
A

Optimal Don’t Care Filling for Minimizing Peak Toggles during
At-speed Stuck-at Testing

A. Satya Trinadh, Department of Computer Science and Engineering, IIT Hyderabad

Seetal Potluri, Department of Electrical Engineering, IIT Madras

Sobhan Babu Ch., Department of Computer Science and Engineering, IIT Hyderabad

V. Kamakoti, Department of Computer Science and Engineering, IIT Madras

Shiv Govind Singh, Department of Electrical Engineering, IIT Hyderabad

Due to the increase in manufacturing/environmental uncertainties in the nanometer regime, testing digi-
tal chips under different operating conditions becomes mandatory. Traditionally, stuck-at tests were applied
at slow speed to detect structural defects and transition fault tests were applied at-speed to detect delay
defects. Recently, it was shown that certain cell-internal defects can only be detected using at-speed stuck-at

testing. Stuck-at test patterns are power hungry, thereby causing excessive voltage droop on the power grid,
delays the test response and finally leading to false delay failures on the tester. This motivates the need for
peak power minimization during at-speed stuck-at testing. In this paper, we use input toggle minimization
as a means to minimize circuit’s power dissipation during at-speed stuck-at testing under the CSP-scan
DFT scheme. For circuits whose test sets are dominated by don’t cares, this paper maps the problem of op-
timal X-filling for peak input toggle minimization to a variant of interval coloring problem and proposes a
dynamic programming (DP) algorithm (DP-fill) for the same along with a theoretical proof for its optimal-
ity. For circuits whose test sets are not dominated by don’t cares, we propose a max scatter Hamiltonian
path algorithm, which ensures that the ordering is done such that the don’t cares are evenly distributed in
the final ordering of test cubes, thereby leading to better input toggle savings than DP-fill. The proposed
algorithms, when experimented on ITC99 benchmarks, produced peak power savings of up to 48% over the
best known algorithms in literature. We have also pruned the solutions thus obtained, using Greedy and
Simulated Annealing strategies with iterative 1-bit neighborhood, to validate our idea of optimal input tog-
gle minimization as an effective technique for minimizing peak power dissipation during at-speed stuck-at
testing.

Categories and Subject Descriptors: B.7.3 [Integrated Circuits]: Reliability and Testing

General Terms: Design, Algorithms, Reliability

Additional Key Words and Phrases: At-speed Stuck-at testing, Peak Test Power, Test cube ordering, Don’t
care filling, Dynamic Programming, Max Scatter Hamiltonian path algorithm, Greedy Pruning, Simulated
Annealing

1. INTRODUCTION

Traditionally, stuck-at tests were applied at slow speed to detect structural defects
and transition fault tests were applied at-speed to detect delay defects. However, in

Author’s addresses:
A. Satya Trinadh and Sobhan Babu Ch., Department of Computer Science and Engineering, Indian Institute
of Technology Hyderabad; Shiv Govind Singh, Department of Electrical Engineering, Indian Institute of
Technology Hyderabad; Seetal Potluri, Department of Electrical Engineering, Indian Institute of Technology
Madras; V. Kamakoti, Department of Computer Science and Engineering, Indian Institute of Technology
Madras;
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1084-4309/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 A. Satya et al.

the nanometer complementary metal oxide semiconductor (CMOS) regime, process pa-
rameter variations cause unexpected variations in signaling delays. In the presence of
path delays that are comparable to the clock interval, delayed signal transitions or
timing hazards influence the detection of defects. Recently in [McCluskey and Tseng
2000; Vorisek et al 2004], it was shown that certain cell-internal defects can only be
detected by at-speed stuck-at testing.

