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Abstract

The Karhunen-Loève transform (KLT) is known to be optimal for high-rate trans-

form coding of Gaussian vectors for both fixed-rate and variable-rate encoding. The

KLT is also known to be suboptimal for some non-Gaussian models. This paper proves

high-rate optimality of the KLT for variable-rate encoding of a broad class of non-

Gaussian vectors: Gaussian vector-scale mixtures (GVSM), which extend the Gaussian

scale mixture (GSM) model of natural signals. A key concavity property of the scalar

GSM (same as the scalar GVSM) is derived to complete the proof. Optimality holds

under a broad class of quadratic criteria, which include mean squared error (MSE) as

well as generalized f -divergence loss in estimation and binary classification systems.

Finally, the theory is illustrated using two applications: signal estimation in multi-

plicative noise and joint optimization of classification/reconstruction systems.
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1 Introduction

The Karhunen Loève transform (KLT) is known to be optimal for orthogonal transform

coding of Gaussian sources under the mean squared error (MSE) criterion and an assumption

of high-rate scalar quantizers. Optimality holds for both fixed-rate [1, 2] as well as variable-

rate encoding, where the quantized coefficients are entropy-coded [3]. Conversely, examples

have been given where the KLT is suboptimal for compression of non-Gaussian sources

also in both fixed-rate and variable-rate frameworks [4]. Now, can we identify nontrivial

non-Gaussian sources for which the KLT is optimal? To the best of our knowledge, this

remains an open problem in the literature. In this paper, we assume high-resolution scalar

quantizers, variable-rate encoding and a general quadratic criterion, and show optimality

of certain KLT’s for encoding a new family of Gaussian mixtures, which we call Gaussian

vector-scale mixture (GVSM) distributions.

We define GVSM distributions by extending the notion of Gaussian scale mixture (GSM),

studied by Wainwright et al. [5]. A decorrelated GSM vector X is the product ZV of

a zero-mean Gaussian vector Z with identity covariance matrix and an independent scale

random vector V . Extending the above notion, we define a decorrelated GVSM X to be

the elementwise product Z ⊙ V of Z and an independent scale random vector V. In the

special case, where components of V are identical with probability one, a decorrelated GVSM

vector reduces to a decorrelated GSM vector. More generally, a GVSM takes the form

X = CT (Z⊙V), where C is unitary. Clearly, conditioned on the scale-vector V, the GVSM

X is Gaussian. The matrix C governs the correlation and the mixing distribution µ of V

governs the nonlinear dependence among the components of X. A GVSM density is a special

case of a Gaussian mixture density, p(x) =
∫

q(x|θ) µ(dθ), where q(x|θ) is the Gaussian

density with parameters denoted by θ = (m, Σ) (mean m and covariance Σ) and µ is the

mixing distribution. Specifically, for p(x) to be a GVSM density, we require that, under the

mixing distribution µ, only Gaussian densities q(x|θ) satisfying the following two conditions

contribute to the mixture: (1) m = 0 and (2) Σ has the singular value decomposition of the

form Σ = CT DC for a fixed unitary C.

The marginal distribution of any GVSM is, clearly, a scalar GVSM, which is the same

as a scalar GSM. Scalar GSM distributions, in turn, represent a large collection, where the

characteristic function as well as the probability density function (pdf) is characterized by

complete monotonicity as well as a certain positive definiteness property [6, 7]. Examples

of scalar GSM densities include densities as varied as the generalized Gaussian family (e.g.,

Laplacian density), the stable family (e.g., Cauchy density), symmetrized gamma, lognormal
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densities, etc. [5]. Obviously, by moving from the scalar to the general GVSM family, one

encounters an even richer collection (which is populated by varying the mixing distribution

µ and the unitary matrix C).

Not only does the GVSM family form a large collection, but it is also useful for analysis

and modeling of natural signals exhibiting strong nonlinear dependence. In fact, GVSM

models subsume two well established and closely related signal models: spherically invariant

random processes (SIRP) [8] and random cascades of GSM’s [5]. SIRP models find appli-

cation in diverse contexts such as speech modeling [9, 10], video coding [11], modeling of

radar clutter [12, 13] and signal modeling in fast fading wireless channels [14]. The GSM

cascade models of natural images are also quite powerful [5, 15], and incorporate earlier

wavelet models [16, 17, 18]. Note that any SIRP satisfying Kolmogorov’s regularity condi-

tion is a GSM random process and vice versa [19]. In contrast with the extensive statistical

characterization of SIRP/GSM models, only limited results relating to optimal compression

of such sources are available [20, 21, 22]. Our result fills, to an extent, this gap between

statistical signal modeling and compression theory.

Although the objective of most signal coding applications is faithful reconstruction, com-

pressed data are also often used for estimation and classification purposes. Examples include

denoising of natural images [23], estimation of camera motion from compressed video [24],

automatic target recognition [25, 26, 27] and detection of abnormalities in compressed med-

ical images [28, 29]. Compression techniques can be designed to be optimal in a minimum

mean squared error (MMSE) sense [30, 31, 32]. Further, a generalized vector quantization

method has been suggested for designing combined compression/estimation systems [33]. In

detection problems, various f -divergence criteria [34], including the Chernoff distance mea-

sure [35, 36], have been used. Poor [37] generalized the notion of f -divergence to also include

certain estimation error measures such as the MMSE, and studied the effect of compression

on generalized f -divergences. In this paper, we optimize the transform coder under a broad

class of quadratic criteria, which includes not only the usual MSE, but also the performance

loss in MMSE estimation, the loss in Chernoff distance in binary classification, and more

generally, the loss in generalized f -divergence arising in a variety of decision systems.

There have been some attempts at optimizing transform coders for encoding a given

source. Goldburg [38] sets up an optimization problem to design high-rate transform vector

quantization systems subject to an entropy constraint. He then finds the optimal wavelet

transform for a Gaussian source under a certain transform cost function. Under the MSE

distortion criterion, Mallat [3] derived the optimal bit allocation strategy for a general non-

Gaussian source using high-resolution variable-rate scalar quantizers and identified the cost
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function which the optimal transform must minimize but did not carry out the minimization.

The reader can find a lucid account of transform coding in [39]. In the same paper, optimality

of KLT for transform coding of Gaussian vectors is dealt with in some detail. In contrast, we

shall look into the optimality of KLT for GVSM vectors in the paper. In addition, general

results on high-rate quantization can be found [40].

In this paper, we improve upon our earlier results [41] and show that certain KLT’s of

GVSM vectors, which we call primary KLT’s, are optimal under high-resolution quantization,

variable-rate encoding and a broad variety of quadratic criteria. Specifically, we closely follow

Mallat’s approach [3] and minimize the cost function given by Mallat for GVSM sources.

Deriving this optimality result for GVSM sources presents some difficulty because, unlike

the Gaussian case, the differential entropy for GSM does not admit an easily tractable

expression. We circumvent this impediment by extending a key concavity property of the

differential entropy of scalar Gaussian densities to scalar GSM densities, and applying it

to the GVSM transform coding problem. We also derive the optimal quantizers and the

optimal bit allocation strategy.

We apply the theory to a few estimation/classification problems, where the general-

ized f -divergence measures the performance. For example, we consider signal estimation

in multiplicative noise, where GVSM observations are shown to arise due to GVSM noise.

Note the special case of multiplicative Gaussian noise arises, for instance, as a consequence

of the Doppler effect in radio measurements [42]. Further, our analysis is flexible enough

to accommodate competing design criteria. We illustrate this feature in a joint classifica-

tion/reconstruction design, trading off class discriminability as measured by Chernoff dis-

tance against MSE signal fidelity. Similar joint design methodology has proven attractive in

recent applications. For example, compression algorithms for medical diagnosis can be de-

signed balancing accuracy of automatic detection of abnormality against visual signal fidelity

[28, 29].

The organization of the paper is as follows. Sec. 2 introduces the notation. Poor’s

result on the effect of quantization on generalized f -divergence [37], is also mentioned. In

Sec. 3, we set up the transform coding problem under the MSE criterion and extend our

formulation for a broader class of quadratic criteria. We introduce the GVSM distribution in

Sec. 4. In Sec. 5, we establish the optimality of certain primary KLT’s for encoding GVSM

sources. We apply our theory to the estimation and classification contexts in Sec. 6 and 7,

respectively. Sec. 8 concludes the paper. Readers interested only in the results for classical

transform coding (under MSE criterion), may skip Secs. 2.2, 3.2, 5.5, 6 and 7.
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2 Preliminaries

2.1 Notation

Let R and R+ denote the respective sets of real numbers and positive real numbers. In

general, lowercase letters (e.g., c) denote scalars, boldface lowercase (e.g., x) vectors, upper-

case (e.g., C, X) matrices and random variables, and boldface uppercase (e.g., X) random

vectors. Unless otherwise specified, vectors and random vectors have length N , and matrices

have size N × N . The k-th element of vector x is denoted by [x]k or xk, and the (i, j)-th

element of matrix C, by [C]ij or Cij. The constants 0 and 1 denote the vectors of all zeros

and all ones, respectively. Further, the vector of {xk} is denoted by vect{xk}, whereas

Diag{x} denotes the diagonal matrix with diagonal entries specified by the vector x. By I,

denote the N × N identity matrix, and by U , the set of N × N unitary matrices.

The symbol ‘⊙’ denotes the elementwise product between two vectors or two matrices:

u ⊙ v = vect{ukvk},
[A ⊙ B]ij = AijBij, 1 ≤ i, j ≤ N.

In particular, let v2 = v ⊙ v. The symbol ‘∼’ has two different meanings in two unrelated

contexts. Firstly, ‘∼’ denotes asymptotic equality. For example, given two sequences {a(n)}
and {b(n)} indexed by n, ‘a ∼ b as n → ∞’ indicates

lim
n→∞

a(n)

b(n)
= 1.

On the other hand, ‘V ∼ µ’ indicates that the random vector V follows probability distri-

bution µ. Further, the relation ‘X
d
= Y’ indicates that the random vectors X and Y share

the same distribution. Define a scalar quantizer by a mapping Q : R → X , where the al-

phabet X ⊂ R is at most countable. The uniform scalar quantizer with step size ∆ > 0 is

denoted by Q(· ; ∆). Also denote Q(· ;∆) = vect{Q(· ; ∆k)}. Moreover, denote the function

composition f(g(x)) by f ◦ g(x).

