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Abstract—In this letter, we obtain a generalized expression for
the optimal number of cognitive users (CUs) for the K-out-of-
M rule that minimizes the Bayes risk at the fusion center (FC)
over noisy control channels. We show many existing and new
are special cases of the proposed solution. Numerical results are
presented using energy detector. However, the expressions for
optimal M obtained in this letter are applicable to any detector
used in cooperative spectrum sensing.

Index Terms—Cognitive radio, Bayes risk function, noisy
control channel, number of cognitive users.

I. INTRODUCTION

Cognitive radio (CR) has been proposed to overcome the
spectrum shortage problem and the spectrum underutilization
of current radio spectrum by allowing the cognitive users
(CUs) to access spectrum of the licensed or primary user (PU)
under sufficient protection to the PU [1], [2]. To do so, the
CUs must continuously sense to identify the free spectrum
and must be able to detect the presence of the PU signal [3].
Well-known detectors such as conventional energy detector
(ED) [4], improved energy detector (IED) [5], etc., have been
studied to determine the presence of the PU.

However, spectrum sensing using one CU may results in
poor detection performance due to multipath and shadowing
and may results in interference to the PU. In order to improve
the reliability in detecting the PU signal, cooperative spectrum

sensing (CSS) [6], [7] can be employed. The idea of CSS is
to use multiple CUs and combine their observations at the
fusion center (FC) using K-out-of-M rule [8]. The K-out-of-
M rule decides the presence of PU if at least K out of M CUs
must detect the PU signal. However, in practice, the control
channels between the CUs and the FC are noisy [9], [10]. This
will deteriorate the reliability of decisions transmitted from
the CUs to the FC. A detailed survey on spectrum sensing
and CSS which also highlights the research challenges and
unsolved problems are presented in [11], [12].

Most of the recent work focuses on optimizing K of
the K-out-of-M rule aiming for different objectives such as
minimizing the Bayes risk function [8, p. 94], minimizing the
total error rate [13], [14], maximizing the energy efficiency
[15]. In [16], optimal K is found to maximize the CUs network
throughput while satisfying protection constraint to the PU. In
[17], an algorithm for the optimal K is presented to maximize
the global detection probability subject to a constraint on
global false alarm probability. In [18], the optimal K and the
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optimal detection threshold of the multi-hop CR network are
derived. Some studies on optimizing the M are as follows;
the optimum value of M that minimizes the total error rate
for (i) OR rule is obtained in [19], [20] (ii) for AND and (iii)
MAJORITY rule in [21]. In [15], the optimal M to maximize
the energy efficiency is obtained through an exhaustive search
algorithm. In this letter, we formulate the general optimization
problem (GOP) for finding the optimal M that minimizes the
Bayes risk function and then we show that most existing works
[19]–[22] are special cases of GOP. Finally, we present the
solutions for GOP and its special cases.

The outline of this paper is as follows. In Section II,
we describe the system model for the CSS. In Section III,
we formulate the GOP and its spacial cases for finding the
optimal M . In Section IV, we present the solutions for the
formulated problems. Section-V presents the numerical results
using energy detector followed by conclusions in Section VI.

II. SYSTEM MODEL

We consider a centralized CSS model [14] composed of M
CUs, a PU and a FC. Each CU conducts the spectrum sensing
over the sensing channel and makes a binary decision regard-
ing the presence of PU. Let H0 and H1 denote the hypotheses
for the absence and presence of the PU, respectively. The local
false alarm and missed detection probabilities of the kth CU
are given, respectively, by

P k
f = Pr {dk = 1|H0} , P k

m = Pr {dk = 0|H1} ,

where dk ∈ {0, 1} is the binary decision of the kth CU
indicating the hypotheses H0 and H1, respectively. The local
decisions from M CUs are transmitted to the FC over noisy
control channels. The FC makes the final decision on the status
of the PU by adopting the K-out-of-M rule [8]. Following
[13], we assume that the CR network is homogenous, this
implies P k

f = Pf , P
k
m = Pm, ∀k. Let P k

e denote the error
probability of a control channel between the kth CU and the
FC. We assume that all control channels are identical, which
implies P k

e = Pe. Under these assumptions, the global false
alarm and missed detection probabilities for the K-out-of-M
rule are given, respectively, by [10]

