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In this paper, to explore the origin of the onset
of meandering of a straight river, we, first, analyse
the linear stability of a straight river. We discover
that the natural perturbation modes of a straight
river maintain an equilibrium state by confining
themselves to an onset wavenumber band that
is dependent on the flow regimes, aspect ratio,
relative roughness number and Shields number. Then,
we put forward a phenomenological description of
the onset of meandering of a straight river. Its
mechanism is governed by turbulent flow, with
counter-rotation of neighbouring large-scale or macro-
turbulent eddies in succession to generate the
processes of alternating erosion and deposition of
sediment grains of the riverbed. This concept is
explained by a theorem (universal scaling law)
stemming from the phenomenology of a turbulent
energy cascade to provide a quantitative insight into
the criterion for the onset of meandering of a straight
river. Itis revealed from this universal scaling law that,
at the onset of meandering of a river, the longitudinal
riverbed slope is a unique function of the river width,
flow discharge and sediment grain size. This unique
functional relationship is corroborated by the data
obtained from the measurements in natural and model
rivers.

1. Introduction

The twists and turns of a natural river flow in
a developed meandering course are ubiquitous and
enchanting features of planetary surfaces [1-3].
Meandering patterns are strongly associated with
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environmental and anthropogenic influences. They also have many implications in flood control,
riverbank stabilization, agricultural land preservation and many others [4]. Numerous studies
were reported to understand the principal mechanism [5], in conjunction with the topology
[6,7] and the maintenance [8], of the meandering of a river. The revolution of the Earth [9,10],
riverbed instability [11,12], helicoidal flow [13,14], excess flow energy [15] and macro-turbulent
eddies [16] are the existing concepts associated with the formation of a meandering course
of rivers. Why and when does a straight river meander? In the Codex Arundel, Leonardo da
Vinci (1452-1519) portrayed the migration of meanders of a riverbed in the form of a wave
in the downstream direction. Such an image of a gravity wave was later established through
measurements [17]. Although several conceptual mechanisms were reported in the past to
provide plausible explanations for this [5,18], the true onset of meandering of a straight river
remains a puzzling phenomenon.

A rather simple onset criterion for a river to meander was stated by linking the critical
longitudinal riverbed slope S and the flow discharge Q. This criterion tells us that, at the
onset, S =aQ", where a and b are empirical constants [19]. Analysing the data from numerous
natural and model rivers, the empirical constants were found to be a =7 x 1074 m3/4s~1/4 and
b= —0.25. This simplified functional relationship implies that, when the flow discharge in a
river increases, a lesser riverbed slope leads to the establishment of a true meandering course
of a river. Later, an attempt was made to introduce the effects of the sediment grain size to the
onset criterion [12]. However, these relationships, solely based on the empirical foundation, are
dimensionally inhomogeneous and thus invite uncertainties. The concept of the sine-generated
curve was also introduced to find the most likely path between static points [20]. It was shown
that a criterion for the most likely path of a continuous curve can be found if the global curvature
attains a minimum value. The underlying assumption of this concept was that, for a specific
number of steps, the changeover of the direction at the extremity of each step follows a normal
distribution. Then, following the principle of minimum variance, it was stated that a meandering
river is more stable than a straight river [21]. Mecklenburg & Jayakaran [22] obtained the salient
dimensions of a meandering river by performing the integrals of the sine and cosine of the sine-
generated curve. Moreover, a detailed stochastic description of the meandering of a river was put
forward by Movshovitz-Hadar & Shmukler [23].

In 1977, Yalin [16] stated that the onset of the meandering of a river was governed by
large-scale or macro-turbulent eddies. It was argued that the macro-turbulent eddies possess a
longitudinal length scale roughly equalling the longitudinal length of alternate bars in a straight
river. The length scale of the macro-turbulent eddies was surmised to be six times the river
width. Such a consideration of the alternate bar formation at approximately regular intervals
was equivalent to that of dune formation initiated by these eddies. This concept can only
provide a qualitative idea of the meandering of a river; however, an acceptable fundamental
mechanism and a quantification of the onset criterion of the meandering of a straight river
remain unknown.

So far, the stability analysis of the formation of alternate bars in a straight river has been proved
to be a successful tool to assess the onset of the meandering of a river [24-27]. Such an analysis
can anticipate whether a straight river would maintain a straight course, form alternate bars or
become a braided river. However, with regard to the stability analysis, the fundamental question
is whether there is any specific band of wavenumbers which govern the onset of the meandering
of a river over a wide range of physical variables? Moreover, how does this band of wavenumbers
respond to external perturbations? Furthermore, is the extent of this band dependent on the flow
regimes? Given these questions, the main objective of this study is to address these important
issues and to establish a viable theoretical description of the background mechanism that leads
to the origin of the onset of the meandering of a straight river from the phenomenology of a
turbulent energy cascade [28].