The expectation of a function f of a random vector X ∼ µ is given by E [f(X)] =
∫

µ(dx) f(x) and is sometimes denoted by Eµ [f ]. The differential entropy h(X) (respectively,

the entropy H(X)) of a random vector X taking values in R
N (respectively, a discrete alpha-

bet X ) with pdf (respectively, probability mass function (pmf)) q is defined by E [− log q(X)]

[43]. Depending on the context, we sometimes denote h(X) by h(q) (respectively, H(X) by

H(q)). In a binary hypothesis test

H0 : X ∼ P0 versus H1 : X ∼ P1, (2.1)
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denote EP0 by E0. Further, the f -divergence between p0 and p1, the respective Lebesgue

densities of P0 and P1, is defined by E0[f ◦ l], where l = p1/p0 is the likelihood ratio and

f is convex [37]. In particular, the f -divergence with f = − log defines Kullback-Leibler

divergence D(p0‖p1) := E0 [log (p0/p1)] [43].

Denote the zero-mean Gaussian probability distribution with covariance matrix Σ by

N (0, Σ), and its pdf by

φ(x; Σ) =
1

(2π)
N
2 det

1

2 (Σ)
exp

(

−1

2
xT Σ−1x

)

. (2.2)

In the scalar case (N = 1), partially differentiate representation (2.2) of φ(x; σ2) twice with

respect to σ2, and denote

φ′(x; σ2) =
∂φ(x; σ2)

∂(σ2)
=

1√
8πσ10

(

x2 − σ2
)

exp

(

− x2

2σ2

)

, (2.3)

φ′′(x; σ2) =
∂2φ(x; σ2)

∂(σ2)2
=

1√
32πσ18

(

x4 − 6σ2x2 + 3σ4
)

exp

(

− x2

2σ2

)

. (2.4)

2.2 Generalized f-divergence under Quantization

Now consider Poor’s generalization of f -divergence [37], which measures performance in the

estimation/classification systems considered in Sec. 6 and Sec. 7.

Definition 2.1 [37] Let f : R → R be a continuous convex function, l : R
N → R be a

measurable function and P be a probability measure on R
N . The generalized f -divergence

for the triplet (f, l,P) is defined by

Df (l,P) := EP [f ◦ l] . (2.5)

The usual f -divergence Df (l,P0) = E0[f ◦ l] arising in binary hypothesis testing (2.1) is of

course a special case where l represents the likelihood ratio.

The generalized f -divergence based on any transformation X̃ = t(X) ∼ P̃ of X ∼ P , is

given by Df (l̃, P̃), where l̃(x̃) = E[l(X)|t(X) = x̃] gives the divergence upon transformation

t. By Jensen’s inequality [37],

Df (l̃, P̃) ≤ Df (l,P)

under any t. Further, denote the incurred loss in divergence by

∆Df (t; l,P) := Df (l,P) − Df (l̃, P̃). (2.6)
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Of particular interest are transformations of the form

t(X) = Q(s(X); ∆1), (2.7)

i.e., scalar quantization of components of s(X) with equal step sizes ∆, where s : R
N →

R
N is an invertible vector function with differentiable components. Subject to regularity

conditions, Poor obtained an asymptotic expression for ∆Df (t; l,P) for such t as ∆ → 0.

Definition 2.2 (POOR [37]) The triplet (f, l,P) is said to satisfy regularity condition

R(f, l,P) if the following hold. The function f is convex, its second derivative f ′′ exists and

is continuous on the range of l. The measure ν on R
N , defined by ν(dx) = f ′′ ◦ l(x)P(dx),

has Lebesgue density n. Further,

a) n and l are continuously differentiable;

b) EP [f ◦ l] < ∞;

c)
∫

dν l2 < ∞ and
∫

dν ‖∇l‖2 < ∞;

d)
∫

RN ν(dx) sup{y:‖x−y‖≤ǫ} |‖∇l(x)‖2 − ‖∇l(y)‖2| < ∞ for some ǫ > 0;

e) sup{x,y∈RN :‖x−y‖<δ}
f ′′◦ l(x)
f ′′◦ l(y)

< ∞ a.s.-[ν] for some δ > 0.

Theorem 2.3 (POOR, Theorem 3 of [37]) Subject to regularity condition R(f, l ◦ s,P ◦ s),

∆Df (t; l,P) ∼ 1

24
∆2EP

[

‖J−1∇l‖2f ′′ ◦ l
]

as ∆ → 0, (2.8)

where t(x) = Q(s(x); ∆1) and J is the Jacobian of s.

In Sec. 6, we apply Theorem 2.3 to transform encoding (3.11), which takes the form t(x) =

Q(s(x); ∆1) with invertible s.

3 Transform Coding Problem

Now we turn our attention to the main theme of the paper, and formulate the transform

coding problem analytically. Specifically, consider the orthogonal transform coder depicted

in Fig. 1. A unitary matrix U ∈ U transforms source X taking values in R
N into the vector

X = UX. (3.1)
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X2XN
X1X U

Figure 1: Transform coding: Unitary transform U and scalar quantizers {Qk}.

The k-th (1 ≤ k ≤ N) transformed component Xk is quantized to X̃k = Qk(Xk). By p, p

and p̃, denote the pdf’s of X and X, and the pmf of the quantized vector X̃, respectively.

Also, the k-th marginals of X, X and X̃ are, respectively, denoted by pk, pk and p̃k. Each

quantized coefficient X̃k is independently entropy coded. Denote by lk(x̃k) the length of the

codeword assigned to X̃k = x̃k. Then the expected number of bits required to code X̃k is

Rk(U,Qk) = E
[

lk(X̃k)
]

. Further, by source coding theory [43], the codebook can be chosen

such that

H(X̃k) ≤ Rk(U,Qk) < H(X̃k) + 1, (3.2)

provided H(X̃k) is finite. Next consider the classical reconstruction at the decoder. More

versatile decoders performing estimation/classification are considered in Sec. 6 and Sec. 7.

3.1 Minimum MSE Reconstruction

As shown in Fig. 2, the decoder decodes the quantized vector X̃ losslessly and reconstructs

X to

X̂ = UT X̃. (3.3)

This reconstruction minimizes the mean-squared error (MSE)

D(U, {Qk}) := E

[

∥

∥

∥
X − X̂

∥

∥

∥

2
]

= E

[

∥

∥

∥
UT (X − X̃)

∥

∥

∥

2
]

= E

[

∥

∥

∥
X − X̃

∥

∥

∥

2
]

(3.4)

(the second equality follows from (3.1) and (3.3), and the third equality holds because

U is unitary) over all possible reconstructions based on X̃ [3]. Note that D(U, {Qk}) =
∑N

k=1 dk(U,Qk) is additive over transformed components, where component MSE’s are given

by

dk(U,Qk) := E

[

(

Xk − X̃k

)2
]

, 1 ≤ k ≤ N. (3.5)

The goal is to minimize the average bit rate R(U, {Qk}) = 1
N

Rk(U,Qk) required to achieve

a certain distortion D(U, {Qk}) = D. We now make the following assumption [46]:
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UT X̂
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RNR2R1
~XN~X2~X1

Figure 2: Minimum MSE reconstruction at the decoder.

Assumption 3.1 The pdf p(x) of X is continuous. Also, there exists U ∈ U such that

h(Xk) < ∞ for all 1 ≤ k ≤ N .

Note that continuity of p(x) implies continuity of p(x) as well as of each pk(xk) (1 ≤ k ≤
N) for any U ∈ U . This in turn implies each h(Xk) > −∞. Hence, by assumption, each

h(Xk) is finite for some U ∈ U .

Assumption 3.2 (HIGH RESOLUTION QUANTIZATION) For each k, {Q(n)
k } is a se-

quence of high-resolution quantizers such that

sup
xk∈R

[

xk − Q
(n)
k (xk)

]

→ 0 as n → ∞.

Denote X̃
(n)

k = Q
(n)
k (Xk). Clearly, each H(X̃

(n)

k ) → ∞ as n → ∞. Therefore, by (3.2),

we have

Rk(U,Qk) ∼ H(X̃k), 1 ≤ k ≤ N. (3.6)

Here and henceforth, asymptotic relations hold as n → ∞ unless otherwise stated. We drop

index n for convenience.

Fact 3.3 Under Assumptions 3.1 and 3.2,

inf
Qk

dk(U,Qk) ∼
1

12
22h(Xk)2−2Rk , (3.7)

where the infimum is subject to the entropy constraint H(X̃k) ≤ Rk. Further, there also

exists a sequence of entropy-constrained uniform quantizers Qk such that

dk(U,Qk) ∼
1

12
22h(Xk)2−2Rk . (3.8)
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Fact 3.3 is mentioned in [40], and follows from the findings reported in [44] and [45]. The same

result is also rigorously derived in [46]. Note that Assumption 3.1 (alongwith Assumption

3.2) does not give the most general condition but is sufficient for Fact 3.3 to hold. However,

Assumption 3.1 can potentially be generalized in view of more sophisticated results such as

[47].

In view of (3.7) and (3.8), uniform quantizers are asymptotically optimal. Hence, we

choose uniform quantizers

Qk(xk) ∼ Q(xk; ∆k), 1 ≤ k ≤ N, (3.9)

such that

∆ = vect{∆k} = ∆α (3.10)

for some constant α ∈ R
N
+ as ∆ → 0. Therefore, the transform encoding {Qk(X)} now takes

the form

X̃ = Q(UX;∆) = Q(UX; ∆α). (3.11)

In view of (3.9), component MSE (3.5) is given by [46]

dk(∆k) ∼
∆2

k

12
, 1 ≤ k ≤ N, (3.12)

and the overall MSE (3.4) by

D(∆) =
N

∑

k=1

dk(∆k) ∼
1

12

N
∑

k=1

∆2
k. (3.13)

Using (3.12) and noting equality in (3.7), the component bit rate Rk(U, ∆k) in (3.6) is

asymptotically given by

Rk(U, ∆k) ∼ H(X̃k) ∼ h(Xk) − log ∆k, 1 ≤ k ≤ N, (3.14)

which amounts to the average bit-rate

R(U,∆) =
1

N

N
∑

k=1

Rk(U, ∆k) ∼
1

N

N
∑

k=1

[h(Xk) − log ∆k]. (3.15)

Subject to a distortion constraint D(∆) = D, we minimize R(U,∆) with respect to the

encoder (U,∆). For any given U , optimal step sizes {∆k} are equal, and given by the

following well known result, see e.g., [3].
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Result 3.4 Subject to a distortion constraint D, the average bit rate R(U,∆) is minimized

if the quantizer step sizes are equal and given by

∆∗
k =

√

12D

N
, 1 ≤ k ≤ N, (3.16)

independent of unitary transform U .

