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Abstract Identifying the parameters in a mathematical model governed by a system of or-

dinary differential equations is considered in this work. It is assumed that only partial state

measurement is available from experiments, and that the parameters appear nonlinearly in

the system equations. The problem of parameter identification is often posed as an opti-

mization problem, and when deterministic methods are used for optimization, one often

converges to a local minimum rather than the global minimum. To mitigate the problem of

converging to local minima, a new approach is proposed for applying the homotopy tech-

nique to the problem of parameter identification. Several examples are used to demonstrate

the effectiveness of the homotopy method for obtaining global minima, thereby successfully

identifying the system parameters.

Keywords Parameter estimation · Global optimization · Homotopy · Reduced-order

modelling · Partial state measurement

1 Introduction

The problem of identifying the parameters in a mathematical model governed by ordinary

differential equations (ODEs), given a set of experimental measurements, is encountered in

many fields of physics, chemistry, biology, and engineering [8]. The problem of parameter

identification can be posed as an optimization problem [17,18], where the arguments of the

global minimum of the objective function are the identified parameters. If the parameters

appear linearly in the system equations and full state measurement is available from exper-

imental data, a large class of methods is available for both off-line and on-line parameter

identification [17,18]. In most practical engineering problems, however, it is not possible to
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obtain measurements for all states, and the parameters often appear nonlinearly in the equa-

tions of motion. Off-line identification algorithms are used when the main goal is to develop

a mathematical model for system simulation; on-line identification algorithms are more pop-

ular in adaptive control applications [15]. The optimization problems are usually solved

using deterministic methods, which require the solution of differential equations at each op-

timization step. The solution of these ODEs can be obtained using initial-value methods [10,

26], shooting methods [1], or collocation methods [2]. When deterministic approaches like

the steepest descent [22], Gauss–Newton [22], and Levenberg–Marquardt [20] algorithms

are used in the optimization procedure, it is not uncommon to converge to a local minimum

rather than the global minimum [7]. Stochastic methods, such as simulated annealing [23]

and genetic algorithms [9], can be used to find global minima, but these methods typically

require a large number of iterations to converge and, thus, are time-consuming, especially

for parameter identification problems where the equations of motion are integrated at every

optimization step [10,11,26]. An obvious question that arises is whether there exist any non-

stochastic algorithms that can find global minima. Although one can never be assured that a

deterministic algorithm will be able to find the global minimum in every situation, there are

approaches derived from homotopy methods that can find global minima in situations where

other deterministic methods cannot.

Homotopy [27] is a powerful technique that is used in several areas of mathematics,

including optimization [5,12] and nonlinear root finding [4]. In homotopy methods, the ob-

jective function to be minimized is modified by adding another function whose optimum is

known, herein referred to as the known function, and a morphing parameter is used to trans-

form the modified function into the original objective function. A series of optimizations

is performed while slowly varying the morphing parameter until the modified function is

transformed back into the original objective function [5]. Applying homotopy to algebraic

optimization problems is straightforward, but its application to the parameter identification

problem is not, since the objective function is, itself, dependent on the solution of differential

equations. Homotopy was successfully applied to ARMAX models [13,14] for the identifi-

cation of linear parameters. In the work of Abarbanel et al. [1], the authors have coupled the

mathematical model to the experimental data for identifying parameters from a chaotic time

series for first-order systems, which is related to the homotopy method. The application of

homotopy to the general nonlinear parameter identification problem has not been studied in

the literature. In this work, we present a methodology to apply homotopy to the problem of

parameter identification. We show several examples where the classical deterministic meth-

ods fail to find the global minimum while the homotopy method successfully minimizes the

objective function.

2 Problem Statement

The dynamic equations of the physical system for which the parameters must be identified

are assumed to be of the following form:

ẋ1 = x2

ẋ2 = f (x1,x2,p, t) (1)

For mechanical systems, x1(t) = [y1(t), y2(t), . . . , yn(t)]
T are the independent coordi-

nates (displacements) and p is a column vector containing the parameters to be identified.