PF (K,M) = Pr (D = 1|H0) =
M
∑

i=K

(

M

i

)

P i
fe (1− Pfe)

M−i
,

(1)

PM (K,M) = Pr (D = 0|H1)

= 1−
M
∑

i=K

(

M

i

)

(1− Pme)
i
PM−i
me , (2)
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where D ∈ {0, 1} is the final decision drawn by the FC that
the PU is absent and present, respectively and

Pfe = Pf (1− Pe) + (1− Pf )Pe, (3)

Pme = Pm (1− Pe) + (1− Pm)Pe. (4)

The Bayes risk function for the K-out-of-M rule is given
by [8, eq. 2.2.1]

R (K,M) =
1

∑

m=0

1
∑

n=0

βmnPn Pr (D = m|Hn)

= βFPF (K,M) + βMPM (K,M) + βC ,(5)

where βF = P0 (β10 − β00), βM = P1 (β01 − β11) and βC =
β00P0 + β11P1. βmn, ∀m,n ∈ {0, 1}, is the cost incurred by
declaring the final decision D = m by the FC when the true
hypothesis about the PU is Hn, and where P0 and P1 denote
the a priori probabilities of the PU being absent and present,
respectively.

III. PROBLEM FORMULATION

The general optimization problem (GOP) can now be for-
mulated as

minimize
M

R (K,M)

subject to C1 : Pfe = P 0
fe,

C2 : Pme = P 0
me,

C3 : K = K0,

(6)

where R (K,M) is given in (5). P 0
fe, P 0

me and K0 are the
equality constraints.

A. Special Cases of GOP

Now we present special cases of the GOP.

• GOP-I: Substituting β10 = β01 = 1 and β00 = β11 =
0 in (6), we get the optimization problem for finding
the optimal M that minimizes the average probability of

error of the K-out-of-M rule.

• GOP-II: Substituting β10 = β01 = 2, β00 = β11 = 0 and
P0 = P1 = 0.5 in (6), we get the optimization problem
for finding the optimal M that minimizes the total error

rate of the K-out-of-M rule [22].

• GOP-III: Substituting β10 = β01 = 2, β00 = β11 = 0,
P0 = P1 = 0.5 and K = 1 in (6), we get the optimization
problem for finding the optimal M that minimizes the
total error rate for the OR rule [19], [20].

• GOP-IV: Substituting β10 = β01 = 2, β00 = β11 = 0,
P0 = P1 = 0.5 and K = M in (6), we get the
optimization problem for finding the optimal M that
minimizes the total error rate for the AND rule [21].

• GOP-V: Substituting β10 = β01 = 2, β00 = β11 = 0,
P0 = P1 = 0.5 and K = ⌈M/2⌉ in (6), we get the
optimization problem for finding the optimal M that
minimizes the total error rate of the MAJORITY rule
[21].

Note that GOP-II to GOP-V have been addressed in literature
while GOP-I is a new optimization problem. Also note that
the minimization of total error rate and average probability

of error result in different optimal solutions.

IV. SOLUTION OF THE GOP

Theorem 1. The solution for GOP in (6), denoted as M∗

R
, is

given by

M∗

R
=









Kβ +K − 1 +
ln P1(β01−β11)

P0(β10−β00)

ln
1−Pfe

Pme









, β =
ln 1−Pme

Pfe

ln
1−Pfe

Pme

,

(7)
where ⌈.⌉ represents the ceiling function and Pfe, Pme are

given by (3), (4) respectively.

Proof: The optimal M that satisfies (6) can be obtained
by setting the difference of R with respect to M and equating
to zero. i.e,

R (K,M + 1)−R (K,M) = 0.