Launch-Off-Capture (LOC), Launch-Off-Shift (LOS) and Enhanced Scan (ES) are
the well-known design-for-testability (DFT) schemes for the purpose of at-speed test-
ing. Due to the excessive physical design overheads and limitations of ES, LOC and
LOS are the two prevalently used schemes for this purpose. LOS scheme is known
to achieve higher fault coverage while consuming lesser test time over LOC scheme,
but dissipates higher peak power [Wu et al 2011] and requires generation of global
at-speed scan enable signal. This excessive peak power in LOS scheme, leads to high
voltage droop on the power grid, more than what the power grid is designed to han-
dle. This excessive voltage droop specific to test mode, can lead to false delay failures,
thereby leading to significant yield reduction [et al 2003; Girard et al. 2009; Pant et al
2010], that is unwarranted. In [Liu 2004], it was shown that transition fault testing
can be performed with stuck fault patterns, with 46% lesser test time, if combina-
tional state preservation (CSP) property can be satisfied in scan-shift mode. Since test
compaction leads to increase in switching activity [Pomeranz 2015], at-speed stuck-at
testing produces more switching activity, hence higher supply voltage droop [Potluri
2015], as compared to transition fault testing.

This paper focuses on reduction in peak circuit toggles during at-speed stuck-at
testing, through minimization of peak input toggles. Recently, a new DFT scheme,
called Combinational State Preservation scan (CSP-scan) [Potluri 2015] was proposed,
which preserves the combinational logic state not only during scan-shift but also
during capture and dissipates lower power consumption, with (1) no impact on test ap-
plication time and fault coverage; (2) less than 2% overhead in each of area, functional
timing and functional power; (3) the tester need not generate the at-speed scan-enable
signal; and (4) does not need additional physical design effort, as compared to LOS
scan testing, thus making it very practical to implement [Potluri 2015]. We assume
that such a CSP-scan architecture is in place, and propose efficient algorithms for
minimizing peak test power in its presence. During at-speed testing, the test patterns
are applied to the combinational logic and the responses are captured. Automatic test
pattern generation (ATPG) tools provide test cubes, in which some of the bits are
specified and some are don’t cares. The test patterns are obtained by filling the don’t
cares in these test cubes. The test cubes for some circuits are typically dominated by
don’t care bits, as shown in column 4 of Table I, clearly making don’t care filling an
effective technique for minimizing peak test power, for such circuits. On the contrary,
the test cubes for some circuits have few don’t care bits, as shown in column 4 of
Table I, hence don’t care filling does not play the primary role in minimizing peak test
power, for such circuits. Motivated by this, this paper proposes an analytical solution
for solving the problems of (1) optimal don’t care filling for a given test cube ordering,
and (2) test cube ordering, for minimizing peak input toggles during test application
of at-speed stuck-at testing, under CSP-scan scheme

The main contributions of this paper are as follows:

— Given a test cube ordering, mapping the problem of optimal don’t care filling for min-
imizing peak input toggles during testing to a variant of interval coloring problem;

— Proposing a polynomial time algorithm for the variant of interval coloring problem
(DP-fill), its proof of correctness and optimality of the proposed algorithm;

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Optimal Don’t Care Filling for Minimizing Peak Toggles during At-speed Testing A:3

Table I. Average % of don’t care bits in test cubes. PIs and FFs
stand for primary inputs and flip-flops respectively

Benchmark #(PIs+ FFs) # Gates % of Don’t cares
b01 5 57 7.1
b02 4 31 5
b03 29 103 70.4
b04 77 615 64.4
b05 35 608 36.8
b06 5 60 12.5
b07 50 431 58.6
b08 30 196 60.4
b10 28 217 58.7
b11 38 574 64.1
b12 126 1.6K 76.9
b13 53 596 65.4
b14 275 5.4K 77.9
b15 485 8.7K 87.8
b17 1452 27.99K 89.9
b18 3357 75.8K 86.9
b19 6666 146.5K 89.8
b20 522 9.4K 75.3
b21 522 9.4K 73.2
b22 767 13.4K 74.1

— We propose a Interleaving-based test cube ordering algorithm for test sets dominated
by dont cares, that when used in conjunction with DP-fill, produces significant sav-
ings in input toggles;

— We propose a Max Scatter Hamiltonian path algorithm based test cube ordering
scheme for test sets not dominated by don’t cares, that when used in conjunction
with DP-fill, produces significant savings in input toggles; and

— Local Search using Iterative 1-bit neighborhood to verify our assumption that opti-
mizing peak input toggles leads to peak power reduction during at-speed stuck-at
testing.

