem of VAT
plates under uniform end shortening for which the unknown stress distribu-
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tions are non-uniform. Stress distributions along the edges of the plate were
expanded using Legendre polynomials and the unknown coefficients were de-
termined using a least square approach such that the displacment boundary
conditions are satisfied. Later, the DQM was applied to solve the buckling
problem of rectangular VAT plates subjected to axial compression under dif-
ferent boundary conditions, viz., simply supported, clamped and free edge
boundary conditions. Comparisons were made with finite element results
obtained using ABAQUS and the accuracy and efficiency of the proposed
DQM approach were studied.

Keywords: Buckling, Variable Angle Tow composites, Airy’s stress
function, Differential Quadrature Method

1. Introduction

The use of laminated composites for design of aerospace structures allows
the stiffness, strength and flexibility to be controlled in different directions. In
conventional laminates, the fiber angles are kept constant in a lamina which
results in constant stiffness properties across the planform of the plate and
limited tailorability options. Two commonly used approaches reported in lit-
erature to improve the structural response by allowing in-plane tailorability
of composites are 1) adding patches of additional layers with different fiber
orientations 2) varying the fiber orientation angles over the planform of the
plate. Biggers et. al. (1; 2) employed piecewise uniform redistribution of lay-
ers with specified orientations to create beneficial stiffness distributions across
the planform of the plate. This resulted in better buckling performance of
composite plates and used finite element models to compute the crtical buck-
ling load. Hyer et. al (3; 4) initiated the use of curvilinear fiber paths aligned
along the principal directions of the stress fields for impoving the buckling
resistance of composite plate with a hole. They used finite elements to model
the buckling problem and then determined optimal fiber distribution in each
element to achieve better buckling peformance. Nagendra et. al (5) used
non-uniform rational B-splines for designing fiber variation in the planform
of the plate and performed FE analysis to optimise the fiber design based on
buckling load and natural frequency. Gurdal et. al (6) varied the stiffness
properties by introducing linear fiber variation definition along the length
of the composite laminate and employed an iterative collocation numerical
technique to solve the inplane response of a VAT panel governed by a system
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of coupled equilibrium equations expressed in terms of displacements. Seno-
cak et. al (7) used galerkin method and polynomial trial functions to solve
the inplane response of composite plate with varying fiber content and lin-
earily varying fiber orientations. The existing models for inplane analysis of
VAT plates is based on displacement formulation which requires an iterative
strategy to acheive the desired accuracy. This approach is computationally
expensive due to the number of iterations involved and also application of
pure stress or mixed boundary conditions becomes quite difficult. Gurdal et.
al (8) studied the buckling response of variable stiffness panels by allowing
the stiffness variation along the loading direction and perpendicular to the
loading direction. They employed Rayleigh-Ritz (RR) method to compute
the buckling coefficient which did not include the effect of flexural-twist co-
efficients D16, D26. Alhajahmadet. al (9) used variable stiffness concept to
study the pressure pillowing problem of fuselage skin. They used Rayleigh-
Ritz method to perform nonlinear analysis and designed plates with opti-
mal fiber paths for maximum failure load. Weaveret. al (10) designed and
manufactured variable stiffness panels using an embroidery based process.
Their FE results showed similar buckling performance of VAT panels when
compared to quasi-isoropic laminate, but exhibited superior post-buckling
behavior. Most of the work reported in literature for analysis of VAT pan-
els use finite element (FE) method and require more elements for accurate
solutions. Furthermore, when FE method is coupled with optimisation algo-
rithms, the analysis becomes computationally expensive. To overcome this
drawback, new methods are required which are fast, accurate, general and
easily integrable with optimisation algorithms for design of VAT panels. As
an alternative approach to variational methods, the Differential Quadrature
Method (DQM) is investigated in this work for structural analysis of VAT
panels. DQM is an efficient and straight forward discretization technique for
obtaining accurate numerical solution with less computational effort.

DQM introduced by Bellman et. al. (11) is based on the assumption
that the partial derivatives of function in one direction can be expressed as
a linear combination of functional values at all the grid points along that
direction. DQM require fewer grid points to compute solutions with reason-
able accuracy when compared to FE analysis. DQM has been successfully
applied to solve various problems in structural mechanics (13) and the re-
sults demonstrate the potential as an attractive numerical technique. The
key issue in the application of DQM is to determine the weighting coefficients
and non-uniform grid distribution for approximating the partial derivatives
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of the function. Shu et. al (12) developed a generalised DQM approach for
handling various structural problems more effectively and demonstrated the
accuracy of the method. Darvizeh et. al. (15) compared the performance
of DQM with RR method for buckling analysis of composite plates and the
study showed the accuracy and reliability of DQM. Wanget. al. (16) studied
the buckling of thin plates subjected to nonlinearly distributed edge com-
pression loads using DQM. Sherbourne et. al. (14) studied the effect of grid
distribution in buckling analysis of anisotropic composite plates and reported
that using non uniform grids gives better results compared to uniform grids.