⇒ βF (PF (K,M + 1)− PF (K,M))+

βM (PM (K,M + 1)− PM (K,M)) = 0. (8)

To further simplify (8), we consider a function F in terms of

P (K,M) =
M
∑

i=K

(

M
i

)

αi (1− α)
M−i which is given by

F (M) = P (K,M + 1)− P (K,M)

=
M+1
∑

i=K

(

M + 1

i

)

αi (1− α)
M−i+1−

M
∑

i=K

(

M

i

)

αi (1− α)
M−i

= αM+1+
M
∑

i=K

[(

M + 1

i

)

αi (1− α)
M−i+1 −

(

M

i

)

αi (1− α)
M−i

]

.

(9)
Substituting

(

M+1
i

)

=
(

M
i

)

+
(

M
i−1

)

into (9) and rearranging,
we have

F (M) = αM+1 +
M
∑

i=K

(

M

i− 1

)

αi (1− α)
M−i+1

+

M
∑

i=K

(

M

i

)

αi
[

(1− α)
M+1−i − (1− α)

M−i
]

= αM+1 +

M
∑

i=K

(

M

i− 1

)

αi (1− α)
M−i+1

−
M
∑

i=K

(

M

i

)

αi+1 (1− α)
M−i

.

By expanding the summation terms in the above equation, we
have

F (M) = αM+1 +

(

M

K − 1

)

αK (1− α)
M−K+1

+

(

M

K

)

αK+1 (1− α)
M−K

+ ....+

(

M

M − 1

)

αM (1− α)

−
(

M

K

)

αK+1 (1− α)
M−K − ....−

(

M

M − 1

)

αM (1− α)

−
(

M

M

)

αM+1
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=

(

M

K − 1

)

αK (1− α)
M−K+1

. (10)

By substituting (10) into (8), we have

βFP
K
fe (1− Pfe)

M−K+1 − βM (1− Pme)
K
PM−K+1
me = 0.

Substituting βF = P0 (β10 − β00) and βM = P1 (β01 − β11)
in the above equation and rearranging, we get

M = Kβ +K − 1 +
ln P1(β01−β11)

P0(β10−β00)

ln
1−Pfe

Pme

, β =
ln 1−Pme

Pfe

ln
1−Pfe

Pme

. (11)

Since M is an integer value, therefore we take ceiling function

for the M in (11) to obtain (7).
Note that (7) is a function of Pf , Pm and Pe. Therefore,

(7) is applicable to any detector used in the CSS. Now, we
present the solution of optimal M for the special cases of
GOP as follows.

A. Solutions for the Special Cases of GOP

The solution for GOP-I, denoted as M∗

PE
and can be ob-

tained by direct substitution of β10 = β01 = 1, β00 = β11 = 0

in (11), we get M∗

PE
=

⌈

Kβ +K − 1 + ln(P1/P0)

ln
1−Pfe
Pme

⌉

. The

solution for GOP-II, denoted as M∗

PT
and can be obtained

by direct substitution of β10 = β01 = 2, β00 = β11 = 0 and
P0 = P1 = 0.5 in (11), we get [22] M∗

PT
= ⌈Kβ +K − 1⌉.

The solution for GOP-III, denoted as MOR
PT

and can be
obtained by direct substitution of β10 = β01 = 2, β00 =
β11 = 0, P0 = P1 = 0.5 and K = 1 in (11), we get
[19], [20] MOR

PT
= ⌈β⌉. The solution for GOP-IV, denoted as

MAND
PT

and can be obtained by substituting β10 = β01 = 2,
β00 = β11 = 0, P0 = P1 = 0.5 and K = M in (11) and
rearranging, we get [21] MAND

PT
= ⌈1/β⌉.

The solution for GOP-V is a bit involved and can be
obtained by substituting β10 = β01 = 2, β00 = β11 = 0,
P0 = P1 = 0.5 and K = ⌈M/2⌉ in (11), we have

M = ⌈M/2⌉β + ⌈M/2⌉ − 1

⇒ ⌈M/2⌉ = M + 1

β + 1
.