The next section motivates the need for at-speed stuck-at testing. Section 3 describes
the related work for minimizing power during at-speed testing. Section 4 describes the
combinational state preservation (CSP) property and the underlying CSP-scan [Potluri
2015] scheme, that satisfies this property. Sections 5 and 6 motivate the need for don’t
care filling and the formal definition of the problem of don’t care filling for peak in-
put toggle minimization respectively. Following this, our mapping of this problem to a
variant of interval coloring problem, which we call as bottleneck coloring problem, is
explained in section 7. Following this, the proposed algorithm for optimal don’t care
filling (DP-fill), along with its proof of correctness and the results obtained are shown
in section 8. Section 9 contains the details of the proposed max scatter Hamiltonian
path algorithm, used to optimize test cube ordering, for reducing peak test power. The
improvement in solution quality obtained by pruning the solution thus obtained, with
local search technique using iterative 1-bit neighborhood, is shown in section 10. Sec-
tion 11 concludes the paper.

2. MOTIVATION FOR AT-SPEED STUCK-AT TESTING

The real defect is a short or an open between two nodes inside a gate. Such a defect can
change the truth table of a gate, which may not exactly resemble stuck-at 0 or stuck-at
1 behavior. Apart from changing the truth table of a gate, the manifested defect can
also change the delay of the gate. Such defects will not be caught by slow speed stuck-at
tests and were known to be caught by at-speed stuck-at tests [McCluskey and Tseng

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 A. Satya et al.

2000]. In fact, it was shown practically using the data from foundry, that at-speed
stuck-at testing can greatly reduce test escapes [McCluskey and Tseng 2000; Vorisek et
al 2004]. This motivates the need for at-speed stuck-at testing and is especially true for
today’s chips which are fabricated in deep-submicron technologies, that contain many
small delay defects [Ahmed et al. 2006; Goel et al 2010; Yilmaz et al 2010; Bao et al
2013].

As explained earlier, peak power dissipation during at-speed stuck-at testing is
higher than that during transition fault testing [Liu 2004], thereby causing excessive
supply voltage droop and finally resulting in increase of gate delays inside the chip.
Thus, after launching the test pattern into the combinational logic, the response time
of the combinational logic may be delayed, and since we are capturing at-speed, we ob-
serve faulty response and discard a good chip, although it works well in the functional
mode of operation (during when, the excessive delay on gates won’t occur). Thus, the
advantage of minimizing peak power dissipation during at-speed stuck-at testing is to
avoid a good chip being categorized as defective, which is the problem of false nega-
tives, that impact the chip’s yield and hence a financial loss to the chip manufacturer.
This motivates the need to minimize peak power dissipation during at-speed stuck-at
testing. The next two sections shall describe the related work in the area of low power
at-speed testing and a short description of the combinational state preservation scan
(CSP-scan) architecture for low power at-speed stuck-at testing.