The paper is organized as follows. In §2, a stability analysis of a straight river is performed.
The phenomenological framework of the onset of the meandering of a straight river is described
in §3. Finally, the conclusion is drawn in §4.
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2. Stability analysis

(@) Mathematical formulation

Let us consider a straight unperturbed river confined to two parallel guided boundaries flowing
over an erodible sediment bed (figure 1). The river has a constant width of 2B (figure 1a and
table 1). We choose a Cartesian coordinate system (x,y), where x represents the longitudinal
distance and y denotes the spanwise distance measured from the river centreline. The depth-
averaged velocity components in (x, y) are given by (i, V), respectively. The D and H are the local
flow depth and the height of the free surface from a fixed reference level, respectively (figure 1b,c),
and z denotes the vertical distance measured from a fixed reference level (figure 1c). Let the
components of the bed shear stress and the volumetric sediment flux in (x,y) be (Tx, Ty) and
(Qx, Qy), respectively.

To perform a stability analysis, the equations of motion can be derived by performing a
depth-averaging of the time-averaged momentum equations of flow together with the suitable
boundary conditions, including the time-averaged pressure intensity to obey the hydrostatic law.
It is however relevant to mention that the effects of secondary currents are not included in the
stability analysis, although we admit that these effects can be important in the case of a narrow
river flow. In addition, the considerations of the depth-averaged continuity equation of flow and
the continuity equation of sediment flux are pertinent to accomplish the stability analysis.

The momentum equations of flow are [29]

e L ST EL S 2.1)
0x ay  Iox D

and

+ AL =0. 2.2)

The continuity equation of flow is [29]

0 A~ 0 A~
—(DU) + —=(DV)=0. 2.3
3500+ 5oOV) 23)
On the other hand, the continuity equation of sediment flux is [30]
d N 0P 0P
Z(FPPH-D)+ — + —ZL =0. (2.4)
ot ox oy

In equations (2.1)—(2.4), the following non-dimensional variables are introduced:

A A (vy) . D N H Un B
7 = 7 D = = 7 = 7 =
&9="5 o D, F GO A D
A~ A UY) LA (Tx, Ty)
Uu,v)= , (Ty, Ty) =
u,v) " (Tx, Ty) oL (2.5)
e (Agd)'? (Qx, Q)
and t=t , =, (¢x/q)y):712/
B (1 = po)Um D (Agd3) /

where subscript m (also in the subsequent sections) denotes the quantities associated with the
unperturbed uniform flow, F is the unperturbed flow Froude number, g is the gravitational
acceleration, A is the aspect ratio, pf is the mass density of fluid, t is the time, Q; is the ratio
of the characteristic scale of sediment flux to flow flux, A is the submerged relative density of the
sediment grains [= (pp — pr)/p5], Pp is the mass density of the sediment grains, py is the porosity
of the sediment and 4 is the median size of the sediment grains.

In essence, the physical condition suggests that the guided boundaries are impermeable both
to the fluid flux and to the sediment flux. It is worth mentioning that these boundary conditions
are valid even for the erodible guided boundaries, where it can be assumed that the bank erosion
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Figure 1. Schematic of a straight unperturbed river: (a) plan view, (b) longitudinal view and (c) cross-sectional view. (Online
version in colour.)

rate is so slow that the flow field is hardly affected. Thus, in implicit form, it can be assumed that
a slowly moving boundary can be considered to be a fixed boundary at lowest order. Hence, the
boundary conditions accompanying equations (2.1)~(2.4) are V(j = +1) = @y () =+£1)=0.

The components of the bed shear stress (Tx, fy) are expressed as

A A2 42172
(o T =L@ e+, 6)
where f is the Darcy-Weisbach friction factor. The f can be determined from the well-known
Colebrook-White equation [31]. It is given by

A 11
1 1 U ks 251
A= g, = —0.861n |:(_14.8’5) R /2} / 2.7)

where 1, is the friction velocity, IAcs is ks /Dy, ks is the bed roughness height, R is the flow Reynolds
number (=4UD/v) and v is the coefficient of kinematic viscosity of the fluid. The ks can be
expressed as ks = ad, where « is a multiplicative constant. From experimental observation, we set
a =2.5 [32]. The primary advantage of using the Colebrook-White equation is that it provides
an estimation of the friction factor covering a broad spectrum of flow regimes (hydraulically
smooth, transitional and rough flow regimes). Importantly, in a hydraulically rough flow regime,
a different relationship, for instance Einstein’s [33] friction factor formula, could be used because
the Colebrook-White equation closely corresponds to Einstein’s [33] formula. However, in
hydraulically transitional and rough flow regimes, Einstein’s [33] formula cannot be applicable.
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Table 1. Nomenclature.