Note that the optimal ∆∗ is also independent of the source statistics. Using (3.16) in

(3.15), minimization of R(U,∆) subject to the distortion constraint D(∆) = D is now

equivalent to the unconstrained minimization

min
U∈U

N
∑

k=1

h(Xk). (3.17)

The optimization problem in (3.17) is also formulated in [3]. Unlike the optimal ∆, the

optimal U depends on the source statistics.

At this point, let us look into the well known solution of (3.17) for Gaussian X (also, see

[48]). Specifically, consider X ∼ N (0,diag{σ2}). Hence, under transformation X = UX,

we have Xk ∼ N (0, σ2
k), where σ2

k =
∑N

j=1 U2
kjσ

2
j , 1 ≤ k ≤ N . Hence, using the fact that,

for X ∼ N (0, σ2), the differential entropy h(X) = 1
2
log 2πeσ2 is strictly concave in σ2, and

noting
∑N

j=1 U2
kj = 1, we obtain

N
∑

k=1

h(Xk) =
N

∑

k=1

1

2
log 2πeσ2

k ≥
N

∑

k=1

N
∑

j=1

U2
kj

1

2
log 2πeσ2

j =
N

∑

j=1

1

2
log 2πeσ2

j =
N

∑

j=1

h(Xj),

where the inequality follows due to Jensen’s inequality [43]. The equality in the above

inequality holds if and only if {σ2
k} is a permutation of σ2

j}, i.e., U is one of the signed per-

mutation matrices, which form the equivalent class of KLT’s. Note that the strict concavity

of the differential entropy in the variance has been the key in the above optimization.

In this paper, we consider GVSM vectors and identify a concavity property (Property

5.5), similar to the above, in order to derive Theorem 5.7, which states that certain KLT’s

are the optimal U if X is GVSM. However, first we shall generalize the MSE distortion

measure (3.13) to a broader quadratic framework. The optimal transform problem will then

be solved in Sec. 5.
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3.2 Transform Coding under Quadratic Criterion

Consider a design criterion of the form

D(U,∆) ∼ q(U,∆; Ω) :=
N

∑

k=1

[

UΩUT
]

kk
∆2

k, (3.18)

where the weights are constant. Similar quadratic criteria can be found also in [2]. More

general formulations, including the cases, where the weights depend on the input or the

quantized source, are studied as well; see, e.g., in [49]. At this point, we make the following

assumption in order to pose the quadratic problem.

Assumption 3.5 The matrix Ω is diagonal, positive definite and independent of the encoder

(U,∆).

Of course, for the choice Ω = 1
12

I, D(U,∆) is independent of U and reduces to the MSE

criterion (3.13). Observe that the design cost D(U,∆) =
∑N

k=1 dk(U, ∆k) is additive over

component costs

dk(U, ∆k) =
[

UΩUT
]

kk
∆2

k, 1 ≤ k ≤ N. (3.19)

The function q(U,∆; Ω) in (3.18) is quadratic in U as well as in each ∆k, 1 ≤ k ≤ N . Further,

linearity of q(U,∆; Ω) in Ω accommodates a linear combination of competing quadratic

distortion criteria (see Secs. 6.2, 6.3 and 7.3).

Under Assumption 3.1, we minimize the average bit rate R(U,∆) with respect to the

pair (U,∆) subject to a distortion constraint D(U,∆) = D. Thus, by (3.15) and (3.18), we

solve the Lagrangian problem

min
U,∆

[R(U,∆) + ρD(U,∆)] = min
U,∆

[

1

N

N
∑

k=1

[h(Xk) − log ∆k] + ρ

N
∑

k=1

[UΩUT ]kk∆
2
k

]

, (3.20)

where the Lagrange multiplier ρ is chosen to satisfy the design constraint

N
∑

k=1

[UΩUT ]kk∆
2
k = D. (3.21)

Towards solving problem (3.20), we first optimize ∆ keeping U constant.

Lemma 3.6 For a given U ∈ U , the optimal quantizer step sizes in problem (3.20) are given

by

∆∗
k(U) =

√

D

N [UΩUT ]kk

, 1 ≤ k ≤ N. (3.22)
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Proof: Abbreviate ωk =
[

UΩUT
]

kk
, 1 ≤ k ≤ N . The Lagrangian in (3.20) is of the form

∑N
k=1 θk(∆k; U), where

θk(∆k; U) =
1

N
[h(pk) − log(∆k)] + ρ ωk∆

2
k (1 ≤ k ≤ N) (3.23)

is strictly convex in ∆k > 0. Indeed, θ′′k(∆k; U) = 1
N∆2

k
+ ρ ωk > 0. Hence the unique

minimizer of θk(∆k; U), denoted ∆∗
k(U), solves

θ′k(∆
∗
k(U); U) = − 1

N∆∗
k(U)

+ 2ρ ωk∆
∗
k(U) = 0, (3.24)

whence

∆∗
k(U) =

√

1

2Nρ ωk

, 1 ≤ k ≤ N. (3.25)

Now, using (3.25) in (3.21), we have

N
∑

k=1

ωk∆
∗
k
2(U) =

1

2ρ
= D. (3.26)

Finally, using (3.26) in (3.25), the result follows. ¤

Note that, unlike in classical reconstruction (where Ω ∝ I), optimal quantizer step sizes

may, in general, be different. However, for a given U , using Lemma 3.6 in (3.19), the k-th

(1 ≤ k ≤ N) component contributes

[

UΩUT
]

kk
∆∗

k
2(U) =

D

N

to the overall distortion D, i.e., the distortion is equally distributed among the components.

Next we optimize the transform U . Specifically, using (3.22) in problem (3.20), we pose

the unconstrained problem:

min
U∈U

[

N
∑

k=1

h(Xk) +
1

2

N
∑

k=1

log
[

UΩUT
]

kk

]

. (3.27)

In the special case of classical reconstruction (Ω = 1
12

I), (3.27) reduces to problem (3.17).

Since Ω is diagonal by assumption, any signed permutation matrix U is an eigenvector

matrix of Ω. Hence, by Hadamard’s inequality [53], such U minimizes
∑N

k=1 log
[

UΩUT
]

kk
.

Further, if any such U also minimizes
∑N

k=1 h(Xk), then it solves problem (3.27) as well. For

GVSM sources, we show that such minimizing U ’s indeed exist and are certain KLT’s. The

next section formally introduces GVSM distributions.
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4 Gaussian Vector-Scale Mixtures

4.1 Definition

Definition 4.1 A random vector X taking values in R
N is called GVSM if

X
d
= CT (Z ⊙ V) , (4.1)

where C is unitary, the random vector Z ∼ N (0, I), and V ∼ µ is a random vector inde-

pendent of Z and taking values in R
N
+ . The distribution of X is denoted by G(C, µ).

In (4.1), conditioned on V = v, the GVSM vector X is Gaussian. In fact, any Gaussian

vector can be written as X
d
= CT (Z ⊙ v) for a suitable C and v, and, therefore, is a GVSM.

Property 4.2 (PROBABILITY DENSITY) A GVSM vector X ∼ G(C, µ) has pdf

g(x; C, µ) :=

∫

R
N
+

µ(dv) φ(x; CT Diag{v2}C), x ∈ R
N . (4.2)

Proof: Given V = v in (4.1), X ∼ N (0, CT Diag{v2}C). The expression (4.2) follows

by removing the conditioning on V. ¤

In view of (4.2), we call µ the mixing measure of the GVSM. Clearly, a GVSM pdf can not

decay faster than any Gaussian pdf. In fact GVSM pdf’s can exhibit heavy tailed behavior

(see [5] for details). Next we present a bivariate (N = 2) example.

Example: Consider V ∼ µ with mixture pdf

pV(v) =
µ(dv)

dv
= 4λv1v2e

−(v2
1
+v2

2
) + 16(1 − λ)v1v2e

−2(v2
1
+v2

2
), v ∈ R

2
+, (4.3)

parameterized by mixing factor λ ∈ [0, 1]. Note that the components of V are independent

for λ = 0 and 1. Using (4.3) in (4.2), the GVSM vector X
d
= Z⊙V (set C = I in (4.1)) has

pdf

p(x) =

∫

R
N
+

dv pV(v) φ(x; Diag{v2}) (4.4)

= 2λe−
√

2(|x1|+|x2|) + 4(1 − λ)e−2(|x1|+|x2|), x ∈ R
2. (4.5)

See Appendix A for the derivation of (4.5). Note that X is a mixture of two Laplacian

vectors with independent components for λ ∈ (0, 1).
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4.2 Properties of Scalar GSM

A GSM vector X, defined by [5]

X
d
= NV (4.6)

(where N is a zero-mean N -variate Gaussian vector, V is a random variable independent of

N and taking values in R+), is a GVSM. To see this, consider the special case

V
d
= V α (4.7)

in (4.1), where α ∈ R
N
+ is a constant. Clearly, (4.1) takes the form (4.6), where

N = CT (Z ⊙ α) ∼ N
(

0, CT Diag{α2}C
)

. (4.8)

Finally, note that arbitrary N can be written as (4.8) for suitable α and C. In the scalar

case (N = 1), GVSM and GSM variables are, of course, identical. For simplicity, denote the

scalar GSM pdf by g1(x; µ) = g(x; 1, µ).

Our optimality analysis crucially depends on a fundamental property of g1(x; µ), which

is stated below and proven in Appendix B.

Property 4.3 Suppose g1(x; µ) is a non-Gaussian GSM pdf. Then, for each pair (x0, x1),

x1 > x0 > 0, there exists a pair (c, β), c > 0, β > 0, such that g1(x; µ) = cφ(x; β2) at

x ∈ {±x0,±x1}. For such (c, β), g1(x) > cφ(x; β2), if |x| < x0 or |x| > x1, and g1(x) <

cφ(x; β2), if x0 < |x| < x1.

Note that if g1(x; µ) = φ(x, σ2) were Gaussian, we would have c = 1 and β = σ, i.e., cφ(x; β2)

would coincide with g1(x; µ). Further, Property 4.3 leads to the following information theo-

retic inequality, whose proof appears in Appendix C.

Property 4.4 For any γ > 0,

∫

R

dxφ′′(x; γ2) log g1(x; µ) ≥ 0; (4.9)

equality holds if and only if g1(x; µ) is Gaussian.