In this paper, numerical methodology based on the DQM is developed for
buckling analysis of VAT panels. The new aspect of the present work is the
use of Airy’s stress function to perform the prebuckling analysis of anisotropic
VAT plates which considerably reduces the problem size and when coupled
with DQM requires less computational effort. The generality of the formula-
tion helps in efficient modelling of pure stress and mixed inplane boundary
conditions applied to the VAT plate. Also, the governing differential equa-
tions for buckling analysis of VAT composite plate includes the effect of
flexural-twist coupling coefficients. The buckling performance of VAT panels
with linear fiber orientations under different boundary conditions was then
studied using DQM and the results were validated using finite element (FE)
method. The stability and robustness of DQM in computing the buckling
performance of VAT panels were studied.

The remainder of this paper is organized as follows. In the next section,
the numerical aspects of DQM such as choice of test functions, grid point
distributions and approaches to apply boundary conditions are discussed.
The concept of variable stiffness is introduced in section 3 and the prebuckling
analysis formulation of VAT panels using DQM are presented in section 4.
The DQM fomulation for buckling analysis of VAT panels under different
boundary conditons are discussed in section 5. In section 6, several numerical
examples of VAT panels are presented to demonstrate the accuracy of the
method and close with a few concluding remarks in section 7.

2. Differential Quadrature Method

The method of differential quadrature is a numerical discretization tech-
nique for approximating the partial derivatives of a function with respect to
a spatial variable, using a weighted linear combination of function values at
some intermediate points in that variable. For example, the nth order partial

4



derivative of a function f(x) at the ith discrete point is approximated by

∂nf(xi)

∂xn
= A

(n)
ij f(xj) i = 1, 2, ..., N, (1)

where xi= set of discrete points in the x direction; and A
(n)
ij is the weighting

coefficients of the nth derivative and repeated index j means summation from
1 to N . The weighting coefficients and the grid distribution determine the
accuracy of the DQM results. For determining the weighting coefficients,
the function f(x) must be approximated using test functions. Lagrange in-
terpolation polynomial and Fourier series expansion are the commonly used
test functions in DQM. In this work, Lagrange interpolation polynomial are
chosen as test functions for the computation of weighting coefficients and are
given by

gk(x) =
M(x)

(x − xk)M (1)(xk)
k = 1, 2, ..N (2)

where

M(x) =
N
∏

j=1

(x − xj), M (1)(xi) =
∂M(xi)

∂x
=

N
∏

j=1,j 6=i

(xi − xj) (3)

The weighting coefficient for the first order derivative are explicitly defined
by

A
(1)
ij =

M (1)(xi)

(xi − xj)M (1)(xj)
, i 6= j, i, j = 1, 2..N A

(1)
ii = −

N
∑

j=1,i6=j

A
(1)
ij

(4)
where xi are the coordinates of the grid points. The second and higher order
weighting coefficients can be obtained from A

(1)
ij using matrix multiplication

and is explained in detail by Shu (12). In this work, the non uniform grid
distribution given by the Chebyshev-Gauss-Labotto points are used for the
computation of weighting matrices and is given by

Xi =
1

2
[1 − cos(

i − 1

N − 1
π)], i = 1, 2, ....N (5)

where N is the number of grid points.
Different methods have been reported in literature for proper implemen-

tation of boundary conditions using the DQM. In this work, the direct substi-
tution method proposed by Shu et. al. (17; 18) has been used to implement

5



the different plate boundary conditions. Using the above approach, the es-
sential boundary conditions are implemented along the boundary points and
the force boundary conditions are discretized using DQM and applied to grid
points adjacent to the boundary points. In this work, the governing differen-
tial equations for buckling analysis of symmetric VAT panel are derived and
DQM was applied to solve the buckling problem under different boundary
conditions.

3. Variable angle tow panels

The concept of VAT placement provides the designer a wider design space
for tailoring the composite structure for enhanced structural performance
under prescribed loading conditions. Numerous benefits are achieved using
VAT placement, for example, by blending (minimising) stiffness variations
between structural components (e.g. stiffener to skin) to reduce inter-laminar
stresses. Also, the in-plane fiber orientation and local thickness distribution
can be tailored to reduce the need for discrete stiffening and opening up the
possibility of lightweight, stiffener-free skins.