(Continued.)
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Table 1. (Continued.)

A submerged relative density of sediment grains (= (o, — px)/ %)
............. (qﬁxgby)(oxoy)/(Agd3)V2
,,,,,,,,,,,, @Shleldsnumber(zui/(Agd))
............. @)(Sh|eldsnumberatonsetofagra|nmot|on
............. - ks/d
""""""" B anglesubtended by the trajectory of a sediment grain with the longitudinal direction
""""""" 5§  anglebetweenthe local shearstress vector and the longitudinal diecton
............. vcoefﬁqentofkmematmwscosnyofﬂu|d
............. pfmassdensnyofﬂmd
""""""" p  massdensityofsedimentgrains
............. ,oopor05|ty0fsed|ment
............. S spectralexponent SO
............. tfﬂmdshearstressatthenverbed
,,,,,,,,,,,, tggrawtatlonalstressgeneratedattherlverbed
............. g“relat|veroughnessnumber(:d/Dm)
............. ; ubscnptmquant|t|esassoc|atedW|thunperturbedumformﬂow

Thus, in hydraulically transitional and rough flow regimes, the model results would be affected if
a different friction factor formula were employed instead of using the Colebrook-White equation.

We recall two crucial parameters, namely the shear Reynolds number R, which signifies
the relative contribution of fluid inertia to viscous damping, and the Shields number ®, which
indicates the non-dimensional fluid-induced bed shear stress. They are defined as [18]

k 2
Ro= 2% and ©= 2.8)
v Agd

The R, and © can be coupled as R, = a(GO)'/?, where G is the Galileo number (= Agd3/v2).
Thus, the Froude number F and the Reynolds number R can be rewritten as F = (8A¢® /f Y1/2
and R =4DR, (a;)_l(S/f)l/z, where ¢ is the relative roughness number (= d/Dy,).

The components of the volumetric sediment flux (®y, ®,) are expressed as (Py, @y)=
@ (cos B,sin B), where B is the angle subtended by the trajectory of the sediment grain with the
longitudinal direction. It is given by [34]

d

1] r
ﬂ—sm [SIHS—ma]}

(F2H — 75)} , (2.9)

where § is the angle between the local shear stress vector and the longitudinal direction and r is a
coefficient approximately equalling 0.5 [35]. The § is expressed as § = sin [V /(% 4 V?)1/2].
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The dominant mode of sediment transport in this study is considered to be the bedload
transport. Therefore, the @ can be obtained from the Meyer—Peter-Miiller formula [18], which
is given by

®=8(0 — 0,)%?, (2.10)

where O, is the Shields number at the onset of grain motion. It may be noted that the Meyer—
Peter-Miiller formula corresponds well with the experimental data for coarse sands and gravels.
Furthermore, the interesting feature of the Meyer—Peter-Miiller formula is that it expresses @ in
the form of a power function, which ensures a smooth trend of the derivative d®/d® without
hampering the continuity. The other well-established empirical relationships for ¢ do not have
such a flexibility. Hence, the model results would invite discontinuities in the evolution of the
growth rate of external perturbation if an empirical relationship other than the Meyer—Peter—
Miiller formula were used. The determination of ®. (see equation (2.10)) requires an in-depth
analysis of the motivating hydrodynamic forces that act on the sediment grains in conjunction
with the near-bed turbulence effects [36]. However, to simplify the analysis, the ©; can be
determined from the following set of empirical relationships [37]:

Oc(G <43.7) =0.141g 0115,

[1 + (0.0229)%" 2.11)

3.09G0-34

Oc(43.7 < G < 79998.5) =
and Oc(G > 79998.5) = 0.045.

We now perform a normal-mode analysis of the primitive variables ,V,H,D) by setting the
following regular expansions:

@, V,H,D)=(1,0,Hm,1) + e[, V, H, D) expi(ki — wl) + c.c.] + O(?), (2.12)

where ¢ is O(1), i is the imaginary unit satisfying i* = —1, k is the non-dimensional wavenumber,
—iw is the complex quantity, whose real and imaginary parts signify the growth rate and the
non-dimensional frequency, respectively, and c.c. represents the complex conjugate.