Property 4.4 gives rise to a key concavity property of GSM differential entropy stated in

Property 5.5, which, in turn, plays a central role in the solution of the optimal transform

problems (3.17) and (3.27) for a GVSM source.
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5 Optimal Transform for GVSM Sources

We assume an arbitrary GVSM source X ∼ G(C, µ). Towards obtaining the optimal trans-

form, first we study the decorrelation properties of X.

5.1 Primary KLT’s

Property 5.1 (SECOND ORDER STATISTICS) If V ∼ µ has finite expected energy

E[VTV], then C decorrelates X ∼ G(C, µ) and E[XTX] = E[VTV].

Proof: By Definition 4.1, X
d
= CT (Z ⊙ V) where Z ∼ N (0, I) is independent of V.

Hence we obtain the correlation matrix of CX as

E
[

CXXT CT
]

= E[ZZT ] ⊙ E[VVT ] = I ⊙ E[VVT ] = Diag{E[V2]}, (5.1)

which shows that C decorrelates X. In (5.1), the first equality holds because C is unitary,

and Z and V are independent. The second equality holds because E[ZZT ] = I. Finally, the

third equality holds because
∣

∣E[VVT ]kj

∣

∣ ≤ E[VTV] < ∞ for any 1 ≤ k, j ≤ N . Taking the

trace in (5.1), we obtain E[XTX] = E[VTV]. ¤

By Property 5.1, C is the KLT of X ∼ G(C, µ). In general, the components of the decor-

related vector CX are not independent. However, the components of CX are independent

if the components of V ∼ µ too are independent. Moreover, all decorrelating transforms are

not necessarily equivalent for encoding. To see this, consider X ∼ G(I, µ) such that the com-

ponents {Xk} are mutually independent, not identically distributed, and have equal second

order moments E[X2
k ] = 1, 1 ≤ k ≤ N . Any U ∈ U is a KLT because E[XXT ] = I. However,

UX has independent components only if U is a signed permutation matrix. This leads to the

notion that not all KLT’s of GVSM’s are necessarily equivalent and to the following concept

of primary KLT’s of X ∼ G(C, µ), a set of unitary transforms that are equivalent to C for

transform coding.

Definition 5.2 A primary KLT of X ∼ G(I, µ) is any transformation U ∈ U such that the

set of marginal densities of UX is, upto a permutation, identical with the set of marginal

densities of X. A primary KLT of XC ∈ G(C, µ) (C 6= I) is any matrix UC, where U is a

primary KLT of X ∼ G(I, µ).
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Clearly, any signed permutation matrix is a primary KLT of X ∈ G(I, µ) irrespective of µ.

Also, for any primary KLT U , we have
∑N

k=1 h(Xk) =
∑N

k=1 h(Xk).

Without loss of generality, we assume C = I and derive the transform U∗ that solves

problem (3.17) for a decorrelated random vector X ∼ G(I, µ). Otherwise, if X ∼ G(C, µ),

C 6= I, find Ŭ∗ that solves problem (3.17) for the decorrelated source CX ∼ G(I, µ), then

obtain U∗ = Ŭ∗C.

5.2 Finite Energy and Continuity of GVSM Density Function

At this point, let us revisit Assumption 3.1. Subject to a finite energy constraint E[VTV] <

∞ on V, the requirement that each h(Xk) < ∞, 1 ≤ k ≤ N , is met for any U ∈ U . To see

this, note, by Property 5.1, that E[XTX] = E[VTV] < ∞. Further, recall that subject to a

finite variance constraint E[Y 2] = σ2 on a random variable Y , h(Y ) attains the maximum
1
2
log 2πeσ2 [43]. Therefore, we have

N
∑

k=1

h(Xk) ≤
N

∑

k=1

1

2
log 2πeE

[

X
2

k

]

≤ N

2
log 2πeE

[

X
T
X

]

=
N

2
log 2πeE

[

XTX
]

< ∞,

implying each h(Xk) < ∞.

Under Assumption 3.1, we also require the continuity of p(x) = g(x; C, µ), a necessary

and sufficient condition for which is stated below and proven in Appendix D.

Property 5.3 (CONTINUITY OF GVSM PDF) A GVSM pdf g(x; C, µ) is continuous if

and only if V ∼ µ is such that

g(0; C, µ) = (2π)−N/2E

[

1/
N
∏

k=1

Vk

]

< ∞.

In summary, the following conditions are sufficient for Assumption 3.1 to hold.

Assumption 5.4 The source X is distributed as G(I, µ) where V ∼ µ satisfies

E[VTV] < ∞, (5.2)

E

[

1/
N
∏

k=1

Vk

]

< ∞. (5.3)
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Clearly, X = UX ∼ G(UT , µ). Hence, by Property 4.2,

p(x) = g(x; UT , µ) =

∫

R
N
+

µ(dv) φ(x; U Diag{v2}UT ). (5.4)

Of course, setting U = I in (5.4), we obtain p(x). Now, marginalizing p(x) in (5.4) to xk

(1 ≤ k ≤ N), we obtain

pk(xk) =

∫

R
N
+

µ(dv) φ(xk; v
2
k) =

∫

R
N
+

µ(dv) φ(xk; v
2
k) =

∫

R+

µk(dvk) φ(xk; v
2
k), (5.5)

where v =
√

(U ⊙ U)v2, the measure µ is specified by µ(dv) = µ(dv), and µk denotes

the k-th marginal of µ. In representation (5.5) of pk, note that µk depends on U in a

complicated manner. To facilitate our analysis, we now make a slight modification to the

GVSM representation (4.2) such that the modified representation of pk makes the dependence

on U explicit.

5.3 Modified GVSM Representation

Suppose

V
d
= σ(W) ∼ µ (5.6)

for some measurable function σ : R
M
+ → R

N
+ and some random vector W ∼ ν taking values

in R
M
+ . Using (5.6), rewrite the GVSM pdf g(x; C, µ) =

∫

R
N
+

µ(dv) φ(x; CT Diag{v2}C)

given in (4.2) in the modified representation

g(x; C, ν, σ2) :=

∫

R
M
+

ν(dw) φ(x; CT Σ(w)C) (5.7)

(which really is a slight abuse of notation), where Σ(w) = Diag{σ2(w)}. Clearly, any pdf

takes the form g(x; C, ν, σ2) if and only if it is GVSM (although for a given ν and C, multiple

σ2’s may give the same pdf g(x; C, ν, σ2)). In view of (5.7), we call ν the modified mixing

measure and σ2 the variance function.

Now, supposing (5.6), write p(x) in (5.4) in the modified form

p(x) = g(x; UT , ν, σ2) :=

∫

R
M
+

ν(dw) φ(x; UΣ(w)UT ). (5.8)

Note
[

UΣ(w)UT
]

kk
=

N
∑

j=1

U2
kjσ

2
j (w), 1 ≤ k ≤ N.
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Hence, marginalizing (5.8) to xk (1 ≤ k ≤ N), and denoting g1(· ; ν, σ2) = g(· ; 1, ν, σ2), we

obtain

pk(xk) = g1

(

xk; ν, σ
2
k

)

, (5.9)

where

σ2
k =

N
∑

j=1

U2
kjσ

2
j . (5.10)

Given σ2, note that the variance function σ2
k is a simple function of U , and the modified

mixing measure ν does not depend on U .

5.4 Optimality under MSE Criterion

In this section, we present the optimal transform U solving problem (3.17). First we need a

key concavity property of the differential entropy h(g1(· ; ν, σ2)), which is stated below and

proven in Appendix E.

Property 5.5 (STRICT CONCAVITY IN VARIANCE FUNCTION) For a given modified

mixing measure ν, suppose V(ν) is a convex collection of scalar variance functions such that,

(i) for any σ2 ∈ V(ν), g1(x; ν, σ2) is continuous and −∞ < h(g1(· ; ν, σ2)) < ∞;

(ii) for any pair (σ′2, σ2) ∈ V2(ν), D(g1(· ; ν, σ′2)‖g1(· ; ν, σ2)) < ∞.

Then h(g1(· ; ν, σ2)) is strictly concave in σ2 ∈ V(ν). If there exists a convex equivalence

class of some σ2 ∈ V(ν) uniquely determining the pdf g1(x; ν, σ2), then the strict concavity

at such σ2 holds only upto the equivalence class.

We do not know whether nontrivial equivalence classes of this type exist. However, their

potential existence has no impact on our analysis.

In further analysis, use the identity variance function σ2(w) = w2, i.e., ν = µ in (5.9).

First, generate the collection Q(µ) of all possible pdf’s pk by varying U through all unitary

matrices. Note that Q(µ) is independent of k. By Assumption 5.4, h(q) is finite for any

q ∈ Q(µ). In order to apply Property 5.5 to problem (3.17), we also make the following

technical assumption.

Assumption 5.6 For any pair of pdf ’s (q′, q) ∈ Q2(µ), D(q′‖q) < ∞.
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Theorem 5.7 Under Assumptions 5.4 and 5.6, and any transformation U ∈ U ,

N
∑

k=1

h(Xk) ≥
N

∑

k=1

h(Xk); (5.11)

equality holds if and only if U is a primary KLT.

Proof: Setting ν = µ, and varying U through unitary matrices in (5.10), generate the

collection V(µ) of σ2
k =

∑N
j=1 U2

kjσ
2
j . Since

∑N
j=1 U2

kj = 1, V(µ) is convex. Further, for such

V(µ), the conditions (i) and (ii) in Property 5.5 hold by assumption. Further, by (5.9), we

obtain

N
∑

k=1

h(pk) =
N

∑

k=1

h

(

g1

(

· ; µ,

N
∑

j=1

U2
kjσ

2
j

))

(5.12)

≥
N

∑

k=1

N
∑

j=1

U2
kjh

(

g1

(

· ; µ, σ2
j

))

, (5.13)

where the inequality follows by noting
∑N

j=1 U2
kj = 1 and strict concavity of h (g1 (· ; µ, σ2)) in

σ2 (Property 5.5), and applying Jensen’s inequality [43]. Further, noting such strict concav-

ity in σ2 holds upto the equivalence class uniquely determining g1 (· ; µ, σ2), the inequality in

(5.13) is an equality if and only if the pdf collection
{

pk = g1

(

· ; µ,
∑N

j=1 U2
kjσ

2
j

)}

is a per-

mutation of the pdf collection
{

pj = g1

(

· ; µ, σ2
j

)}

, i.e., U is a primary KLT. Finally, noting
∑N

k=1 U2
kj = 1 in (5.13), the result follows. ¤

Theorem 5.7 can equivalently be stated as: Any primary KLT U∗ of a GVSM source

X ∼ G(I, µ) solves the optimal transform problem (3.17) under the MSE criterion. In the

special case when X is Gaussian, Assumptions 5.4 and 5.6 hold automatically, and any

KLT is a primary KLT. Thus Theorem 5.7 extends the transform coding theory of Gaussian

sources to the broader class of GVSM sources. Next, we solve optimal transform problem

(3.27) under the broader class of quadratic criteria.