The system is assumed to be nonlinear, and the parameters may also appear nonlinearly in
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3

equations (1). Experimental data x1e(t) = [y1e(t), y2e(t), . . . , yne(t)]
T of all the displace-

ments are assumed to be available over time T ; it is assumed that the velocities are not mea-

sured. Note that it is possible to identify the system parameters with only a few components

of x1e(t) since, in coupled systems, each component of x1e(t) contains information from

all the parameters due to the coupling between the system equations. The unknown initial

conditions of the states for which measurements are not available can be treated as unknown

parameters. In order to simplify the optimization procedure, experiments can be performed

starting from rest, such that the velocity initial conditions are zero. The goal is to identify the

parameters in the mathematical model such that the solution of the differential equations (1)

closely matches the experimental data. To identify the parameters, we minimize the integral

of the squared difference between the experimental and simulated states:

V (p) =
1

2

n
∑

i=1







T
∫

0

(

yie(t)− yi(t,p)
)2

dt







(2)

Note that a discrete summation can be used in place of the integral in this equation. Given

the initial estimates of the parameters, we can minimize equation (2) iteratively using the

Gauss–Newton method [22] as follows:

p
r+1

= p
r
+ σdr

(3)

where σ is the step size and dr is the search direction, which can be obtained from the

following relation [26]:

H(p
r
)d

r
= −G

T
(p

r
) (4)

In equation (4), G and H are the gradient and the approximate Hessian of the objective

function, where the second-order sensitivities have been neglected in the latter:

G(p) =
∂V

∂p
= −

n
∑

i=1







T
∫

0

(

yie(t)− yi(t,p)
)∂yi
∂p

dt







(5)

H(p) =
∂2V

∂p2
≈

n
∑

i=1







T
∫

0

∂yi
∂p

T ∂yi
∂p

dt







(6)

The sensitivity data ∂yi

∂p
=

[

∂yi

∂p1

, ∂yi

∂p2

, . . . , ∂yi

∂pm

]

can be obtained by solving the sensitivity

differential equations, which can be derived by the direct differentiation of equations (1)

with respect to the individual parameters:

∂ẋ1

∂pj
=
∂x2

∂pj

∂ẋ2

∂pj
=
∂f(x1,x2,p, t)

∂pj
+
∂f(x1,x2,p, t)

∂x1

∂x1

∂pj
+
∂f(x1,x2,p, t)

∂x2

∂x2

∂pj
,

j = 1, 2, . . . ,m (7)

We will briefly explain how homotopy is applied to a simple algebraic minimization

problem. Let F(p) be the objective function. We are interested in finding parameters p∗ at

which F has a global minimum. If we start from an arbitrary point p0, and if the function
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has multiple local minima, it is likely that the optimization procedure will converge to a

local minimum. In the homotopy method, we first construct the following function:

H(p, λ) = (1− λ)F(p) + λG(p) (8)

where G(p), referred to as the known function, is a chosen function that is convex in the

unknown parameters, and for which the arguments of its global minimum are known. We

now begin the process by choosing λ0 = 1 and minimizing H(p, 1) = G(p). In this first

stage, the minimum of H(p, 1) is simply the minimum of G(p), which is known. Once the

minimum has been found, λ is decreased by a small amount δλ and H(p, λ1) is minimized,

where λℓ = 1− ℓ δλ, using the converged result from the previous stage as the initial guess

for p. This process is continued until λ = 0 and the objective function has been morphed

back into F(p). Provided we are always finding the minimum of H(p, λ) with an initial

guess that is close to its global minimum, it is more likely that we will find the global mini-

mum of the function F(p). A variant of this method has been successfully applied to com-

plex optimization problems involving protein structures [6] and to finding the equilibrium

configuration of an elastica [28]. Note that the choice of known function G(p) is nontrivial.