3. RELATED WORK

Several techniques were proposed in the past for minimizing peak test power [Girard
et al. 2009]. These techniques can be broadly categorized into circuit level [Gersten-
dorfer and Wunderlich 1999; Parimi and Sun 2004; Bhunia et al 2005; Devanathan
et al. 2007], gate level [Girard et al 1999; et al 2000; Almukhaizim et al 2008; et al
2008] and system level [Girard et al 1998; Dabholkar et al 1998; Sankaralingam and
Touba 2002; et al 2007; Yao et al 2011] techniques. Circuit level techniques include
supply gating [Bhunia et al 2005], scan flip-flop redesign [Gerstendorfer and Wunder-
lich 1999; Parimi and Sun 2004] and supply voltage scaling [Devanathan et al. 2007;
Potluri et al. 2013]. Gate level techniques include clock gating [et al 2000; Sankar-
alingam and Touba 2002], scan cell output gating [et al 2008], and low power scan
chain synthesis [Gerstendorfer and Wunderlich 1999; Girard et al 1999; et al 2000;
Parimi and Sun 2004; Potluri et al. 2013]. System level techniques include low power
test pattern generation [et al 2007], power aware test scheduling [Yao et al 2011],
test pattern ordering [Girard et al 1998; Dabholkar et al 1998; Trinadh et al 2013]
and don’t care filling [Devanathan et al 2007; Wu et al 2011; Trinadh et al 2014]. All
of these test pattern ordering and don’t care filling techniques for Launch-Off-Shift
(LOS) scheme [Devanathan et al 2007; Wu et al 2011; Trinadh et al 2014] are heuris-
tics without a performance guarantee. A new scan flipflop was proposed by [Potluri et
al 2015] that preserves combinational state of the circuit under test. The above paper
showed empirically that the proposed scan-flop in conjunction with a naive dont’t care
(X)-aware test pattern ordering scheme resulted in significant reduction in Launch-
To-capture switching activity. Keeping this in mind, this paper proposes a theoretical
framework to arrive at an optimal X-filling and correspondingly efficient test cube or-
dering for minimizing peak test power. The following sections motivate this theoretical
framework, the underlying design for testability (DFT) scheme necessary to apply the
proposed technique, its proof of optimality and the results thereby obtained by ap-
plying the same on benchmarks. To the best of our knowledge, this is the first ever
reported don’t care filling algorithm that is optimal in input toggle minimization, in
this connection.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Optimal Don’t Care Filling for Minimizing Peak Toggles during At-speed Testing A:5

C1 C2

SI

SO

T1

T2
T3

200 400

1000

e1,2

e2,3

e3, 1

R1 R2 R3

Fig. 1. Combinational State Preservation proposed in [Potluri 2015]

While it is true that there are already several papers on X-filling, none of them look
at the problem from a theoretical perspective and hence not very effective. An inter-
esting aspect of X-filling is that it neither incurs area nor timing overheads. However,
high power dissipation during testing of today’s complex chips, still continues to re-
main a major concern, because existing X-filling algorithms do not systematically tar-
get test power reduction. It is noteworthy that due to the several scan partitions avail-
able, interleaving these scan partitions, to control power consumption during testing
is prevalently used in the industry. However, it is also well-known that this kind of test
scheduling for controlling test power usually comes with a significant test time over-
head. Thus, X-filling techniques can complement these existing scan chain interleav-
ing techniques to reduce test power, without majorly increasing the test time. Hence,
we focus on an X-filling algorithm that systematically reduces toggles during testing.
To begin the discussion, we next provide a short description of combinational state
preservation (CSP) and the DFT technique that preserves the CSP property [Potluri
2015].

4. COMBINATIONAL STATE PRESERVATION

All the existing scan architectures proposed in the past, violate combinational state
preservation (CSP) property during the capture phase [Potluri 2015]. To address this
issue, the CSP-scan architecture is proposed in [Potluri 2015], that preserves combi-
national logic states during scan-shift as well as capture phases of at-speed testing.
Under CSP-scan, test pattern ordering can be very effective in reducing peak launch-
to-capture power during scan based testing of sequential circuits. To understand this
in little more detail, let S be a sequential circuit and τ = {t1, t2 . . . } be the test pat-
tern set designed for it by the ATPG tool. Let the combinational parts of S be la-
beled as {C1, C2 . . . }. Let ski,j be the state of the ith wire in combinational part Ck

after launching test pattern Tj . If the state in which the combinational parts settle
down, after launching test pattern Tj , is preserved until launching of the next test
pattern Tj+1, the switching activity in Ck immediately after launching Tj+1 is given
by

∑
i∈set of wires s

k
i,j ⊕ ski,j+1. It is interesting to note that the switching activity in

S is dependent on the order of application of test patterns. Figure 1 shows how the
combinational logic states are so preserved that the sequential circuit can practically
be treated like a combinational circuit, and we can perform test pattern ordering for
minimizing peak switching activity. To illustrate the above, consider the circuit shown
in Figure 1. There are 2 combinational parts in this circuit, namely C1 and C2, sepa-
rated by 3 register stages R1, R2 and R3. All the flip-flops in the register stages are
connected together to form a scan chain, which is subsequently used to load the test
pattern. The test patterns are generated post-synthesis for combinational circuits C1

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 A. Satya et al.