Using mathematical definition of ceiling function, above equa-
tion can be written as,

M + 1

β + 1
− 1 <

M

2
≤ M + 1

β + 1
. (12)

Considering left hand side inequality of (12), we have

M + 1

β + 1
− 1 <

M

2
, ⇒ M <

2β

1− β
(13)

Note that M is non-negative integer value, therefore (13) is
valid when β < 1 which implies Pme < Pfe. Considering
right hand side inequality of (12), we have

M

2
≤ M + 1

β + 1
,⇒ M ≤ 2/ (β − 1) . (14)

Combining (13) and (14) we have [21]

MMAJ
PT

=

{

⌈2β/ (1− β)⌉ , Pme < Pfe,
⌈2/ (β − 1)⌉ , Pme ≥ Pfe.

(15)

V. NUMERICAL RESULTS USING ENERGY DETECTOR

We present the numerical results using energy detector (ED)
as an example for analyzing our results obtained in this paper.
The Pf and Pm of a CU using ED over additive white
Gaussian noise (AWGN) channel are given, respectively, by
[4]

Pf =
Γ
(

µ, λ
2

)

Γ (µ)
, Pm = 1−Qµ

(

√

2γ,
√
λ
)

, (16)

where the standard notations Γ (., .), Γ (.) and Qµ (., .) denotes
the upper incomplete gamma function, gamma function and
generalized Marcum Q-function of order µ − 1, respectively
and µ denote the time-bandwidth product, λ and γ represents
the sensing threshold and received signal-to-noise ratio (SNR)
of a CU, respectively. Note that, in (16) Pf is a decreasing
function and Pm is a increasing function with λ, respectively.
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Fig. 1. Bayes risk versus Number CUs, M for P0 = P1 = 0.5, λ = 11,
K = 3, µ = 5, Pe = 0.01 and SNR = 10 dB, using ED.
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Fig. 2. Optimal M versus sensing threshold, λ for P0 = P1 = 0.5, µ = 5,
Pe = 0.01 and SNR = 10 dB, using ED.

Fig. 1 plots the Bayes against number of CUs for various
combination of cost values using ED. It can be noticed that, for
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each combination of cost values, the Bayes risk first decreases
and then increases as M increases which suggests an optimal
value of M . Fig. 2 plots the solution of optimal M versus
sensing threshold. From Fig. 2, note that at λ = 16.8, we get
Pfe = Pme = 0.08 for Pe = 0.01. Therefore, when λ ≤ 16.8
implies Pme ≤ Pfe and when λ > 16.8 implies Pme > Pfe.
From Fig. 2, now we make the following observations for the
case when β00 = 0, β11 = 0, β01 = 2, β10 = 2.

• OR Rule: Cooperation using OR rule is beneficial and
there exists an optimal M for K = 1. This can can be
achieved when λ > 16.8, which implies Pme > Pfe.

• AND Rule: Cooperation using AND rule is beneficial and
there exists an optimal M when K = M∗

R
. This can be

achieved when λ < 16.8, which implies Pme < Pfe.
• MAJORITY Rule: Cooperation using MAJORITY rule is

beneficial and there exists an optimal M when K =
⌈M∗

R
/2⌉. This can be achieved when λ ≈ 16.8, which

implies Pme ≈ Pfe (where the relation between Pfe and
Pme can be Pme ≥ Pfe or Pme > Pfe).

Fig. 3 plots the optimal M versus SNR for three values of Pe.
It can be noticed that, the optimal M decreases with SNR. For
a fixed SNR the optimal M decreases with Pe, because the
error in the control channel reduces the reliability of decisions
received at the FC.
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Fig. 3. Optimal M versus SNR for β00 = 0.1, β11 = 0.2, β10 = 2, β01 =

3, P0 = P1 = 0.5, µ = 5 and K = 3, using ED.

VI. CONCLUSIONS

In this letter, we obtained a generalized expression for
optimal number of CUs in the presence of control channel
errors that minimizes the Bayes risk. We show that many
existing results are special cases of the generalized expression.
Also the results are valid for any detector.
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