In general, the homotopy method is only capable of finding local minima; however, if the

nature of F(p) is known, it may be possible to construct the homotopy transformation in

a way that increases the chance of finding the global minimum. It is for this reason that

the optimization problem for parameter identification is generally more challenging than it

is for purely algebraic problems. In particular, the shape of F(p) = V (p) is unknown in

parameter identification problems, since it is dependent on the solution of differential equa-

tions (1), thereby making the selection of a suitable known function G(p) very difficult. In

contrast to algebraic problems, however, where the minimum value of the objective function

is unknown, the minimum value of the objective function in parameter identification prob-

lems is zero—provided the mathematical model is known exactly. Since the mathematical

model is not precisely known in general, the final error may not be exactly zero; however, it

is expected to be small. We use this knowledge in developing our homotopy transformation.

We now discuss how the homotopy method can be applied to the problem of parameter

identification. To modify the objective function, the experimental data is coupled to the

mathematical model as follows:

ẋ1 = x2 + λK1 (x1e − x1)

ẋ2 = f (x1,x2,p, t) + λK2 (x1e − x1) (9)

Initially, when λ = 1, the coupling term acts as a high-gain observer [3,16], and if suf-

ficiently high values of Ki are used, the experimental data and simulated response will

synchronize. Note that λ is introduced to the traditional definition of a high-gain observer

so as to construct the homotopy transformation. Also note that the sensitivity equations (7)

must be modified to account for the added coupling term. For very large Ki, the objective

function becomes a flat surface with a very small magnitude, and the experimental data x1e

and simulated response x1 will closely match no matter what parameters are used. For the

purposes of parameter identification, we choose the lowest values of Ki such that the exper-

imental data and simulated response synchronize to within a desired tolerance ε when the

initial parameter estimates are used. We now decrease λ by a small amount δλ and minimize

the objective function (2), treating equation (9) as the mathematical model. The parameter

estimates are refined so as to reduce the error to βε, where 0 < β < 1. We then decrease λ
further to 1− 2 δλ; since the parameter guesses have been refined, the observer gain can be
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reduced without increasing the error beyond ε. At each stage in this process, we use the con-

verged result from the previous stage as the initial guess for p. This process is repeated until

λ = 0, and equation (9) has morphed back into equation (1). In summary, the homotopy

optimization approach follows the path of minimal error as the observer gain is decreased.

We ensure that the error is close to zero (no greater than ε) at each value of the observer gain,

with the hope that the refined parameter guesses at the final stage are sufficiently close to

the global optimum of the original problem. The process of applying the homotopy method

to the problem of parameter identification is summarized in Algorithm 1.

Algorithm 1 Parameter identification using homotopy
Input: Experimental data (x1e), objective function tolerance (ǫ)

Output: Identified parameters (p)

Initialize

while λ ≥ 0 do

while V > ǫ do

Solve ODEs for x1 and ∂x1

∂pj
∀j

Minimize V (p) = 1
2

∑n
i=1

{

T
∫

0

(

yie(t) − yi(t,p)
)2

dt

}

Solve H(p)d = −GT(p) for d

p← p+ σd

end while

λ← λ− δλ

end while

return p

3 Numerical Examples

In this section, we present numerical examples in which the homotopy method has been

used to successfully identify the parameters in mechanical systems.