Applying equation (2.12), the Taylor series expansions of the Ty and the ® yield

Ty = f’“ {1 + &[(Uc1 + Dey) expilkk — wb) + c.c. ]} + O(e?) (2.13)
and
@ = @y {1 + [(Ucs + Dcy) exp i(kx — ) + c.c]} + 0(2), (2.14)
where
2( 8f> i 1 Bf( O 8f>
7 2
fm 00 fm 0D fm 00 (2.15)
nd c—%ajc c—@—magbc-l- ! 9@
a 3 2,00 VYT 0, 002 B, 9D

Substituting equation (2.12) into the governing equations (2.1)—(2.4) and using equations (2.13)
and (2.14), we obtain the following set of equations at O(¢) in matrix form:

ai a2 m3 a14
d -
an ap A a4 u by
y ~
% by
- | = , (2.16)
asy ﬂaz(@ az3 a34 H b3
d d2 d2 ﬁ b4

as1 ﬂ42@ a43 44— +a45

di2
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where the matrix coefficients are given by

a1 =W +ik, ap=an =ay=a3=b1=br=b3=0, a13=a31 =a3 =ik,

.7 ) r 2
my=¥(2—1), an=¥+ik, ap=ap=ap=1, ay=iks, ap= —W}"
r . iw(F*H — D) -
and a44—m, a45—1kC4, b4— T, W—Ag
2.17)

The boundary conditions allow us to seek the solutions as follows: (U, H,D)=
(o, Ho, Do) sin My and V =7 cos My, where M =0.5(2m + 1)7 and m is a natural integer that
predicts the river pattern. To be explicit, m =0 indicates the onset of the formation of alternate
bars (as considered here), whereas m > 1 signifies the affinity of a river to braid. Substituting the
forms of ¢4, V, H and D into the relationship (2.16) and after rearrangement, the complex quantity
—iw is obtained as follows:

—io{F2[(a11 — a14)a20031] — [m13022a31 — a11M2]}

¢Tﬂ
a14a
= (a1322031 — a11M?) [a44M2 g 2 41]
1 ajaa
+ (a11 — a14)axa31 [(a43 - 7) M? + ﬁ] ) (2.18)
az a1

(b) Results and discussion

From the theoretical analysis, it is obvious that the real and the imaginary parts of —iw,
Re(—iw) and Im(—iw), respectively, are the functions of the aspect ratio .4, the relative roughness
number ¢ and the Shields number ©®. Thus, as a functional representation, we can write
[Re(—iw), Im(—iw)] = F(A, ¢, ®), where the function F typically depends on different flow regimes
by means of the friction factor conjecture (equation (2.7)). To cover the entire flow regimes, we
consider the shear Reynolds number R, =4, 20 and 500, corresponding to the hydraulically
smooth, transitional and rough flow regimes, respectively. Furthermore, the mass densities of
the fluid and sediment grains are considered as pf =103 kg m~2 and pp =2.65 x 103 kgm_3,
respectively. Specifically, the condition Re(—iw) > 0 suggests an exponential growth rate, whereas
the condition Re(—iw) < 0 signifies an exponential decay rate. Figure 2a—c depicts the variations
of Re(—iw) and Im(—iw) with non-dimensional wavenumber kfor A= 30,¢=0.005, ® =0.2,04,
0.6 and 0.8, and R, =4, 20 and 500. For a specific R, and @, a quick response of the straight
river to the external perturbations is notable, because the variations of Re(—iw) with k show an
exponential growth or decay, except in the neighbourhood of k~0.1. This indicates the inherent
instability of a straight river subjected to erosion and deposition of sediment grains aided by
the external variables. For a given k with k< 0.1, the Re(—iw) decays with an increase in &
(figure 2a—c). By contrast, for a given k with k> 0.1, the Re(—iw) increases with ©. However, this
is not the case when k approaches unity. For a given k with k=1, the Re(—iw) for a larger © (= 0.4,
0.6 and 0.8) grows abruptly with a hlgh frequency The variations of Im(—iw) with k for a specific
flow regime suggest that, for a glven k with k < 0.1, the frequency of excitation is almost invariant
of ®. However, for a given k with k > 0.1, the frequency of excitation sharply increases with &
(figure 2a-c).