5.5 Optimality under Quadratic Criteria

In this section, we shall assume that Assumptions 5.4 and 5.6 hold. In the last paragraph

of Sec. 3, we noted that any signed permutation matrix U is an eigenvector matrix of the

diagonal matrix Ω, and, by Hadamard’s inequality [53], minimizes
∑N

k=1 log
[

UΩUT
]

kk
. Re-

ferring to Definition 5.2, note that any such U is also a primary KLT of X, and, by Theorem

5.7, minimizes
∑N

k=1 h(Xk). Thus we obtain:
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Lemma 5.8 Any eigenvector matrix U of Ω which is a primary KLT of source X ∼ G(µ, I)

solves problem (3.27). The set of solutions includes all signed permutation matrices.

Without loss of generality, choose U∗ = I as the optimal transform. Setting U = I in

(3.6), we obtain optimal quantizer step sizes {∆∗
k}. We also obtain optimal bit allocation

{R∗
k} and optimal average rate R∗ by setting U = I in (3.14) and (3.15), respectively.

Theorem 5.9 Subject to a design constraint D(U,∆) = D, the optimal transform coding

problem (3.20) is solved by the pair (I,∆∗), where optimal quantizer step sizes {∆∗
k} are

given by

∆∗
k =

[

D

NΩkk

]
1

2

, 1 ≤ k ≤ N. (5.14)

The corresponding optimal bit allocation strategy {R∗
k = Rk(I, ∆∗

k)} and the optimal average

bit rate R∗ = R(I,∆∗) are, respectively, given by

R∗
k =

(

R∗ − 1

N

N
∑

j=1

[

h(Xj) +
1

2
log Ωjj

]

)

+ h(Xk) +
1

2
log Ωkk, 1 ≤ k ≤ N, (5.15)

R∗ =
1

N

N
∑

k=1

[

h(Xk) −
1

2
log

D

NΩkk

]

. (5.16)

Theorem 5.9 extends the Gaussian transform coding theory in two ways:

1. The source generalizes from Gaussian to GVSM;

2. The performance measure generalizes from the MSE to a broader class of quadratic

criteria.

In fact, in the special case of classical reconstruction (Ω = 1
12

I) of a Gaussian vector X ∼
N (0, Diag{σ2}) (recall h(pk) = 1

2
log 2πeσ2

k, 1 ≤ k ≤ N [43]), the expressions (5.15) and

(5.16), respectively, reduce to

R∗
k = R∗ +

1

2
log

σ2
k

[

∏N
j=1 σ2

j

]
1

N

, 1 ≤ k ≤ N, (5.17)

R∗ =
1

2
log

πeN

6D
+

1

2N
log

N
∏

k=1

σ2
k, (5.18)

which gives the classical bit allocation strategy [2].
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Figure 3: Estimation at the decoder.

At this point, we relax the requirement in Assumption 3.5 that Ω be positive definite, and

allow nonnegative definite Ω’s. We only require Ω to be diagonal. Henceforth, we consider

this relaxed version instead of the original Assumption 3.5. Denote by K = {k : Ωkk 6=
0, 1 ≤ k ≤ N}, the set of indices of relevant components. Note the dimensionality of the

problem reduces from N to the number of relevant components |K|. For optimal encoding

of X, choose the transformation U∗ = I, discard the irrelevant components Xk (i.e., set

R∗
k = 0), k /∈ K, and for each k ∈ K, uniformly quantize X̃k = Q(Xk; ∆

∗
k) using the optimal

step size ∆∗
k =

[

D
|K|Ωkk

]
1

2

. Accordingly, compute R∗ and R∗
k, k ∈ K, replacing N by |K| and

taking summations over k ∈ K only instead of 1 ≤ k ≤ N in the expressions (5.16) and

(5.15).

In the rest of our paper, we present estimation/classification applications of the theory.

Specifically, we identify sufficient conditions for our result to apply. We also illustrate salient

aspects of the theory with examples.

6 Estimation from Rate-Constrained Data

Consider the estimation of a random variable Y from data X ∼ P . Denote the corresponding

estimate by l(X). However, as shown in Fig. 3, suppose X is transform coded to X̃ = t(X) =

Q(UX;∆) ∼ P̃ as in (3.11), and the estimator does not have access to X. In a slight abuse

of notation, denote t = (U,∆). In absence of X, the decoder constructs an estimator l̃(X̃)

of Y based on X̃. Our goal is to design (U,∆) minimizing average bit rate R(U,∆) required

for entropy coding of X̃ under an estimation performance constraint D(U,∆) = D. We

demonstrate the applicability of our result to this design.

6.1 Generalized f-Divergence Measure

We consider a broad class of estimation scenarios where generalized f -divergence measures

estimation performance. Take the example of MMSE estimation. Recall that the MMSE
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estimator of random variable Y based on X ∼ P is given by the conditional expectation [52]

l(X) = E [Y |X]

and achieves

MMSE = E
[

Y 2
]

− E
[

l2(X)
]

. (6.1)

Referring to Definition 2.1, here E [l2(X)] = Df (l,P) is the generalized f -divergence with

convex f ◦ l = l2. The MMSE estimator of Y based on compressed observation X̃ = t(X) is

given by

l̃(X̃) = E
[

Y |X̃
]

= E [E [Y |X]| t(X)] = E [l(X)|t(X)] ,

and the corresponding MMSE is given by (6.1) with l(X) replaced by l̃(X̃). Therefore, the

MMSE increase due to transform encoding t = (U,∆) is given by the divergence loss

∆Df ((U,∆); l,P) = E
[

l2(X)
]

− E
[

l̃
2
(X̃)

]

.

More generally, the average estimation error incurred by any estimator l(X) of Y based

on the data X is given by E[d(Y, l(X))], where d is a distortion metric. Similarly, the

corresponding estimator l̃(X̃) = E[l(X)|X̃] based on the compressed data X̃ incurs an average

estimation error E[d(Y, l̃(X̃))]. We use as our design criterion the increase in estimation error

due to transform coding

D(U,∆) = E[d(Y, l̃(X̃))] − E[d(Y, l(X))],

which is given by the divergence loss ∆Df ((U,∆); l,P) for problems satisfying the following

assumption.

Assumption 6.1 Estimation of random variable Y is associated with a triplet (f, l,P) such

that the following hold:

i) E[d(Y, l(X))] = c − Df (l,P) (X ∼ P) for some constant c independent of (f, l,P);

ii) E[d(Y, l̃(X̃))] = c − Df (l̃, P̃) (X̃ ∼ P̃) ;

iii) Regularity condition R(f, l,P) (Definition 2.2) holds.

Clearly, a limited set of distortion metrics d is admissible. In the special case of MMSE

estimation, d is the squared error metric and we have c = E [Y 2] according to (6.1).
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6.2 Estimation Regret Matrix

Next we obtain a high resolution approximation of D(U,∆) = ∆Df ((U,∆); l,P) using Poor’s

Theorem 2.3. The function q is defined in (3.18).

Lemma 6.2 Subject to regularity condition R(f, l,P),

D(U,∆) = ∆Df ((U,∆); l,P) ∼ q(U,∆; Γ(f, l,P)) =
N

∑

k=1

[U Γ(f, l,P) UT ]kk∆
2
k, (6.2)

where

Γ(f, l,P) :=
1

24
EP

[(

∇l ∇T l
)

f ′′ ◦ l
]

(6.3)

is independent of the pair (U,∆).

The proof appears in Appendix F. We call Γ(f, l,P) the estimation regret matrix, because

it determines the performance loss in estimating Y due to transform coding of X ∼ P . In

the special case, where f ◦ l = l2 and l = p (Lebesgue density of P), Γ(f, p, p) gives a scaled

version of the Fisher information matrix for location parameters [52].

The design criterion D(U,∆) given by (6.2) is of the form (3.18). Consequently, we pose

the optimal transform coding problem for estimating Y by setting Ω = Γ(f, l,P) in problem

(3.20). To proceed, we need certain properties of Γ, which are given in the following and

proven in Appendix G.

Lemma 6.3 The matrix Γ(f, l,P) is nonnegative definite. In addition, if both p(x) (Lebesgue

density of P) and l(x) are symmetric in each xk about xk = 0, 1 ≤ k ≤ N , then Γ is diagonal.

Assumption 6.4 The data X follow GVSM distribution P = G(I, µ) such that V ∼ µ

satisfies (5.2) and (5.3), and Assumption 5.6 holds for Q(µ). Further, l(x) is symmetric in

each xk about xk = 0, 1 ≤ k ≤ N .

Of course, Assumption 5.4 holds. Noting the GVSM pdf p(x) is symmetric, by Lemma 6.3,

the second condition implies Γ(f, l,P) is diagonal. Thus the relaxed version of Assumption

3.5 holds for Ω = Γ(f, l,P) (see the penultimate paragraph of Sec. 5.5).

Estimating a random vector Y based on data X amounts to constructing an estimator

lk(X) of each component Yk (1 ≤ k ≤ N) separately. In other words, there are N scalar
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Figure 4: Signal estimation in multiplicative noise.

estimation problems associated with the triplets (f, lk,P), 1 ≤ k ≤ N . By (6.2), the overall

increase in estimation error is given by

D(U,∆) =
N

∑

k=1

∆Df ((U,∆); lk,P) ∼
N

∑

k=1

q(U,∆; Γ(f, lk,P)). (6.4)

Referring to (3.18), recall that q(U,∆; Ω) =
∑N

k=1[U Ω UT ]kk∆
2
k is linear in Ω. Hence the

optimal transform coding problem can be formulated by setting

Ω =
N

∑

k=1

Γ(f, lk,P)

in (3.20).

Next we present a case study of signal estimation in multiplicative noise, where GVSM

vectors are shown to arise naturally.