In this work, VAT panels with fiber orientation angle variation along one
direction and constant stiffness properties in the other direction is considered
for analysis. A VAT plate with linear fiber angle variation is considered for
analysis (6) and the angle variation along the x direction is given by

θ(x) = φ +
2(T1 − T0)

a
|x| + T0 (6)

where T0 is the fiber orientation angle at the panel center x = 0, T1 is the
fiber orientation angle at the panel ends x = ±a/2 and φ is the angle of
rotation of the fiber path.

In VAT panels, stiffness (A,B,D matrices) vary with x−y coordinates re-
sulting in non-uniform in-plane stress distribution under constant edge loads
or displacements (8) and evaluation of these distributions is critical for buck-
ling load solutions. Gurdal et. al (8) derived a set of coupled elliptic partial
differential equations based on the displacement formulation for prebuckling
analysis of VAT plates. They used a numerical tool (ELLPACK) directly to
solve the coupled equilibrium equations on displacement fields based on an
iterative strategy to achieve solution of desired accuracy. The stress function
formulation when applied to model the prebuckling problem of VAT plates
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results in a fourth order partial differential equation. This formulation re-
duces the number of differential equations to be solved by DQM and requires
less computational effort. The stress function formulation allows more effi-
cient modelling of pure stress and mixed boundary conditions for prebuckling
analysis which is explained in detail in the next section.

4. Prebuckling analysis

For symmetric VAT composite plates, the midplane strains(ǫ0) in terms
of stress resultants(N̄) can be expressed using the following relation given
by,







ǫ0
x

ǫ0
y

ǫ0
xy







=





A∗
11(x, y) A∗

12(x, y) A∗
16(x, y)

A∗
12(x, y) A∗

22(x, y) A∗
26(x, y)

A∗
16(x, y) A∗

26(x, y) A∗
66(x, y)











N̄x

N̄y

N̄xy







(7)

where A∗(x, y) is the inplane compliance matrix. The Airy’s stress functions
and the strain compatability condition was used to solve the in-plane response
of symmetric VAT panels. A stress function Ω is introduced such that

N̄x = Ω,yy, N̄y = Ω,xx, N̄xy = −Ω,xy (8)

The compatability condition in terms of mid-plane strains in a plane stress
condition is given by

ǫ0
x,yy + ǫ0

y,xx − ǫ0
xy,xy = 0 (9)

Making use of Eq. 8 in conjuction with Eq. 9, the condition of compatability
is expressed as,

(A∗
11(x, y)Ω,yy + A∗

12(x, y)Ω,xx − A∗
16(x, y)Ω,xy),yy+

(A∗
12(x, y)Ω,yy + A∗

22(x, y)Ω,xx − A∗
26(x, y)Ω,xy),xx+

(−A∗
16(x, y)Ω,yy − A∗

26(x, y)Ω,xx + A∗
66(x, y)Ω,xy),xy = 0

(10)

Differentiation and reordering gives

A∗
11(x, y)Ω,yyyy − 2A∗

16(x, y)Ω,xyyy + (2A∗
12(x, y) + A∗

66(x, y))Ω,xxyy

−2A∗
26(x, y)Ω,yyyy + A∗

22(x, y)Ω,xxxx + (2A∗
11y(x, y) − A∗

16,x(x, y))Ω,yyy

+(2A∗
12,x(x, y) − 3A∗

16,y(x, y) + A∗
66,x(x, y))Ω,xyy + (2A∗

12,y(x, y) − 3A∗
26,x(x, y)+

A∗
66,y(x, y))Ω,xxy + (2A∗

22,x(x, y) − A∗
26,y(x, y))Ω,xxx+

(A∗
11,yy(x, y) + A∗

12,xx(x, y) − A∗
16,xy(x, y))Ω,yy + (−A∗

26,xx(x, y) − A∗
16,yy(x, y)+

A∗
66,xy(x, y))Ω,xy + (A∗

12,yy(x, y) + A∗
22,xx(x, y) − A∗

26,xy(x, y))Ω,xx = 0
(11)
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Thus, the Eq. 11 represents a fourth order elliptic partial differential equa-
tion in terms of stress function with variable coefficients. The number of
differential terms with variable coefficients in Eq. 11 indicates more degree
of freedom available for tailoring VAT plates when compared to straight fiber
composites. The DQM representation of the Eq. 11 is given by,

A∗
11(x, y)