We now turn our attention to a small window of wavenumbers k [0.05,0.15], where
both the values of Re(—iw) and Im(—iw) are marginally small, say [Re(—iw), Im(—iw)]e
[-0.05,0.05], as shown in the insets of figure 2a—c. Interestingly, for a specific flow regime,
there exists a band of wavenumbers ]A(C featured by {IAcC : [Re(—iw), Im(—iw)] € [-0.05,0.05]VO €
[0.2,0.8]}. In a generalized form, using the notations of set theory, we can write ke =
IAc{[Re(—ia)), Im(—iw)](® =61)} N IAc{[Re(—ia)), Im(—iw)[(® = ©7)}... subject to the conditions:
[Re(—iw), Im(—iw)] € [-0.05,0.05] and (@1, O,,...)€[O, O], where subscripts ‘1’ and ‘u’
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Figure 2. Variations of Re(—iw) and Im(—iw) with non-dimensional wavenumber k for aspect ratio A = 30, relative
roughness number ¢ = 0.005, Shields number & = 0.2, 0.4, 0.6 and 0.8, and shear Reynolds numbers (a) R, =4,
(b) R.. =20and (c) R, = 500. (Online version in colour.)

designate the lower and upper bounds of a variable, respectively. The band of wavenumbers
is shown by the faded vertical strips (see figure 2 and also figures 3 and 4). Such a band can
be envisaged as the onset wavenumber band for which the natural perturbation modes neither
grow nor decay, suggesting that the natural perturbation modes maintain an equilibrium state.
Physically, this can be interpreted as follows: a straight river with an unperturbed bed is generally
unstable when the large-scale bed perturbations grow over a broad spectrum of external flow
variables. Under such circumstances, there exists a set of wavenumbers which try to maintain
the straight course of a river at the limiting state, causing the onset of the meandering of a
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Figure 3. Variations of Re(—iw) and Im(—iw) with non-dimensional wavenumber  for aspectratios .4 = 15,30, 45 and 60,
relative roughness number £ = 0.005, Shields number & = 0.2 and shear Reynolds numbers (a) R, = 4, (b) R, = 20and
(€) R4 = 500. (Online version in colour.)

river. Reverting to figure 2, in the hydraulically smooth flow regime (R, =4), the bandwidth is
slightly larger than that in the hydraulically transitional flow regime (R = 20). Surprisingly, for
© €[0.2,0.8], no such band appears in the hydraulically rough flow regime (R = 500). However,
for R, = 500, the finite range of ke is possible when the upper limit of the Shields number becomes
less than 0.8 (say, ®y = 0.4 and 0.6). It may be pointed out that the bandwidth increases when the
difference between the ®, and @ decreases, as apparent from the insets shown in figure 2a,b.

It is further interesting to study the evolutions of Re(—iw) and Im(—iw) for different aspect
ratios A by keeping the relative roughness number ¢ and the Shields number ® constant. The
variations of Re(—iw) and Im(—iw) with non-dimensional wavenumber k for A= 15, 30, 45, 60,
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Figure 4. Variations of Re(—iw) and Im(—iw) with non-dimensional wavenumber k for aspect ratio A = 30, relative
roughness numbers ¢ = 0.001, 0.005, 0.01 and 0.05, Shields number & = 0.2 and shear Reynolds numbers (a) R, =4,
(b) R.. =20and (c) R, = 500. (Online version in colour.)

¢ =0.005, ®=0.2, and R4 =4, 20 and 500 are illustrated in figure 3a—c. For a given R, and
k with k <0.1, the Re(—iw) decays with a decrease in A. On the contrary, for a given k with
k>0.1, the Re(—iw) grows with an increase in A. From the variations of Im(—iw) with k for a
specific flow regime, it is possible that, for a given k with k < 0.1, the frequency of excitation is
practically independent of .A. However, for a given k with k> 0.1, the frequency of excitation
rapidly decays with a decrease in A (figure 3a—c). Similar to figure 2, the onset wavenumber
bands, which are furnished in the insets of figure 3, obey a generalized relationship of the form:
ke = I%{[Re(—iw), Im(—iw)](A= A1)} N lAc{[Re(—ia)), Im(—iw)](A=A)}... subject to the conditions:
[Re(—iw), Im(—iw)] € [-0.05,0.05] and (A1, Ay, ...) € [A}, Ay]. In the hydraulically smooth flow
regime (R, =4), the bandwidth is larger than those in the hydraulically transitional (R =20)
and rough (R, = 500) flow regimes.
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Finally, we study the evolutions of Re(—iw) and Im(—iw) for different relative roughness
numbers ¢ by keeping the aspect ratio A and the Shields number ® constant. Figure 4a—c
demonstrates the variations of Re(—iw) and Im(—iw) with non-dimensional wavenumber k for
A =30, ¢ =0.001, 0.005, 0.01, 0.05, ® =0.2, and R, =4, 20 and 500. For a given R, and k with
k< 0.1, the Re(—iw) reduces with an increase in {. On the contrary, for a given kwithk > 0.1, there
is no particular sequence in the variation of Re(—iw) with ¢. The variations of Im(—iw) with k
for a specific flow regime elucidate that, for a given k with k < 0.1, the frequency of excitation is
invariant of ¢. Furthermore, for a given ke (0.1,0.5), the frequency of excitation gently dampens
with a decrease in ¢. By contrast, for a given ke (05,1), the frequency of excitation dampens
with ¢ (figure 4a—). In the insets of figure 4, the onset wavenumber bands are also shown. They
correspond to a generalized form: ke = l%{[Re(—iw), Im(—iw)](¢ =21)} N IAc{[Re(—ia)), Im(—iw)](¢ =
{2)} ... subject to the conditions: [Re(—iw), Im(—iw)] € [-0.05,0.05] and (¢1,¢2,...) € [¢), ¢ul. It is
discernible that in the hydraulically smooth flow regime (R, =4) the bandwidth is somewhat
larger than those in the hydraulically transitional (R« = 20) and rough (R« = 500) flow regimes.