CK1

CK CK CK1

SQ
QB

CK1 & MSE0

1

SE

CK

CK

CK1 & MSE
QB

CK

Current SFF

Master Latch Slave Latch

Scan Latch

D

SD

Next SFF

Q

Combinational
 Logic

SE

CK

MSESE
Extra
Logic

Fig. 2. Scan flip-flop that implements the CSP-scan scheme [Potluri 2015]

and C2 separately. Let {t1, t2 . . . tr} be the set of tests for C1 and {p1, p2 . . . ps} be the set
of tests for C2.

The testing of the chip comprises repetition of the three steps, namely, scan-shift,
launch and capture. First, 〈p1, t1〉 is shifted in that order into register stages R1 and R2

respectively (scan-shift step) through the scan input pin SI as shown in Figure 1; t1 is
applied to C1 and p1 is applied to C2 (launch step); and, the result r1 due to application
of t1 on C1, and the result r2 due to application of p1 on C2, is captured in register stages
R2 and R3 respectively (capture step). In the next iteration, 〈p2, t2〉 is shifted into the
circuit which causes the responses 〈r1, r2〉 to be shifted out of the circuit through the
scan output pin SO as shown in Figure 1. Note that the last shift operation in the shift
step of the scan-in operation is used as the launch step too.

Let us assume that there are 3 test patterns in the test set, namely T1 (includes
t1 and p1), T2 (includes t2 and p2) and T3 (includes t3 and p3). The same figure shows
the test pattern graph for this circuit. This is a complete graph, with each vertex rep-
resenting a test pattern, and edge-weights representing the switching activity in S,
based on the order of application of test pattern pairs. Since the goal is to reduce dy-
namic power during launch-capture window without affecting the at-speed stuck-at
fault coverage, we have used switching activity (which is a measure of dynamic power)
as a cost function to represent the edge-weights in the test pattern graph. As shown
in this figure, applying T1 after T2 or vice-versa causes 200 toggles (represented as
edge-weight e1,2) and so on. We assume that the edge-weights e1,2, e2,3 and e3,1 are
equal to 200, 1000 and 400 respectively. In this case, if the order of application of test
patterns is T1 → T2 → T3, then peak switching activity occurs when test pattern T3 is
applied after test pattern T2. This corresponds to 1000 toggles in the entire circuit, as
represented by edge-weight e2,3. On the other hand, if the order of application of test
patterns is T3 → T1 → T2, then peak switching activity occurs when test pattern T1 is
applied after test pattern T3, which corresponds to 400 toggles, as represented by the
edge e3,1 in Figure 1. Thus, test pattern ordering [Girard et al 1998] has significant
impact on the peak switching activity in the circuit, under CSP-scan.

The scan flip-flop that implement the CSP-scan scheme is shown in Figure 2. The
timing diagram corresponding to the CSP-scan scheme is shown in Figure 3. The
CSP-scan can be summarized [Potluri 2015] as follows:

(1) A Muller C-element is used to generate SElatch signal, as shown in Figure 4, which
takes SE and CK signals as input. A 1→ 0→ 1 transition is produced on SE signal
just before the launch point, to facilitate the 1 → 0 transition on SElatch (Figure 3
- pt. b). This ensures the functional slave latch turns ON (and the alternate slave
latch turns OFF), thus launching the test pattern into the combinational logic.