Ny
∑

m=1

B
(4)
jmΩim − 2A∗

16(x, y)
Nx
∑

k=1

Ny
∑

m=1

A
(1)
ik B

(3)
jmΩkm

+(2A∗
12(x, y) + A∗

66(x, y))
Nx
∑

k=1

Ny
∑

m=1

A
(2)
ik B

(2)
jmΩkm − 2A∗

26(x, y)
Nx
∑

k=1

Ny
∑

m=1

A
(3)
ik B

(1)
jmΩkm

+A∗
22(x, y)

Nx
∑

k=1

A
(4)
ik Ωkj + (2A∗

11y(x, y) − A∗
16,x(x, y))

Ny
∑

m=1

B
(3)
jmΩim

+(2A∗
12,x(x, y) − 3A∗

16,y(x, y) + A∗
66,x(x, y))

Nx
∑

k=1

Ny
∑

m=1

A
(1)
ik B

(2)
jmΩkm

+(2A∗
12,y(x, y) − 3A∗

26,x(x, y) + A∗
66,y(x, y))

Nx
∑

k=1

Ny
∑

m=1

A
(2)
ik B

(1)
jmΩkm

+(2A∗
22,x(x, y) − A∗

26,y(x, y))
Nx
∑

k=1

A
(3)
ik Ωkj

+(A∗
11,yy(x, y) + A∗

12,xx(x, y) − A∗
16,xy(x, y))

Ny
∑

m=1

B
(2)
jmΩim

+(−A∗
26,xx(x, y) − A∗

16,yy(x, y) + A∗
66,xy(x, y))

Nx
∑

k=1

Ny
∑

m=1

A
(1)
ik B

(1)
jmΩkm

+(A∗
12,yy(x, y) + A∗

22,xx(x, y) − A∗
26,xy(x, y))

Nx
∑

k=1

A
(3)
ik Ωkj = 0

i = 1, ..., Nx; j = 1, Ny

(12)
where Nx, Ny are the number of grid points in the x and y directions re-
spectively. The stress boundary conditions expressed in terms of Ω and its
derivatives were applied along the boundary grid points. For non-uniform
axial compression loading, the boundary conditions are given by,

∂2Ω

∂y2
|x=0,a = σx(y),

∂2Ω

∂x2
|y=0,b = 0,

∂2Ω

∂x∂y
|x=0,a;y=0,b = 0,

Ω|x=0,y=b =
∂Ω

∂x
|x=0,y=b =

∂Ω

∂y
|x=0,y=b = 0.

(13)

The above boundary conditions were expressed in DQM form and assembled
with Eq.12, which results in a set of algebraic linear equations. Thus, the
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DQM representation for in-plane analysis of symmetric VAT plates in matrix
form can be written as,

[

Kbb Kbd

Kdb Kdd

] {

Ωb

Ωd

}

=

{

Fb

0

}

(14)

where Fb is the generalised force vector. The subscripts b denote the bound-
ary and their adjacent grid points for applying the boundary conditions. The
subscript d refers to the domain grid points. The Eq. 14 is solved for Ω and
the stress resultant distributions can be computed using the following DQM
equations,

N̄x =

Ny
∑

m=1

B
(2)
jmΩim

N̄y =
Nx
∑

k=1

A
(2)
ik Ωkj

N̄xy = −
Nx
∑

k=1

Ny
∑

m=1

A
(1)
ik B

(1)
jmΩkm

i = 1, ..., Nx; j = 1, Ny

(15)

The above approach can also be extended to solve the inplane response of
VAT plate under uniform axial compression. The axial stress distributions
along the edges of the VAT panel corresponding to uniform axial compression
is non-uniform and has to be determined. In order to satisfy the uniform
displacement boundary conditions, the non-uniform stress distribution σx(y)
along the edge was assumed to be of the form,

σx(y) =
n

∑

k=1

CkPk, (16)

where Cn are the unknown cofficients and Pn are the Legendre polynomials.
In this work Legendre polynomials are chosen for analysis due to superior
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convergence properties and defined as,

P1 = 1, P2 = ξ, P3 =
1

2
(3ξ2 − 1) · · ·

Pi+1(ξ) =
J

∑

j=0

(−1)j (2i − 2j)!

2ij!(i − j)!(i − 2j)!
ξi−2j

J =
i

2
(i = 0, 2, 4, · · · ),

i − 1

2
(i = 1, 3, 5, · · · )

(17)

The σx(y) load distribution corresponding to each Legendre polynomial was
applied along the edge of the VAT plate and the corresponding axial displac-
ment distribution un is evaluated using the expression,

un =

∫ a

0

(A∗
11(x, y)φ,yy + A∗

12(x, y)φ,xx − A∗
16(x, y)φ,xy) dx. (18)

The unknown coefficients Cn were computed by using least squares method to
fit un with the given displcament boundary condition along the edge u|x=0,a.
The σx(y) distribution corresponding to uniform displacment loading was
evaluated using Eq. 16. and are given as input for buckling analysis.