3.1 Linear parameters

Let us begin with the identification of parameters for a simple pendulum. We describe this

example in detail to further explain the idea of the homotopy method. The equations of

motion for a simple pendulum are given in state-space form as follows:

ẏ1 = y2

ẏ2 = −p sin(y1) (10)

with initial conditions y1(0) = π/6 and y2(0) = 0. The solution of this system with p = 10

for time t ∈ [0, 50] is used as experimental data y1e. The goal is to determine p from the
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6

experimental data. We define the following minimization problem:

p∗ = min
arg

50
∫

0

(

y1e − y1(p)
)2

dt (11)

A direct search has been used to identify the shape of the objective function, as shown

in Figure 1. It can be seen that the objective function has multiple local minima, and any
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Fig. 1 Normalized objective function for simple pendulum

classical deterministic optimization method will fail to converge to the global minimum

unless we choose our initial guess for p to be quite close to 10. To apply the homotopy

method, we modify the equations of motion as follows:

ẏ1 = y2 + λK1 (y1e − y1)

ẏ2 = −p sin(y1) + λK2 (y1e − y1) (12)

The sensitivity equations are now given as follows:

∂ẏ1
∂p

=
∂y2
∂p

− λK1
∂y1
∂p

∂ẏ2
∂p

= − sin(y1)− p cos(y1)
∂y1
∂p

− λK2
∂y1
∂p

(13)

Figure 2, again obtained using a direct search, illustrates the shape of the objective function

for different values of λ and p, using coupling parameters K1 = K2 = 10. As can be seen,

the modified objective function is convex when λ = 1; as we decrease λ to 0, the modified
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Fig. 2 Normalized objective function for simple pendulum with 0 ≤ λ ≤ 1

objective function slowly morphs into the original objective function shown in Figure 1. The

line joining the minimum of the modified function for different values of λ is also shown.

We have implemented the homotopy method for identifying p as illustrated in Algorithm 1,

with ǫ = 0.001 and δλ = 0.2. Using the homotopy method with an initial guess of p0 = 15,

we converge to the global minimum at p = 10 since we always remain close to the global

minimum of the modified objective function. Without using homotopy, again starting with

an initial guess of p0 = 15, the parameter converges to a local minimum at p = 14.6755.

3.2 Nonlinear parameters

Consider the following system, which has been studied in [3]:

ü + 0.1u̇ + tan
−1 (ku) = sin

(

t

2
+ πψ

)

(14)

The system is nonlinear in both k and ψ. We use k = 1 and ψ = 0.5 for generating ex-

perimental data, and then attempt to identify these parameters using initial guesses k0 = 4

and ψ0 = 2. The identification procedure was first performed without using homotopy,

the results of which are shown in Figure 3(a). Clearly, the optimization procedure (Gauss–

Newton) has converged to a local minimum where k = 4.5850 and ψ = 1.9620. The homo-

topy method was then applied using the same initial guesses for k and ψ. In this example,
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8

we use coupling parameters K1 = K2 = 10, step size δλ = 0.2, and objective function

tolerance ǫ = 0.01. As shown in Figure 3(b), the global minimum was found and both pa-

rameters were correctly identified using the homotopy method (we obtain k = 1.0001 and

ψ = 2.5000). Note that the estimate for ψ produces an equivalent response as does ψ = 0.5,

since sin
(

t
2
+ π(ψ + 2)

)

= sin
(

t
2
+ πψ

)

.

0 50 100 150 200
0

1
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4

5

Iteration Number

k
,
ψ

 

 

k
ψ

0 50 100 150 200
0

1
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Iteration Number

k
,
ψ

 

 

k
ψ

���� ����

Fig. 3 Parameter estimates for equation (14) obtained (a) without homotopy, and (b) with homotopy

3.3 Noisy experimental data

Consider the following two-degree-of-freedom (DOF) system [3]:

ü + 0.3u̇ + u +C1u
3
+C2v = 0

v̈ + 0.3v̇ + u+ C3v
3
+ cos(t) = 0 (15)

where C1 = 1, C2 = 2, and C3 = 3 are used for generating the experimental data for u and

v, to which we add 5% white noise. In this example, we assume that the initial conditions

for all states are known. Taking as initial guesses C0
1 = C0

2 = C0
3 = 10 and without using

homotopy, the optimization procedure converges to parameters that are different from the

experimental values (we obtain C1 = 13.3840, C2 = 7.9444, and C3 = 9.3622, as shown