So far, from the stability analysis, it is clearly understood how the natural river responds
to external perturbations by elucidating the existence of typical onset wavenumber bands
over a wide range of key variables. However, this analysis has not given any evidence for
how the external instability evolves into the onset of meandering of a straight river from the
phenomenological viewpoint. To progress further and gain an insight into this phenomenological
mechanism, we present a phenomenological framework of the onset of the meandering a river
in the following section. Then, this framework is further enlightened by presenting a theorem
(universal scaling law) originating from the phenomenology of a turbulent energy cascade to
offer a quantitative insight into the onset criterion.

3. Phenomenological framework of the onset of the meandering of a straight
river

(a) Theoretical description

Let us start again with a straight river (figure 54,b) with a width 2, an unperturbed flow depth
Dy, and a longitudinal riverbed slope S, and carrying a steady flow discharge Q. The river flows
turbulently with an average flow velocity U, over a rough sediment bed, having a median size
d of sediment grains. The turbulent flow structures can be organized in two ways [38]: (i) the
macro-turbulent eddies, Ej, E; etc., having a velocity scale Uy, are primarily responsible for
the erosion and deposition of sediment grains from the riverbed (figure 5a) and (ii) the micro-
turbulent eddies, e1, having a velocity scale 1) (resolved into u, and 1y components), play a major
role in transferring the flow momentum by straddling the wetted surface at the summit of the
sediment grains (figure 5b).

In fact, the macro-turbulent eddies can evolve in both smooth and rough mobile beds,
regardless of the bed formation. The length scale L of such eddies is proportional to the external
geometric dimension of a river (say, flow depth D;;), and their velocity scale U, is proportional
to the mean flow velocity Uy, in a river [38]. On the other hand, the micro-turbulent eddies are
characterized by the length scale I of the order of the sediment grain size d. Then, how does the
process of meandering start in a straight river? The turbulent structure in the close proximity
of the riverbed is essentially anisotropic in nature, implying that the fluctuations of turbulent
velocity components have directional preference [39]. This anisotropy leads to the formation of
turbulence-induced secondary currents, called the secondary currents of Prandtl’s second kind [39,40].
It is however pertinent to emphasize that the secondary currents of Prandtl’s second kind are
suppressed by the helicoidal flow induced by the curvilinear flow streamlines in a developed
meandering course, called the secondary currents of Prandtl’s first kind [39]. Here, we consider
the onset of the meandering of a straight river rather than a developed meandering course.
Therefore, reverting to the straight river case as shown in figure 5, the macro-turbulent eddy
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Figure5. Sketch of astraight riverillustrating the onset of meandering. (a) Plan view and (b) longitudinal view. The dotted lines
inthe plan view represent the sequential traversing of a gravity wave between the alternate bars. The meandering wavelength is
denoted by Ly, Ata given time duration, the distance a’b’c’ represents the total distance covered by the gravity wave between
the alternate bars, and the distance a'c’ indicates the straight path covered by the mean river flow. (Online version in colour.)