6.3 Multiplicative Noise Channel

Consider the estimation system depicted in Fig. 4, where the signal vector Y taking values

in R
N
+ is componentwise multiplied by independent noise vector N to generate the vector

X = Y ⊙ N ∼ P . (6.5)

Consider MMSE estimation of Y. Ideally, an MMSE estimator lk(X) = E[Yk|X] of each Yk

(1 ≤ k ≤ N) is obtained based on X. Instead consider transform encoding X̃ = Q(UX;∆) of

X to an average bit rate R(U,∆), and obtain the corresponding estimator l̃k(X̃) = E[Yk|X̃]

of each Yk based on X̃. For each k (1 ≤ k ≤ N), recall that Assumption 6.1 holds subject

to regularity conditions R(f, lk,P). Also recall that the increase in MMSE in the k-th

component due to transform coding is given by ∆Df ((U,∆); lk,P) where f ◦ lk = l2k and, by

(6.4), the overall increase in MMSE is given by D(U,∆) ∼ q(U,∆;
∑N

k=1 Γ(f, lk,P)). Subject
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to a design constraint D(U,∆) = D, the optimal transform encoder (U,∆) is designed

minimizing R(U,∆) in (3.15).

If the noise vector N is a decorrelated GVSM, then the observed vector X is also a

decorrelated GVSM irrespective of the distribution µ of the signal vector Y. Thus our

design potentially applies to the corresponding transform coding problem. To see that X is

indeed GVSM, write N
d
= V⊙Z, where V takes values in R

N
+ and Z ∼ N (0, I) is independent

of V (Definition 4.1). Hence we can rewrite (6.5) as

X
d
= Y ⊙ (V ⊙ Z) = (Y ⊙ V) ⊙ Z,

where Y ⊙ V takes values in R
N
+ and is independent of Z.

For the sake of simplicity, suppose the components of the noise vector N
d
= Z ∼ N (0, I)

are zero-mean i.i.d. Gaussian with variance one. Thus the observed vector X in (6.5) takes

the form

X
d
= Y ⊙ Z ∼ P = G (µ, I) , (6.6)

where Y ∼ µ. Hence, if V ∼ µ satisfies (5.2) and (5.3), then the first requirement in

Assumption 6.4 is satisfied. Further, from (6.6), the k-th (1 ≤ k ≤ N) MMSE estimate lk

can be obtained as

lk(x) = E [Yk|X = x] =

∫

R
N
+

µ(dy) yk φ(x; Diag{y2})
∫

R
N
+

µ(dy) φ(x; Diag{y2}) , (6.7)

which exhibits symmetry in each xk (1 ≤ k ≤ N) about xk = 0. This satisfies the second

requirement in Assumption 6.4.

Lastly, we give a flavor of the regularity condition R(f, lk,P). We fix k = 1. Referring to

Definition 2.2, note f ◦ l1 = l21 is convex and f ′′ = 2 is continuous in the range of l1. Hence

dν = f ′′ ◦ l1 dP = 2 dP. (6.8)

Consequently, condition a) requires continuous differentiability of p. Now, let us revisit the

bivariate (N = 2) example given in Sec. 4, where V played the role of the signal vector Y.

Reproducing p(x) from (4.5) for λ = 1
2
, note that

p(x) = e−
√

2(|x1|+|x2|) + 2e−2(|x1|+|x2|)

exhibits discontinuity in its gradient at x = 0. Hence R(f, l1,P) fails to hold. However, there

exists distribution µ of Y such that the regularity condition R(f, l1,P) holds. Specifically,

consider the polynomial (heavy) tailed pdf

µ(dy)

dy
=

25/2

y6
1y

6
2

+
8

y5
1y

5
2

, y ∈ [1,∞)2. (6.9)
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Figure 5: Binary classification at the decoder.

Although the corresponding p(x) does not admit a closed form expression, verification of

R(f, l1,P) is not difficult and is left to the reader.

7 Binary Classification from Rate-Constrained Data

Finally, we apply our result to binary classification. Consider a test between binary hypothe-

ses:

H0 : X ∼ P0 versus H1 : X ∼ P1,

in a Bayesian framework with Pr[Hi] = πi, i = 0, 1. Assume the computational resources

in the encoder are insufficient for implementing the optimal likelihood ratio test1, but, as

depicted in Fig. 5, are sufficient for constructing X̃ = t(X) = Q(UX;∆) (see (3.11)). The

decoder, in the absence of X, decides between H1 and H0 based on X̃. Next we optimize

the encoder (U,∆) subject to an average bit rate constraint R.

7.1 Regular f-divergence

The usual f -divergence Df (l,P0) (l indicating the likelihood ratio) arises naturally in binary

classification [52]. In particular, the minimum probability of error is achieved by a likelihood

ratio test and is given by

Pe(l,P0) = EP0 [min{π0, π1l}] = 1 − Df (l,P0), (7.1)

where

f ◦ l = 1 − min{π0, π1l} (7.2)

is continuous and convex in l. Recall that the minimum probability of error based on

compressed vector X̃ = t(X) is given by

Pe(l̃, P̃0) = 1 − Df (l̃, P̃0), (7.3)

1Given adequate resources, the encoder would detect the class index based on X and transmit the decision.
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where X̃ ∼ P̃0 under H0 and l̃(x̃) = E[l(X)|t(X) = x̃] is the likelihood ratio of X̃ at x̃.

Subtracting (7.1) from (7.3), the increase in probability error is given by the divergence loss

∆Df (t; l,P0) as defined in (2.6).

However, the function f in (7.2) is not smooth and violates the regularity condition

R(f, l,P0). As a result, Theorem 2.3, does not apply. Our approach is to use f -divergences

Df (l,P0) such that R(f, l,P0) holds, and adopt the divergence loss ∆Df (t; l,P0) as the

design cost. Fortunately, this regularity requirement is not overly restrictive. For instance,

upper as well as lower bounds on Pe can be obtained based on regular f -divergences. Specif-

ically, for a certain sequence {fα}, such a bound can be made arbitrarily tight as α → ∞
[51]. Here the regularity condition R(fα, l,P0) holds for any finite α. Also of particular

interest is the Chernoff (upper) bound on Pe(l,P0). This bound is the negative of a regular

f -divergence such that

f ◦ l = −π1−s
0 πs

1l
s, (7.4)

where s ∈ (0, 1) is the Chernoff exponent. Under certain conditions, there exists s ∈ (0, 1)

such that the Chernoff bound is asymptotically tight as N → ∞ [52].

7.2 Common KLT under Both Hypotheses

Now consider the divergence loss ∆Df ((U,∆); l,P0) due to transform encoding t = (U,∆).

Replacing (f, l,P) by the triplet (f, l,P0) at hand in Lemma 6.2, the high-resolution ap-

proximation is given by

∆Df ((U,∆); l,P0) ∼ q(U,∆; Γ) =
N

∑

k=1

[UΓUT ]kk∆
2
k,

where Γ(f, l,P0) takes the form (6.3). We call this Γ the discriminability regret matrix as it

determines the divergence loss between p0 and p1 due to transform coding. Take the example

of the negative of Chernoff bound. Specifically, using f ◦ l = −π1−s
0 πs

1l
s in (6.3), we obtain

Γ =
s(1 − s)

24
π1−s

0 πs
1E0

[(

∇l(X) ∇T l(X)
)

ls−2(X)
]

, s ∈ (0, 1). (7.5)

Equivalently, we can consider the Chernoff distance − log E0 [ls(X)], which gives the negative

exponent in Chernoff bound. By straightforward computation, the loss in Chernoff distance

also takes the quadratic form q(U,∆; Γ) (see (3.18) for an expression of q) [37], where

Γ =
s(1 − s)

24

E0

[(

∇l(X) ∇T l(X)
)

ls−2(X)
]

E0 [ls(X)]
. (7.6)
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Note that the Γ in (7.5) scales to the Γ in (7.6), which of course does not take the form

(6.3) exactly. More importantly, the latter Γ still conveys the same discriminability regret

information between p0 and p1 as the former Γ. In the special case where the conditional dis-

tributions are Gaussian, P i = N (0, Σi), with diagonal covariance matrices Σi = Diag{(σi)
2},

i = 0, 1, the matrix Γ in (7.6) is also diagonal with diagonal entries

Γkk =
s(1 − s)

24

(

(σ0
k)

2 − (σ1
k)

2
)2

(σ0
k)

2
(σ1

k)
2
(

s (σ0
k)

2
+ (1 − s) (σ1

k)
2
) , 1 ≤ k ≤ N. (7.7)

For some k, Γkk = 0 if and only if σ0
k = σ1

k. In other words, since there is no discriminability

at all, there is no scope for further degradation.

In order to optimize the transform encoder (U,∆), set Ω = Γ in (3.18). We make the

following assumption so that Theorem 5.9 gives the optimal design.

Assumption 7.1 Under Hi, i = 0, 1, X ∼ P i = G(I, µi). Further, for each i, V ∼ µi

satisfies (5.2) and (5.3). Moreover, the mixture µ = π0µ0 + π1µ1 is such that Assumption

5.6 holds for Q(µ).

Removing class conditioning, the source X follows the mixture distribution

π0P0 + π1P1 = G(I, π0µ0 + π1µ1) = G(I, µ),

and V ∼ µ satisfies (5.2) and (5.3). Hence Assumption 5.4 holds. Further, p0(x) and p1(x)

are both symmetric, hence so is the likelihood ratio l(x) = p1(x)/p0(x). Therefore, by Lemma

6.3, the matrix Γ(f, l,P0) is diagonal. This satisfies the relaxed version of Assumption 3.5

(see the penultimate paragraph of Sec. 5.5) for Ω = Γ(f, l,P0). Finally, by an earlier

argument, replacing I in Assumption 7.1 by any C ∈ U does not increase generality. Thus,

in effect, we assume X is decorrelated by a common KLT C under both H0 and H1.

7.3 Example: Joint Classification/Reconstruction

As mentioned earlier, our analytical framework allows the flexibility to accommodate compet-

ing criteria. We highlight this aspect of our design using a joint classification/reconstruction

paradigm where classification accuracy is traded off against reconstruction error.

Consider the usual transform encoding X̃ = Q(UX,∆) at the encoder. As depicted in

Fig. 6, the decoder simultaneously decides between classes H0 and H1, and reconstructs
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Figure 6: Joint classification/reconstruction at the decoder.

X to X̂ based on the encoded vector X̃. We assume Gaussian conditional distributions

X ∼ P i = N (0, Σi) under Hi, i = 0, 1. Due to Assumption 7.1, the covariance matrices

Σi’s are diagonal. We measure classification accuracy by Chernoff distance, loss in which

takes the asymptotic expression q(U,∆; Γ) =
∑N

k=1

[

UΓUT
]

kk
∆2

k, where Γ is given by (7.7).