(2) Some extra logic is used within the scan flip-flop, as shown in Figure 4, which
produces at-speed 1→ 0 transition on SEmux, marked f in Figure 3.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Optimal Don’t Care Filling for Minimizing Peak Toggles during At-speed Testing A:7

CK

SElatch

Launch Capture

At-Speed

SE

Scan Shift Scan Shift

SEmux

g

b

c

d

f

a h j

e

i

Fig. 3. Timing diagram for CSP-scan scheme [Potluri 2015]

CKB

SEB

SE

SElatch

SElatch

SElatch

SEmux

C

CK

SE

SElatch

keeper

Fig. 4. Extra Logic [Potluri 2015]

(3) After launch point d, when {SE,CK} reaches a 11 state, there is a 0→ 1 transition
on SElatch, marked as e in Figure 3. This transition on SElatch signal, turns OFF
the functional slave latch and turns ON the alternate slave latch before the capture
point marked g shown in the same figure. As a result, at the positive edge of the
capture clock, the response data that is waiting at the output of the master latch
of each scan flip-flop gets latched into the corresponding alternate slave latches,
leaving the functional slave latches undisturbed, thus satisfying the CSP
during the capture step.

(4) An extra 1 → 0 → 1 pulse on SE signal is produced to ensure that SEmux signal
changes back from 0→ 1 after the capture step. To ensure that SElatch signal is not
disturbed due to this modification of SE signal, the positive pulse of the capture
clock is slightly stretched till the end of SE pulse, marked j in Figure 3 .

Similar to the techniques proposed in [Gerstendorfer and Wunderlich 1999; Parimi and
Sun 2004], CSP-scan also avoids shift power by ensuring that the changing flip-flop
values do not propagate to this circuit during shift mode. However, the most important
difference is that, these techniques ensure combinational state preservation (CSP) only
during scan-shift, whereas CSP-scan ensures CSP both during scan-shift and capture
steps. Because CSP-scan ensures CSP during the capture step, the sequential circuit
can be treated as combinational circuit during scan based testing, thereby making test
pattern ordering a very effective technique for reducing peak capture power.

The CSP scan is also best suited for at-speed delay testing. Assume that a 0 ← 1
transtion delay need to be tested on an logic element l of the circuit under test. Let t1
and t2 be the test vectors that shall set l to 0 and 1 respectively. First t1 is shifted, then

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 A. Satya et al.

launched and results re caprtured at-speed. At this point l is set to 0. Now, t2 is shifted
in. Due to the CSP property, l remains at 0 till t2 is launched and results captured
at-speed. Once t2 is launched there is a 0← 1 transition on l that is captured at-speed,
thus, carrying out the desired at-speed delay testing. Since two test vectors t1 and t2
are involved these technqiues are called two-pattern delay tests.

The enhanced scan [Dervisoglu and Stong 1991] and hold [Bhunia et al. 2004; 2005],
techniques are also used to implement two-pattern delay tests. The main difference
between the propose scheme and the enhanced-scan and hold schemes is that in the
latter the combinational logic state of the circuit under test is undisturbed during the
scan-shift of the second pattern, however the combinational logic state is disturbed
during capture, while the proposed CSP-scan preserves the state of combinational logic
not only during scan-shift but also the capture step of every pattern. the advantage of
this can be best explained through an example. Assume in Figure 1 that the scan
registers R1, R2 and R3 are designed according to enhanced scan or hold techniques
as proposed in [Bhunia et al. 2004; 2005; Dervisoglu and Stong 1991]. Consider logic
elements l21 and l22 in the combinational circuit C2 on whom a 0 ← 1 delay test need
to be performed. Assume test vectors t21, t22 and t23 will set l21 to 0, 1, 1 and l22 to
0, 0, 1 respectively. Thus, (t21, t22) and (t22, t23) are two-pattern delay tests for testing
the 0 ← 1 transition delay on l21 and l22 respectively. To carry out these delay tests,
first the (t21, t22) pair is loaded into R2. In practice there will also be tests loaded into
R1 (say (t11, t12) for testing C1 while the faults in C2 are tested. At the end of this
test, R2 will be loaded with the response of C1 to t12 and hence line l22 of C2 need
not necessarily carry the value 0. Therefore, to test a 0 ← 1 transition on l22 again
t21 need to be shifted into R2 followed by t22. This is not needed in the case of the
proposed CSP-scan as it preserves the combinational state during the capture step. In
this case, (t21, t22, t23) can be shifted one after another in the same sequence to test the
0 ← 1 delay in L21 and l22, thereby saving an extra shift of t22. Based on the above
explanation, it is also straightforward to note that the test vector reordering explained
earlier in this section (Figure 1) is not applicable in the case of enhanced-scan and hold
techniques proposed in [Bhunia et al. 2004; 2005; Dervisoglu and Stong 1991].