in Figure 4(a)). Although we do not expect to achieve exact convergence due to the noise

in the experimental data, these parameter values are significantly different than the actual

values. Using the homotopy method with Ki = 10 ∀i and δλ = 0.2, we obtain parameter

estimates C1 = 0.9998, C2 = 2.0008, and C3 = 3.0034, which are very close to the

experimental values (see Figure 4(b)). Note that only the experimental data for u is coupled

to the equations of motion; it is assumed that the data for v is not measured. This coupling

strategy confirms that it is not necessary to measure all the coordinates of a multiple-DOF

system in order to identify all the system parameters. The experimental data and the results

from the simulated system using the identified parameters are in good agreement, as shown

in Figure 5.
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Fig. 4 Parameter estimates for equation (15) obtained (a) without homotopy, and (b) with homotopy
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Experimental Estimated

Fig. 5 Experimental data and simulated response for equation (15) using identified parameters

3.4 Reduced-order modelling

In this final example, we consider the problem of identifying parameters in a multibody sys-

tem given experimental data generated using a more complex model. In particular, a 14-DOF

vehicle model with a fully independent suspension, shown in Figure 6, is used to generate

the experimental data. This topology is recommended by Sayers [24] for simulating the

handling and braking behaviour of a vehicle, and has been adopted by several commercial

software packages. The position and orientation of the vehicle chassis (mc) together com-

prise 6 DOF. Four lumped masses (ms), each representing one-quarter of the suspension

components, are connected to the chassis by prismatic joints in parallel with springs (k)

and dampers (c), which represent the suspension compliance and together add 4 DOF. Each

wheel is connected to its corresponding lumped mass with a horizontally-oriented revolute

joint that allows the wheel to spin, collectively accounting for the final 4 DOF; torques (τ (t))
can be applied at these joints to accelerate the vehicle. The Pacejka2002 Magic Formula tire
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��������	
� ���	���	
�

wf wf 

mc 

ms 

kf 

δ
t� 

τ
t� 

lr lf 

mc 
v 

y 

z 

x 

cf kf cf kf cf kr cr 

ms ms ms 

δ
t� 

τ
t� 

Fig. 6 14-DOF vehicle model used for generating experimental data

model [21] is used to model the tire dynamics. The vertically-oriented revolute joints on the

front wheels (δ(t)) are used to steer the vehicle on a prescribed trajectory, so do not add

any DOF to the system. The system parameters are obtained from [25], some of which are

shown in Table 1.

Table 1 System parameters for 14-DOF vehicle model

Parameter Value

Mass
Chassis (mc) 2077 kg

Quarter of suspension (ms) 10 kg

Stiffness
Front suspension (kf ) 48.30 kN/m

Rear suspension (kr) 30.52 kN/m

Damping
Front suspension (cf ) 3.08 kN-s/m

Rear suspension (cr) 2.33 kN-s/m

Dimensions

Front width (wf ) 0.760 m

Rear width (wr) 0.795 m

Front length (lf ) 1.353 m

Rear length (lr) 1.487 m

Experimental data generated from the 14-DOF model with Pacejka tires is used to iden-

tify parameters in the planar bicycle model shown in Figure 7. The planar bicycle model

is often used for the simulation of vehicle dynamics and for on-board stability controllers.

This simple model has only 3 DOF: the position of the chassis in the x-direction (y1), the

position of the chassis in the y-direction (y2), and the orientation of the chassis in the plane

(y3). The mass of the chassis is assumed to be mb = mc +4ms = 2117 kg, and the lengths

are assumed to be df = lf = 1.353 m and dr = lr = 1.487 m. The yaw inertia of the chas-

sis is also defined to match that of the 14-DOF model. A simple 4-parameter tire model [19]

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



11

mb 

δ�t� 

df dr 

y 

x Fx, r 

Fy, r Fx, f Fy, f 

Fig. 7 Planar vehicle model for which parameters are sought

is used in place of the complex 117-parameter Pacejka model used in the 14-DOF system:

sb = 1−
vx,w
Rω

(16)