Moreover, measuring reconstruction fidelity by the MSE q(U,∆; 1
12

I) =
∑N

k=1
1
12

∆2
k, we

adopt as the design criterion, the linear combination

D(U,∆) = (1 − λ) q(U,∆; Γ) + λ q(U,∆;
1

12
I) =

N
∑

k=1

[

UΩUT
]

kk
∆2

k,

where

Ω = (1 − λ)Γ + λ
1

12
I

and λ ∈ [0, 1] is a weighting factor. Note λ = 0 and λ = 1 correspond to the respective

cases where only Chernoff loss and only MSE are used for optimization. We vary the mixing

factor λ and find a particular value that achieves a desired tradeoff. The bit rate is computed

based on the mixture distribution

X ∼ P = π0P0 + π1P1 = π0N (0, Σ0) + π1N (0, Σ1).

We minimize D(U,∆) subject to an average bit-rate constraint R(U,∆) = R in the high-

resolution regime. By Theorem 5.9, (U,∆) = (I,∆∗) gives an optimal transform encoder.

Further, (5.15) and (5.16) give the bit allocation strategy and the average bit rate, re-

spectively. The differential entropies h(Xk), 1 ≤ k ≤ N , are computed using MATLAB’s

numerical integration routine.

We assume π0 = π1 = 1
2
, and choose Chernoff exponent s = 1

2
, i.e., the Chernoff distance

now coincides with the Bhattacharyya distance [52]. We also choose an average rate R = 3

bits per component, which corresponds to a high-resolution regime. The dimensionality of

the vectors is N = 64. In Fig. 7 (a), the conditional standard deviations {σi
k}, are plotted
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Figure 7: Average bit rate R = 3 bits per component: (a) Component standard deviations,

(b) Tradeoff between Chernoff loss and MSE, (c) Optimal quantizer step sizes, (d) Optimal

bit allocation, (e) Component Chernoff loss, and (f) Component MSE.

31



under each hypothesis Hi, i = 0, 1. On the same figure, we also plot the mixture standard

deviations σk =

√

1
2

(

(σ0
k)

2
+ (σ1

k)
2
)

, 1 ≤ k ≤ 64. In Fig. 7(b), the loss in Chernoff distance

is traded off against the MSE. Both the MSE corresponding to λ = 0 and the Chernoff loss

corresponding to λ = 1 are substantial. But attractive tradeoffs are obtained for intermediate

values of λ, e.g., λ = 0.05. In Fig. 7(c)–(f), we plot optimal quantizer step sizes, optimal bit

allocation, component-wise loss in Chernoff distance and component-wise MSE, respectively,

for λ = 0, 0.05 and 1.

Quantizer step sizes and the bit allocation exhibit significant variation when optimized

based on Chernoff distance alone (λ = 0). Corresponding to the components with nearly

equal competing conditional variances, the quantizer step sizes tend to be large and the

number of allocated bits small2. Conversely, when competing variances are dissimilar, the

step sizes are small and the number of allocated bits large. Further, the Chernoff loss is

equally distributed among the components, whereas MSE (which is 1
12

times the square of

the corresponding step size) varies significantly across different coefficients.

For a pure MSE criterion (λ = 1), the optimal step sizes are equal as is MSE across

the components. More bits are allocated to the coefficients with larger mixture variance.

Further, the Chernoff loss shows significant variation across the components. For λ = 0.05,

on the other hand, the amount of variation in different quantities is usually between the two

extremes corresponding to λ = 0 and λ = 1. Overall, the Chernoff loss is marginally more

than that for λ = 0 whereas the MSE is marginally higher than that for λ = 1, providing a

good tradeoff between these criteria.

8 Conclusion

High-rate optimality of KLT is well known for variable-rate transform coding of Gaussian vec-

tors, and follows because the decorrelated components are mutually independent. Motivated

by such optimality, early research modeled natural signals as Gaussian (see, e.g., [2]). How-

ever, recent empirical studies show that natural signals such as natural images exhibit strong

nonlinear dependence and non-Gaussian tails [5]. Such studies also observe that one wavelet

transform approximately decorrelates a broad class of natural images, and propose wavelet

image models following GSM distribution. In this paper, we have extended GSM models to

2According to Fig. 7(d), the allocated number of bits might be negative (see component 5), which is

physically impossible. For such components, quantizer step sizes are very large, and the high-resolution

approximations used in the derivation no longer hold.
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GVSM, and showed optimality of certain KLT’s. Applied to the natural images, our result

implies near optimality of the decorrelating wavelet transform among all linear transforms.

The theory applies to classical reconstruction as well as various estimation/classification

scenarios where the generalized f -divergence measures performance. For instance, we have

considered MMSE estimation in a multiplicative noise channel, where GVSM data have been

shown to arise when the noise is GVSM. Further, closely following empirical observations, a

class-independent common decorrelating transform is assumed in binary classification, and

the framework has been extended to include joint classification/reconstruction systems. In

fact, the flexibility of the analysis to accommodate competing design criteria has been il-

lustrated by trading off Chernoff distance measures of discriminability against MSE signal

fidelity.

The optimality analysis assumes high resolution quantizers. Further, under the MSE

criterion, the optimal transform minimizes the sum of differential entropies of the components

of the transformed vector. When the source is Gaussian, the KLT makes the transformed

components independent and minimizes the aforementioned sum. On the contrary, when

the source is GVSM, certain KLT’s have been shown to minimize the above sum, although

the decorrelated components are not necessarily independent. The crux of the proof lies in

a key concavity property of the differential entropy of the scalar GSM. The optimality also

extends to a broader class of quadratic criteria under certain conditions.

The aforementioned concavity of the differential entropy is a result of a fundamental

property of the scalar GSM: Given a GSM pdf p(x) and two arbitrary points x1 > x0 >

0, there exist a constant c > 0 and a zero-mean Gaussian pdf φ(x) such that p(x) and

cφ(x) intersect at x = x0 and x1. For such pair (c, φ), the function cφ(x) lies below p(x)

in the intervals [0, x0) and (x1,∞), and above in (x0, x1). This property has potential

implications beyond transform coding. Specifically, we conjecture that given an arbitrary

pdf p(x), the abovementioned property holds for all admissible pairs (x0, x1) if and only if

p(x) is a GSM pdf. If our conjecture is indeed true, then this characterization of the GSM

pdf is equivalent to the known characterizations by complete monotonicity and positive

definiteness [5, 19, 6, 7].
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A Derivation of (4.5)

Using (4.3) in (4.4), we obtain

p(x) =

∫

R
2
+

dv φ(x; Diag{v2})
[

4λv1v2e
−(v2

1
+v2

2
) + 16(1 − λ)v1v2e

−2(v2
1
+v2

2
)
]

= 4λ
1

2π

∫

R+

dv1 exp

(

− x2
1

2v2
1

− v2
1

)
∫

R+

dv2 exp

(

− x2
2

2v2
2

− v2
2

)

+16(1 − λ)
1

2π

∫

R+

dv1 exp

(

− x2
1

2v2
1

− 2v2
1

)
∫

R+

dv2 exp

(

− x2
2

2v2
2

− 2v2
2

)

. (A.1)

Making use of the known integral (3.325 of [54])
∫

R+

dv exp

(

−a2

v2
− b2v2

)

=

√
π

b
exp(−2ab), a ≥ 0, b > 0,

for the pairs

(a, b) =

(

1√
2
|x1|, 1

)

,

(

1√
2
|x2|, 1

)

,

(

1√
2
|x1|,

√
2

)

and

(

1√
2
|x2|,

√
2

)

in (A.1), we obtain (4.5).

B Proof of Property 4.3

Solving the simultaneous equations

g1(xi; µ) = cφ(xi; β
2), i = 0, 1, (B.1)

using expression (2.2) of φ, obtain

β =

√

√

√

√

x2
1 − x2

0

2 log g1(x0;µ)
g1(x1;µ)

, (B.2)

c =
√

2πβ exp

(

x2
0

2β2

)

g1(x0; µ). (B.3)

Using g1(x0; µ) > g1(x1; µ) (g1(x; µ) is decreasing in (0,∞)) in (B.2) and (B.3), we obtain

β > 0 and c > 0. By symmetry of both g1(x; µ) and φ(x; β2) about x = 0, g1(x; µ) = cφ(x; β2)

at x ∈ {±x0,±x1}. This proves the existence of the pair (c, β).

Now define the function

ψ(x) := exp

(

x2

2β2

)

[

g1(x; µ) − cφ(x; β2)
]

. (B.4)
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Clearly,

sgn[ψ(x)] = sgn[g1(x; µ) − cφ(x; β2)]. (B.5)

Using expression (4.2) of g1(x; µ) and (2.2) of φ(x; β2) in (B.4), we obtain

ψ(x) =

∫

A>

µ(dv)
1√

2πv2
exp

(

x2

2

(

1

β2
− 1

v2

))

+
1

√

2πβ2
[µ(A=) − c]

+

∫

A<

µ(dv)
1√

2πv2
exp

(

−x2

2

(

1

v2
− 1

β2

))

, (B.6)

where

Aop = {v ∈ R+ : v op β}, op ∈ {>,<, =}.

In (B.6), note if µ(A>) > 0, the first integral is strictly increasing in x > 0, and if µ(A<) > 0,

the second integral is strictly decreasing in x > 0. Hence ψ(x) has at most four zeros. In

fact, in view of (B.5), ψ(x) inherits the zeros of g1(x; µ) − cφ(x; β2), and, therefore, has

exactly four zeros given by {±x0,±x1}, which are all distinct. Consequently, ψ(x) changes

sign at each zero. Now, observe that, as x → ∞, the first integral in (B.6) increases without

bound whereas the second integral is positive, implying

lim
x→∞

ψ(x) = ∞. (B.7)

Hence, in view of (B.5), the result follows. ¤

C Proof of Property 4.4

Lemma C.1 For any γ > 0,

sgn [φ′′(x; γ2)] = 0, ∀ |x| = x0, x1,

= 1, ∀ 0 ≤ |x| < x0, |x| > x1,

= −1, ∀ x0 < |x| < x1.

(C.1)

where x1 =
√

(

3 +
√

6
)

γ2, and x0 =
√

(

3 −
√

6
)

γ2.

Proof: By expression (2.4), the polynomial f(x) = x4 − 6γ2x2 +3γ4 determines the sign

of φ′′(x, γ2). Since the zeros of f(x) occur at

x = ±
√

(

3 ±
√

6
)

γ2,
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and are all distinct, f(x) changes sign at each zero crossing. Finally, noting

lim
x→∞

f(x) = ∞,

the result follows. ¤

At this point, we need the following technical condition that allows interchanging order

of integration and differentiation.