5. Buckling analysis

The moment equilibrium equation for symmetrical VAT plate is given by,

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
+ N̄x

∂2w

∂x2
+ 2N̄xy

∂2w

∂x∂y
+ N̄y

∂2w

∂y2
+ q = 0 (19)

where Mx,My,Mxy are the moment distributions and q is the load applied in
z direction. The moment distributions are related to the midplane curvatures
by the following relation,







Mx

My

Mxy







=





D11(x, y) D12(x, y) D16(x, y)
D12(x, y) D22(x, y) D26(x, y)
D16(x, y) D26(x, y) D66(x, y)











κ0
x

κ0
y

κ0
xy







(20)

where D is the laminate bending stiffness matrix and the curvatures are
given by κ0

x = ∂2w
∂x2 , κ0

y = ∂2w
∂y2 , κ0

xy = 2 ∂2w
∂x∂y

. Eq. 20 is then substituted in Eq.
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19 and the resulting governing differential equation for buckling analysis of
symmetrical VAT composite plate is given by

D11(x, y)w,xxxx + 4D16(x, y)w,xxxy + 2(D12(x, y) + 2D66(x, y))w,xxyy+
4D26(x, y)w,yyyx + D22(x, y)w,yyyy + 2(D11,x(x, y) + D16,y(x, y))w,xxx

+(6D16,x(x, y) + 2D12,y(x, y) + 4D66,y(x, y))w,xxy + (2D12,x(x, y)+
4D66,x(x, y) + 6D26,y(x, y))w,xyy + 2(D26,x(x, y) + D22,y(x, y))w,yyy

+(D11,xx(x, y) + 2D16,xy(x, y) + D12,yy(x, y))w,xx + (2D16,xx(x, y)+
4D66,xy(x, y) + 2D26,yy(x, y))w,xy + (D12,xx(x, y) + 2D26,xy(x, y)+
D22,yy(x, y))w,yy + N̄xw,xx + 2N̄xyw,xy + N̄yw,yy = 0

(21)
where w is the out-of-plane displacement. The differential terms associated
with the derivatives of bending stiffness coefficients have to be considered for
accurate buckling load solutions. The DQM representation of Eq. (21) is
given by

D11(x, y)
Nx
∑

k=1

A
(4)
ik wkj + 4D16(x, y)

Nx
∑

k=1

Ny
∑

m=1

A
(3)
ik B

(1)
jmwkm

+2(D12(x, y) + 2D66(x, y))
Nx
∑

k=1

Ny
∑

m=1

A
(2)
ik B

(2)
jmwkm + 4D26(x, y)

Nx
∑

k=1

Ny
∑

m=1

A
(1)
ik B

(3)
jmwkm

+D22(x, y)
Ny
∑

m=1

B
(4)
jmwim + 2(D11,x(x, y) + D16,y(x, y))

Nx
∑

k=1

A
(3)
ik wkj

+(6D16,x(x, y) + 2D12,y(x, y) + 4D66,y(x, y))
Nx
∑

k=1

Ny
∑

m=1

A
(2)
ik B

(1)
jmwkm + (2D12,x(x, y)

+4D66,x(x, y) + 6D26,y(x, y))
Nx
∑

k=1

Ny
∑

m=1

A
(1)
ik B

(2)
jmwkm + 2(D26,x(x, y)

+D22,y(x, y))
Ny
∑

m=1

B
(3)
jmwim + (D11,xx(x, y) + 2D16,xy(x, y) + D12,yy(x, y))

Nx
∑

k=1

A
(2)
ik wkj

+(2D16,xx(x, y) + 4D66,xy(x, y) + 2D26,yy(x, y))
Nx
∑

k=1

Ny
∑

m=1

A
(1)
ik B

(1)
jmwkm

+(D12,xx(x, y) + 2D26,xy(x, y) + D22,yy(x, y))
Ny
∑

m=1

B
(2)
jmwim + N̄x

Nx
∑

k=1

A
(2)
ik wkj

+2N̄xy

Nx
∑

k=1

Ny
∑

m=1

A
(1)
ik B

(1)
jmwkm + N̄y

Ny
∑

m=1

B
(2)
jmwim = 0

i = 1, ...., Nx; j = 1, ...., Ny

(22)
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where A
(n)
ik , B

(n)
jm are the nth order partial derivatives with respect to x and y

directions respectively. The different plate boundary conditions considered
in this work are,
Simply supported edges (SSSS)

x = 0, a; w = 0; Mx = −D11(x, y)
∂2w

∂x2
− D12(x, y)