E; (figure 5a), being spheroidal in nature due to the local anisotropy and inherent instability,
tends to move arbitrarily towards one of the riverbanks (let us consider towards the right
bank). This movement is highly intermittent in nature as the anisotropy stretches the localized
eddy towards the preferential direction. This spanwise shifting of the macro-turbulent eddies
was experimentally evidenced in turbulent flow over a rough bed [41]. As this eddy has a
counter-clockwise rotation as illustrated in figure 5a, it starts eroding the local sediment grains
close to the right bank. In essence, this eddy can be envisaged as a spheroidal fluid parcel,
containing a counter-rotating eddy that governs the spatial acceleration and deceleration of the
flow patterns. The eroded sediment grains are subsequently deposited on the opposite side
of the bank (figure 5a). Subsequently, an important question arises: is eddy E; stable? In fact,
the experimental observations evidenced that the macro-turbulent eddies over a rough bed (as
considered in this study) are relatively stable compared with those over a smooth bed [39]. We
then pay attention to the adjacent localized eddy E», which is powered by the motion of eddy Ej,
and therefore eddy E; is characterized by a clockwise rotation with an affinity to shift towards
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the left bank. As a result of this, the eroded sediment grains from the left bank are deposited
on the opposite side. In this way, the processes of alternate erosion and deposition advance as
we proceed in the flow direction. This phenomenon of the motion of eddies is analogous to the
motion of successive adjoining solid spheres (making a row) confined to two guided boundaries.
When a counter-clockwise rotation is set to the first sphere with a slight shift towards the right
boundary, then the next adjacent sphere has an opposite sense of rotation with an identical shift
towards the left boundary. For the other spheres, a similar alternate process of rotation and shift
occurs, as if the line joining the centres of the spheres forms a zigzag course. Therefore, the
processes of alternate erosion and deposition of sediment grains in the riverbed by the action
of macro-turbulent eddies are comprehended from this simple physical mechanism. Importantly,
the emergence of such successive eddies generates gravity waves with a speed U, proportional
to (§Dy)° [42,43]. The waves sequentially traverse the riverbank (indicated by the dotted lines
in figure 5a), leaving a generic signature of the meandering wavelength L. [17,42,43]. This
precisely explains the underlying mechanism of the onset of the meandering of a straight river.

Subsequently the question arises: how can we specifically set a quantitative onset criterion or
a straight river to meander? To this end, we apply the concept of equal periodicity [42], stating
that the time taken by the gravity wave to move across the distance between the alternate bars
is equal to the time taken by the mean flow in a river to reach the straight path between the
alternate bars. The mean flow velocity principally depends on the sediment grain size and has
a link with the laws of a turbulent spectrum [38]. We apply the phenomenology of a turbulent
energy cascade [28] to obtain a universal scaling law among the longitudinal riverbed slope, river
width, flow discharge and median grain size.

Theorem 3.1. At the onset of the meandering of a straight river, the longitudinal riverbed slope obeys
the 2/9’,°=2/9’, '1/3" and “1/9’ scaling laws with the river half-width, the flow discharge, the median
grain size and the gravitational acceleration, respectively.

Proof. The kinetic energy per unit mass of a turbulent eddy, characterized by the velocity scale
uy and the length scale J, is given by [28,38]

o0
u? 0<J E(ky) dku, (3.1)
1/1

where E(kw) denotes the turbulent energy spectrum function and ky denotes the wavenumber
(o< 1/1). The E(ky) can be expressed as E(ky) o U%Ll‘“’kgv [38], where Uy is the velocity scale of
the macro-turbulent eddies, having the length scale L, with o the spectral exponent. Substituting
this expression for E(ky) into equation (3.1), the link between the microscopic and macroscopic
velocity scales is obtained as

1 —(1+0)/2
) . (3.2)

uy oc Uy, (Z
In close proximity to the bed sediment grains, a localized turbulent eddy interacts with the
grains, giving rise to fluid-induced shear stress at the surface tangential to the summit of the
sediment grains forming the riverbed (figure 5b). The velocity u; of this localized turbulent eddy
can be split into two components. They are the tangential velocity component u; and the normal
velocity component . When the eddy size is of the order of a sediment grain size (I «d) such
that it completely triggers the interspace between the two neighbouring sediment grains, then
we can write uy x Uy, and un o< uy [38]. Therefore, the fluid shear stress 7 at the riverbed becomes
T = pglitlin, Where the overbar indicates the time averaging over turbulence. Using equation (3.2)
and noting that (U, L) & (U, D), we get t¢ au%(d /Dm)*(H“)/ 2, By contrast, the gravitational
stress generated at the riverbed is expressed as 75 = pgDy, S [18]. Equating 7 = 75, we obtain

4 \(+o)/4
) , (3.3)