Fact C.2 Suppose ξ(x) is a function such that |ξ(x)| ≤ |f(x)| for some polynomial f(x) and

all x ∈ R. Then
∫

R

dxφ′′(x; γ2) ξ(x) =
∂2

∂(γ2)2

∫

R

dxφ(x; γ2) ξ(x).

Proof: By the expressions (2.3) and (2.4) of φ′(x; γ2) and φ′′(x; γ2), respectively, and the

assumption on ξ(x), each of |φ′(x; γ2) ξ(x)| and |φ′′(x; γ2) ξ(x)| is dominated by a function

of the form |f̆(x)|φ(x; γ2), where f̆(x) is a polynomial. Further, due to exponential decay of

φ(x; γ2) in x, |f̆(x)|φ(x; γ2) integrates to a finite quantity. Hence, applying the dominated

convergence theorem [50], the result follows. ¤

For instance, setting ξ(x) = 1 in Fact C.2, we obtain

∫

R

dx φ′′(x; γ2) =
∂2

∂ (γ2)2

[
∫

R

dxφ(x; γ2)

]

=
∂2

∂ (γ2)2 [1] = 0. (C.2)

Lemma C.3 For any γ > 0 and any β > 0,

∫

R

dxφ′′(x; γ2) log φ(x; β2) = 0. (C.3)

Proof: By expression (2.2), we have

log φ(x; β2) = − log
√

2πβ2 − x2

2β2
. (C.4)

Using (C.4) and noting
∫

R
dxφ(x; γ2) = 1 and

∫

R
dx x2φ(x; γ2) = γ2, we obtain

∫

R

dx φ(x; γ2) log φ(x; β2) = − log
√

2πβ2 − γ2

2β2
. (C.5)

Differentiating (C.5) twice with respect to γ2, we obtain

∂2

∂(γ2)2

∫

R

dx φ(x; γ2) log φ(x; β2) = 0. (C.6)
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Setting ξ(x) = log φ(x; β2) (which, by (C.4), is a polynomial), and applying Fact C.2 to the

left hand side of (C.6), the result follows. ¤

Proof of Property 4.4: By Property C.3, equality holds in (4.9) for any Gaussian

g1(x; µ). It is, therefore, enough to show that (4.9) holds with a strict inequality for any

non-Gaussian g1(x; µ). Choose x1 =
√

(

3 +
√

6
)

γ2, and x0 =
√

(

3 −
√

6
)

γ2. Given such

(x0, x1), obtain the pair (c, β) from Lemma 4.3. Hence, by Lemmas 4.3 and C.1, we have

sgn[g1(x; µ) − cφ(x; β2)] = sgn[φ′′(x; γ2)]. (C.7)

Noting log x is monotone increasing in x > 0, and both g1(x; µ) and cφ(x; γ2) take positive

values, we have

sgn[g1(x; µ) − cφ(x; β2)] = sgn
[

log g1(x; µ) − log cφ(x; β2)
]

. (C.8)

Now, multiplying the right hand sides of (C.7) and (C.8), we obtain

φ′′(x; γ2)
[

log g1(x; µ) − log cφ(x; β2)
]

> 0

almost everywhere, which, upon integration with respect to x, yields
∫

R

dxφ′′(x; γ2)
[

log g1(x; µ) − log cφ(x; β2)
]

> 0. (C.9)

Rearranging, we finally obtain
∫

R

dxφ′′(x; γ2) log g1(x; µ) > log c

∫

R

dxφ′′(x; γ2) +

∫

R

dxφ′′(x; γ2) log φ(x; β2). (C.10)

In the right hand side of (C.10), the first term vanishes by (C.2) and the second term vanishes

by Property C.3. ¤

D Proof of Property 5.3

Proof: Let Λ = Diag{v2}. Noting

φ(x; CT ΛC) ≤ φ(0; CT ΛC) =
1

(2π)N/2 ∏N
k=1 vk

, (D.1)

we have

g(x; C, µ) =

∫

R
N
+

µ(dv) φ(x; CT ΛC) ≤
∫

R
N
+

µ(dv) φ(0; CT ΛC) = g(0; C, µ), (D.2)
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where

g(0; C, µ) =

∫

R
N
+

µ(dv)
1

(2π)N/2 ∏N
k=1 vk

=
1

(2π)N/2
E

[

1/
N
∏

k=1

Vk

]

. (D.3)

(‘if’ part) If E
[

1/
∏N

k=1 Vk

]

< ∞, combining (D.2) and (D.3), we obtain

g(x; C, µ) ≤ g(0; C, µ) < ∞. (D.4)

Since g(x; C, µ) is bounded, by the dominated convergence theorem [50], we obtain

lim
‖h‖→0

g(x+h; C, µ) =

∫

R
N
+

µ(dv) lim
‖h‖→0

φ(x+h; CT ΛC) =

∫

R
N
+

µ(dv) φ(x; CT ΛC) = g(x; C, µ),

(D.5)

which proves continuity of g(x; C, µ).

(‘only if’ part) Continuity of g(x; C, µ) implies g(0; C, µ) = 1

(2π)N/2 E
[

1/
∏N

k=1 Vk

]

< ∞.

¤

E Proof of Property 5.5

Property 4.4 implies
∂2

∂ (γ2)2

∫

R

dxφ(x; γ2) log g1(x) ≥ 0 (E.1)

for any γ > 0 and any continuous g1(x; ν, σ2). (Here and henceforth, substitute g1(x; ν, σ2)

for g1(x; µ) while referring earlier results.) To see this, fix the pair (x0, x1) in Lemma 4.3, and

obtain the corresponding pair (c, β). As x → ∞, we have g1(x; ν, σ2) > cφ(x; β2), implying

| log g1(x; ν, σ2)| < | log cφ(x; β2)| (E.2)

(because g1(x; ν, σ2) → 0). In view of representation (2.2), note that log cφ(x; β2) is a

polynomial in x. Hence, in view of (E.2), a polynomial f(x) can be constructed for any

continuous g1(x; ν, σ2) such that

| log g1(x; ν, σ2)| ≤ |f(x)| for all x ∈ R. (E.3)

Therefore, setting ξ(x) = log g1(x; ν, σ2), and applying Fact C.2 to the left hand side of (4.9),

we obtain (E.1).
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For the pair (σ′2, σ2) ∈ V2(ν), define the functional

θ(ν, σ′2, σ2) := −h(g1(· ; ν, σ′2)) − D(g1(· ; ν, σ′2)‖g1(· ; ν, σ2)) (E.4)

=

∫

R

dx g1(x; ν, σ′2) log(g1(x; ν, σ2)) (E.5)

=

∫

R

dx

∫

R
N
+

ν(dw) φ(x; σ′2(w)) log(g1(x; ν, σ2)). (E.6)

Here (E.5) follows by definitions of h(·) and D(· ‖·). By assumption, verify from (E.4) that

−∞ < θ(ν, σ′2, σ2) < ∞. (E.7)

Hence, by Fubini’s Theorem [50], the order of integration in (E.6) can be interchanged to

obtain

θ(ν, σ′2, σ2) =

∫

R
N
+

ν(dw)

∫

R

dx φ(x; σ′2(w)) log(g1(x; ν, σ2)) (E.8)

Now, by (E.1), the inner integral in (E.8) is convex in σ′2(w), implying θ(ν, σ′2, σ2) is (es-

sentially) convex in σ′2. Therefore,

−θ(ν, σ2
λ, σ

2
λ) ≥ −(1 − λ)θ(ν, σ2

0, σ
2
λ) − λθ(ν, σ2

1, σ
2
λ) (E.9)

for arbitrary pair (σ2
0, σ

2
1) ∈ V2(ν) and any convex combination σ2

λ = (1− λ)σ2
0 + λσ2

1, where

λ ∈ (0, 1). Adding (1 − λ)θ(ν, σ2
0, σ

2
0) + λθ(ν, σ2

1, σ
2
1) to both sides of (E.9), and noting

−θ(ν, σ2, σ2) = h(g1(· ; ν, σ2)),

θ(ν, σ′2, σ′2) − θ(ν, σ′2, σ2) = D(g1(· ; ν, σ′2)‖g1(· ; ν, σ2))

from (E.4), we obtain

h(g1(· ; ν, σ2
λ)) − (1 − λ)h(g1(· ; ν, σ2

0)) − λh(g1(· ; ν, σ2
1))

≥ (1 − λ)D(g1(· ; ν, σ2
0)‖g1(· ; ν, σ2

λ)) + λD(g1(· ; ν, σ2
1)‖g1(· ; ν, σ2

λ))

≥ 0. (E.10)

Here (E.10) holds by nonnegativity of D(· ‖ ·) [43]. This inequality is an equality if and only

if

g1(x; ν, σ2
0) = g1(x; ν, σ2

1) = g1(x; ν, σ2
λ) for all x ∈ R.

Hence the result. ¤

39



F Proof of Lemma 6.2

Write ∆ = ∆α as in (3.10), where α ∈ R
N . Choose

s(x) = Diag{1/α}Ux (F.1)

so that t(x) = Q(s(x); ∆1) = Q(Ux;∆). Since s(x) is linear, if R(f, l ◦ s,P ◦ s) holds, then

so does R(f, l,P), and vice versa. From (F.1), the Jacobian of s(x) is given by

J = UT Diag{1/α}, (F.2)

which is independent of x. Inverting J in (F.2), we obtain J−1 = Diag{α}U . Replacing in

(2.8), we obtain

∆Df ((U,∆); l,P) ∼ 1

24
∆2EP

[

‖α ⊙ (U∇l)‖2f ′′ ◦ l
]

=
1

24
∆2 tr

[

(ααT ) ⊙
(

UEP
[(

∇l ∇T l
)

f ′′ ◦ l
]

UT
)]

=
1

24

N
∑

k=1

∆2α2
k

[

UΓUT
]

kk
,

which gives the desired result. ¤

G Proof of Lemma 6.3

The first statement immediately follows from the definition (6.3) of Γ and the convexity of

f . Now, if l(x) is symmetric in xk about xk = 0, then ∂l(x)
∂xk

is antisymmetric in xk about

xk = 0. Note, from (6.3), that

Γjk = E

[

∂l(X)

∂Xj

∂l(X)

∂Xk

f ′′ ◦ l(X)

]

, 1 ≤ j, k ≤ N. (G.1)

The quantity inside the square braces in (G.1) is antisymmetric in Xk about Xk = 0, if

j 6= k. Hence, by symmetry of p(x) in xk, we obtain Γjk = 0, j 6= k, which proves the second

statement. ¤
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