∂2w

∂y2
− 2D16(x, y)

∂2w

∂x∂y
= 0

y = 0, b; w = 0; My = −D12(x, y)
∂2w

∂x2
− D22(x, y)

∂2w

∂y2
− 2D26(x, y)

∂2w

∂x∂y
= 0

(23)

Clamped edges (CCCC)

x = 0, a; w = 0;
∂w

∂x
= 0

y = 0, b; w = 0;
∂w

∂y
= 0

(24)

Simply supported along three edges and one edge free (SSSF)

x = 0, a; w = 0; Mx = −D11(x, y)
∂2w

∂x2
− D12(x, y)

∂2w

∂y2
− 2D16(x, y)

∂2w

∂x∂y
= 0

y = 0; w = 0; My = −D12(x, y)
∂2w

∂x2
− D22(x, y)

∂2w

∂y2
− 2D26(x, y)

∂2w

∂x∂y
= 0

y = b; Vy = −2D16(x, y)
∂3w

∂x3
− D22(x, y)

∂3w

∂y3
− 4D26(x, y)

∂3w

∂x∂2y

− (D12(x, y) + 4D66(x, y))
∂3w

∂2x∂y
− (D12,y(x, y) + 2D16,x(x, y)

∂2w

∂x2
)

− (D22,y(x, y) + 2D26,x(x, y)
∂2w

∂y2
) − (2D26,y(x, y) + 4D66,x(x, y)

∂2w

∂x∂y
) = 0

(25)

where Vy is the shear force distribution along the free edge of the plate. The
DQM form of simply supported boundary conditions are given by

x = 0, a; wij = 0;

D11(x, y)
Nx
∑

k=1

A
(2)
ik wkj − D12(x, y)

Ny
∑

m=1

B
(2)
jmwim − 2D16(x, y)

Nx
∑

k=1

Ny
∑

m=1

A
(1)
ik B

(1)
jmwkm = 0

i = 1, Nx; j = 1, ...., Ny

(26)
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y = 0, b; wij = 0;

D12(x, y)
Nx
∑

k=1

A
(2)
ik wkj − D22(x, y)

Ny
∑

m=1

B
(2)
jmwim − 2D26(x, y)

Nx
∑

k=1

Ny
∑

m=1

A
(1)
ik B

(1)
jmwkm = 0

i = 1, ..., Nx; j = 1, Ny

(27)
Similarly, the other boundary conditions can be represented using DQM.
The domain and boundary equations are assembled to yield to set of linear
equations,

[

Kbb Kbd

Kdb Kdd

] {

wb

wd

}

= Nvat

[

0 0
Fdb Fdd

] {

wb

wd

}

(28)

where Nvat is the buckling load and w is the mode shape. Solving the above
Eq. 28 (eigenvalue problem) yields the buckling load and mode shapes of
symmetrical vat plate.

6. Results and Discussion

The prebuckling and buckling results of VAT panels subjected to different
loading conditions are presented in this section. For the numerical simulation,
the material properties for each lamina are chosen as, E1= 181GPa, E2=
10.27GPa, G12= 7.17GPa, ν12= 0.28 with thickness t=1.272×10−4m. In
order to validate the DQM results, finite element (FE) modelling of the VAT
panels was carried out using ABAQUS. The S4 shell element was chosen for
discretization of the VAT plate structure and appropriate mesh density was
selected to achieve the required accuracy. Each FE element was assumed
to have a constant fiber orientation in order to model the linear fibre angle
distribution within each of the lamina. The thickness variation of the VAT
plate due to tow overlap or gaps were not considered in the present study.

6.1. Prebuckling response of VAT plate subjected to cosine loading

To validate the generality of the stress function based formulation, pre-
buckling analysis of anisotropic VAT plates subjected to pure stress bound-
ary conditons was studied using DQM and the results were compared with
FE analysis results. A square VAT plate (a=b=1m) subjected to in-plane
compressive cosine distributed load σ0cos(

πy

b
) along the edges x = 0, a and

other stress boundary conditons are shown in Fig.1. A symmetric VAT plate
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(0± < 45|0 >3s) was chosen for the in-plane analysis and the number of grid
points for DQM modelling was chosen to be Nx=Ny=30. For FE simula-
tion, the mesh density of 40× 40 was selected to analyse the above problem.
The stress resultant distributions obtained using DQM and FE results are
shown in Fig. 2 and are very close to each other. From Fig. 2, it is seen
that N̄x, N̄y, N̄xy distributions obtained using DQM satisfy the specified stress
boundary conditions accurately and can be extended to any generalised axial
loading distributions.