U =a1(gDm5)1/2<;

m

where a; is a coefficient.
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The time taken by the river flow to cover the straight path between the alternate bars is
Lmw /U, while the time period of the wave to cover this distance is (ernw +168%)Y2/4,,. The
Uy is given by Uy, = llz(gDm)O‘S [42,43], where a5 is a coefficient. Equating these time periods, we

obtain
2 ~1)2
Lmw =48 u—‘g’ -1 . (3.4)

m

For a real solution of equation (3.4), we must have Uy > U;. Therefore, inserting the
expressions for Uy, and Uy into the above inequality yields

(140)/4
2., sl/z(i) . (3.5)
a D

The flow discharge is expressed as

(1+0)/4
d ) . (3.6)

Q = 2BDylhy = 2a1BDy (D S)? (7

D

Eliminating D;, from equations (3.5) and (3.6) results in the following scaling relationship:

S o B~(1+0)/3Q(+0)/34-(1+0)/20=(140)/6_For a fully developed three-dimensional turbulence, we
can write o = —% [28]. Thus, the desired scaling law is

S o BHOQ291/31/9. (3.7)

Note that the role of g in the right-hand side of equation (3.7) is to introduce the universality in
the scaling law applicable not only to this planet but also to other planets. n

(b) Results and discussion

Equation (3.7) provides a universal scaling law of the onset of the meandering of a straight
river, elucidating the mechanism of the onset criterion. This relationship is dimensionally
homogeneous and brings together all the necessary parameters of a river. It is worth noting
that the phenomenological scaling law (see equation (3.7)) cannot explicitly anticipate the
proportionality constant. Hence, the proportionality constant can only be obtained using the
measured data of all the parameters. It is obvious that, for a constant value of the gravitational
acceleration, the onset slope is proportional to the ‘—2/9'th power of the flow discharge for
rivers, having nearly equal river width and sediment grain size. Figure 6 depicts the data plots
of the longitudinal riverbed slope versus flow discharge measured in ample natural and model
rivers [19,44], characterized by nearly straight to well-formed meanders. The average slope of the
plotted data band shown by the straight line follows a ‘—2/9” scaling law. The overall scatter of
the data is due to the variability of river widths and sediment grain sizes. It is now required
to validate the present scaling law with the previously reported empirical formulae for the
onset of the meandering of a straight river. We recall Lane’s scaling: S="7 x 1074Q02% [19],
whereas Ackers and Charlton’s scaling reads: S =21 x 1074Q 912 [45]. 1t may be noted that these
empirical formulae were later verified by the experimental data of Schumm & Khan [46], who
conducted a series of experiments to find the effects of longitudinal slope and sediment flux on
river patterns. Therefore, the ‘—2/9” (= —0.22) law obtained from this study closely corresponds to
that previously reported by Lane [19], whereas it slightly deviates from that obtained by Ackers &
Charlton [45]. Furthermore, in the inset of figure 6, the dependency of the computed longitudinal
riverbed slope S on B>9Q2/941/3¢1/%, as obtained from equation (3.7), is shown overlapping
the data plots for some rivers, whose width, flow discharge and median grain size are available
in the literature. These data plots are in agreement with the computed line for a value of the
proportionality constant of 0.005, which should be a universal constant because equation (3.7) is
a universal scaling law.
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discharge and median grain size are available in the literature. The measured data are taken from different rivers [19,44]. (Online
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4. Conclusion

The origin of the onset of the meandering of a straight river is explored. By performing a stability
analysis of a straight river, it has been established that there exists an onset wavenumber band for
a specific flow regime for which the natural perturbation modes neither grow nor decay over a
wide spectrum of aspect ratios, relative roughness numbers and Shields numbers. The genesis of
the onset of the meandering of a river lies in the governing mechanism of a turbulent flow having
a counter-rotation of the adjoining macro-turbulent eddies in succession to sustain the processes
of alternate erosion and deposition of sediment grains. This concept, aided by the phenomenology
of a turbulent energy cascade, has been able to discover the missing link between the longitudinal
riverbed slope, river width, flow discharge, median grain size and gravitational acceleration by
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establishing a theorem (universal scaling law) of the onset of the meandering of a straight river.
The proposed universal scaling law preserves the dimensional homogeneity and corroborates the
data obtained from the measurements in natural and model rivers. This study thus facilitates a
general framework to achieve the true origin of the onset criterion for a river to meander.
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https:/ /www.uvm.edu/~wbowden/Teaching /Stream_Geomorph_Assess/Resources/Private/Documents /
1957_leopold_wolman_channel_patterns.pdf.
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