Fx,w = Along

(

1− e−Blongsb

)

Fz (17)

αb = arctan

(

vy,w
vx,w

)

(18)

Fy,w = Alat

(

1− e−Blatαb

)

Fz (19)

where sb is the longitudinal slip, αb is the lateral slip angle, vx,w and vy,w are the longi-

tudinal and lateral components of the wheel velocity in the wheel reference frame, R is the

tire radius, and ω is the rotational speed of the wheel. Forces Fx,w and Fy,w are applied

directly to the wheel centers. The tire radius (R) is assumed to be equal to the unloaded

radius used in the Pacejka model, and the vertical tire force (Fz) is simply assumed to be

half the total static load in the 14-DOF model. We wish to find values for the tire parameters

(Along ,Blong ,Alat, andBlat) such that the simulated response of the 3-DOF planar model

matches the experimental data obtained from the 14-DOF model as closely as possible. Note

that the planar model has no suspension and can neither pitch nor roll.

To generate the experimental data, we must first define the required inputs. In order

to adequately capture both the longitudinal and lateral dynamics, we first accelerate the

vehicle from 4 m/s to 16 m/s by applying positive torque to each wheel, then perform a lane-

change maneuver, and finally slow the vehicle to 6 m/s by applying negative torque to each

wheel. The steer angle and wheel torque inputs are shown in Figure 8. Using these inputs,

the 14-DOF vehicle model is simulated for 22 seconds and the state vector is stored every

millisecond. For the purpose of parameter identification, we assume that only five states are

known: the position of the chassis along the x- and y-axes, the orientation of the chassis

about the z-axis, and the average rotational speeds of the two front and two rear wheels.

Note that the wheel speeds of the 14-DOF model are required in order to calculate the tire

forces applied to the 3-DOF model (equations (16) to (19)). We use the following objective

function:

V =

3
∑

i=1







wi

22
∫

0

(

yie(t)− yi(t, Along, Blong, Alat, Blat)
)2

dt







(20)

where weights w1 = 0.001, w2 = 0.01, and w3 = 1 are chosen to scale the longitudinal

position, lateral position, and orientation errors to the same orders of magnitude. We obtain
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Fig. 8 Inputs used to generate experimental data with the 14-DOF model

rough initial guesses Along = Blong = 100 and Alat = Blat = 1 by hand, which corre-

sponds to an objective function value of 1.804 × 10−2 and produces the simulation results

shown in Figure 9.
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Fig. 9 Simulation results for (a) trajectory and (b) yaw angle, obtained using initial parameter guesses

We perform the optimization procedure using the homotopy method described above,

with Ki = 0.5 ∀i, δλ = 0.1, and ǫ = 10−4. Convergence is achieved after a total of 12

iterations, with a final objective function value of Vf = 3.3× 10−5, as shown in Figure 10.

The identified parameters are Along = 99.97, Blong = 99.97, Alat = 3.05, and Blat =

3.06; the corresponding simulation results are shown in Figure 11.
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Fig. 10 Convergence of the objective function (normalized by the number of data points)
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Fig. 11 Simulation results for (a) trajectory, (b) yaw angle, (c) longitudinal velocity, and (d) yaw rate, ob-

tained using identified parameters
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4 Conclusions

In this work, we have presented a new methodology for applying the homotopy optimization

technique to the parameter identification problem. We have considered the general problem

of parameter identification for nonlinear parameters with partial state measurement cor-

rupted by measurement noise. The proposed homotopy method can successfully find global

minima given a wide range of initial parameter guesses. The effectiveness of the proposed

technique for parameter identification has been demonstrated by several example problems.

The authors are currently investigating the use of the homotopy method for recursive param-

eter identification in on-line applications, and for systems governed by differential-algebraic

equations.
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