6.2. Prebuckling response of VAT plate subjected to uniform compression

The proposed stress function methodology was then extended to perform
inplane analysis of VAT plate subjected to uniform axial compression (mixed
boundary conditons). In this case, a square VAT plate (0± < 0|45 >3s) is
loaded by uniform end shortening, uapp = 0.5mm, along the edges x = 0, a.
The stress distribution corresponding to the displacement boundary condi-
tion was determined using the least square approach. The number of Leg-
endre polynomial terms were chosen to be 7 for accurate determination of
non-uniform axial load distribution along the edges. The number of grid
points for DQM modelling was chosen to be Nx=Ny=30. The axial stress
distribution along the edges x = 0, a obtained using DQM is shown in Fig.
3 and the results matches very well with FE results. The N̄x, N̄y, N̄xy distri-
butions obtained using DQM and FEM are shown in Fig. 4 and the results
are closer to each other. The results shows the ability of the proposed DQM
formulation to handle mixed boundary conditions along the edges of the
plate.

6.3. Buckling response of rectangular VAT plate subjected to uniform com-
pression

Buckling results obtained using DQM for VAT plates subjected to uni-
axial compression under various plate boundary conditions are presented in
this section. The principle behind improvement of buckling performance of
the VAT plate is due to redistribution of the applied load from the center
of the plate towards the edges by tailoring the stiffness properties. For sim-
ply supported boundary conditons, Gurdal et. al. (8) has shown that there
was significant improvement in buckling performance of VAT panels, when
the loading is perpendicular to the fiber variation direction. DQM analysis
was carried for VAT plates under simply supported boundary condition with
fiber orientation perpendicular to the loading direction (90± < T0|T1 >)3s
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and for different plate aspect ratios. The grid point distribution was assumed
to be same (N = Nx = Ny) in both the directions of the plate and the same
grid distribtuion was used to solve both the Eqns. 14 and 28. The non
dimensional buckling coefficient(Kcr

x ) and stiffness (Evat)of VAT plates are
evaluated by the following relation,

Kcr
x =

Nvata
2

E1bh3
; Evat =

a
∫ b

0
N̄x(a, y)dy

bhuapp

(29)

The VAT plate configuration (90± < 0|75 >)3s which had maximum buckling
coefficient was chosen for the numerical convergence study of DQM results.
Table. 1 shows the (Kcr

x ) results obtained using DQM and FE method for
VAT plates with different aspect ratios (AR) and various grid point distri-
butions (N = Nx = Ny). FE results were computed using fine meshes to get
accurate results. For square plates, DQM results were close to the FE results
and requires few grid points to get accurate results. As the plate aspect
ratio increases, DQM requires more grid points to get better results, but less
computational effort compared to FE analysis. The buckling mode shape for
a square VAT plate (90± < 0|75 >)2s obtained using DQM (N=32)and FE
analysis are shown in Fig. 5 and are close to each other.

DQM was then applied to solve the buckling problem of VAT plates un-
der clamped boundary conditions. A rectangular VAT plate (90± < T0|T1 >
)2s with aspect ratio of 10 is considered in this study. The buckling load
(Nvat) and stiffness (Evat) of VAT plate was normalized with respect to crit-
ical buckling load (Niso) and stiffness (Eiso) of a quasi-isotropic laminate
[45/− 45/0/90]2s respectively. This provides a better measure because good
composite designs often concerns the selection of laminates that perform bet-
ter than quasi-isotropic laminates. FE analysis of the VAT plates was carried
out using ABAQUS with a mesh density of 200×40 and the number of grid
points was chosen to be Nx=Ny=30 for DQM modeling. FE analysis required
more S4 elements for clamped boundary conditions when compared to simply
supported to get converged buckling load results because of the problems as-
sociated with satisfaction of zero slope boundary conditons along the edges of
the plate. Normalized values of the buckling load versus stiffness for various
VAT plate configurations (90± < T0|T1 >)2s obtained using DQM and FE
method are shown in Fig. 6. The results clearly shows the variation in buck-
ling load for different values of T0, T1 and the maximum value is achieved for
the VAT plate configuration (90± < 0|80 >)2s. For this VAT configuration,
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Table 1: Buckling Coefficient Kcr

x
results obtained by DQM and FEM for SSSS VAT plates

(90± < 0|75 >) of different aspect ratio (AR) under axial compression

AR FEM RR (8) DQM
N=20 N=24 N=28 N=32 N=36

1 3.067 3.14 3.089 3.0385 3.082 3.079 3.077
(40x40)

4 45.33 - 45.073 45.476 45.605 45.635 45.64
(80x20)

10 283.571 - 254.373 272.119 279.211 283.402 284.004
(120x20)

66.4% increase in buckling load when compared to quasi-isotropic laminate
was observed. The mode shape shown in Fig. 7 was computed using DQM
with grid point distribution (N=30) and matches very well with FE analysis.

Finally, DQM was extended to study the buckling problem of VAT plates
(AR=10) with one edge free edge and all the other simply supported as shown
in Fig. 8. In this case, the loads has to be redistributed from the free edge
(y = b) of the plate to the other edge (y = 0) of the plate. In order to achieve
this distribution, the fiber orientation was allowed to vary linearly from the
free edge of the plate to the other edge of the plate. The number of grid points
for DQM modeling was chosen to be Nx=Ny=34 and the mesh density was
chosen to be 100×20 for FE analysis. Fig. 9 shows the normalized buckling
load versus stiffness results of VAT plates (90± < T0|T1 >)2s computed
using DQM and FE analysis. The VAT plate configuration (90± < 10|80 >
)2s exhibited high buckling load compared to other linear fiber variations
and 85.4% increase in buckling load was observed when compared to quasi-
isotropic laminate. The mode shape obtained using DQM and FE analysis
are shown in Fig. 10 and the results are close to each other.

7. Conclusion

Differential quadrature methodology based on Airy’s stress function ap-
proach was proposed to solve the in-plane analysis of VAT plates subjected
to cosine distributed compressive loads and uniform axial compression. The
in-plane analysis results obtained using DQM matches very well with FE
results and shows the ability of DQM to handle stress/displacment bound-
ary conditions effectively with less computational effort. Buckling analysis
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of rectangular VAT plates with simply supported, clamped and free edge
boundary conditions were carried out using DQM. Comparisons are made
with FE results and it was observed that DQM yield accurate results with
less grid point distributions. It is observed that the DQM results converge
rapidly to the FE analysis and provides information about the minimum
number of grid points required to obtain accurate results. The study shows
that DQM is fast, accurate and requires less computational effort when com-
pared to FE analysis. This study also shows the accuracy and efficiency of
the DQM approach in analysing buckling behavior of VAT plates. In future,
DQM will be intergated with optimisation algorithms to design VAT panels
with nonlinear fiber variations for improved buckling performance.
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Figure 1: Square VAT plate subjected to cosine distributed edge load.
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Figure 2: Stress resultant distributions of VAT plate (0± < 45|0 >3s) subjected to cosine
distributed edge load: (a) N̄x (DQM) (b) N̄x (FEM) (c) N̄y (DQM) (d) N̄y (FEM) (e)
N̄xy (DQM) (f) N̄xy (FEM).
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Figure 3: Square VAT plate (0± < 0|45 >3s) subjected to axial compression: Axial stress
resultant distributions along the edge x = a computed using DQM and FEM.
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Figure 4: Stress resultant distributions of VAT plate (0± < 0|45 >3s) subjected to axial
compression: (a) N̄x (DQM) (b) N̄x (FEM) (c) N̄y (DQM) (d) N̄y (FEM) (e) N̄xy (DQM)
(f) N̄xy (FEM).

23



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1  

 0

0.2

0.4

0.6

0.8

1

DQM

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1  

 0

0.2

0.4

0.6

0.8

1

FEM

(a) (b)

Figure 5: Buckling mode shape of square VAT plate (90± < 0|75 >)2s (a) DQM (b) FEM.
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Figure 6: VAT plate (90± < T0|T1 >)2s, AR = 10 subjected to axial compression and
clamped boundary conditions : Normalized Buckling load ratio Vs Normalized stiffness
variation obtained using DQM and FEM for different T0, T1.
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Figure 7: Buckling mode shape of VAT plate (90± < 0|80 >)2s, AR = 10 with clamped
boundary conditions (a) DQM (b) FEM.

Figure 8: Rectangular VAT panels under axial compression and SSSF boundary condition
showing the linear fiber angle variation and applied boundary conditions.
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Figure 9: VAT plate (90± < T0|T1 >)2s, AR = 10 subjected to axial compression and
SSSF boundary condition : Normalized Buckling load Vs Normalized stiffness variation
obtained using DQM and FEM for different T0, T1.
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Figure 10: Buckling mode shape of VAT plate (90± < 10|80 >)2s, AR = 10 with SSSF
boundary condition (a) DQM (b) FEM.
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