To sumup, the proposed CSP-scan can do the same job of enhanced scan/hold in
applying two-pattern delay tests. However, because of preserving combinational logic
state during capture, CSP-scan is also capable of reducing peak launch-capture power
during at-speed stuck-at testing, through test pattern ordering, which is not possible
with enhanced scan/hold. That is the important additional capability of CSP-scan, over
and above enhanced scan/hold. Additionally, CSP-scan has significantly lesser area,
timing and power overheads as compared to enhanced scan and hold, as explained
in [Potluri 2015].

This paper focuses on ordering the test cubes and selectively filling the don’t care (X)
bits in the test cubes to minimize peak power during at-speed stuck-at testing, under
CSP-scan scheme. Next, we motivate the need for don’t care filling for power reduction
during at-speed stuck-at testing, under CSP-scan.

5. MOTIVATION FOR DON’T CARE FILLING FOR POWER REDUCTION DURING AT-SPEED

STUCK-AT TESTING UNDER CSP-SCAN SCHEME

In scan based test, the input test pattern is serially shifted in, while serially shifting
out the response for previous test pattern. In CSP-scan [Potluri 2015], since the
combinational logic is undisturbed during scan-shift and capture phases, as far as
application of test patterns is concerned, the sequential circuit behaves like a combi-
national circuit. Thus, test pattern ordering technique that was proposed earlier for
reducing test power in combinational circuits [Girard et al 1998; Dabholkar et al 1998]
becomes equally effective for sequential circuits. Having understood this, the next step

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Optimal Don’t Care Filling for Minimizing Peak Toggles during At-speed Testing A:9

Fig. 5. X-Stat [Trinadh et al 2014] vs Optimum-Fill

is to compute a test cube ordering that achieves the same for sequential circuits under
CSP-scan. Once the test cube ordering is computed, the next step is to minimize the
peak toggles at the inputs (primary inputs and the scan cell outputs) through filling of
the don’t care bits in test cubes with binary values. The expectation is that reducing
the input toggles leads to reduction in power dissipation inside the circuit, as shown
previously in [Girard et al 1998].

The most recent and effective don’t care filling algorithm for peak power minimiza-
tion during at-speed stuck-at testing under CSP-scan scheme is X-Stat [Trinadh et al
2014]. The X-Stat algorithm follows a two phase approach. In the first phase, it uses
adjacent don’t care fill technique to convert don‘t care stretches 0XX...X1 and 1XX...X0
into smaller don’t care bit stretches 0X1 and 1X0 respectively, as shown in Phase 1
column of Figure 5. In the second phase, it replaces don’t care bits by either 0 or 1
in order to minimize peak toggles as shown in Phase 2 column of Figure 5. This fig-
ure shows that the global minimum peak toggles is 2 (shown under the Optimum-Fill
column), while the minimum peak toggles achieved by XStat technique is 3, making
it sub-optimal. Because of the greedy approach used in Phase 1 of XStat technique,
it does not achieve the global optimum. Motivated by this, we choose a Dynamic Pro-
gramming paradigm which takes global picture into consideration and optimally fills
the don’t care bits with binary values to achieve the best reduction in peak toggles.

6. PEAK INPUT TOGGLE MINIMIZATION PROBLEM

The power dissipation is directly proportional to the number of toggles in the circuit.
A best estimate of power can be obtained by considering the toggle axctivity in the
entire circuit. In the present case of X-filling, every test vector with k don’t cares imply
2k fully-specified test vectors. Assume n test vectors, each with ki don’t cares, 1 ≤
i ≤ n, we land up with

∑n

i=1
2ki test vectors. Constructing a test pattern graph as

in Figure 1 with the edge-weights as the total toggle in the circuit is a prohibitively
time and memory intensive computational task. The results reported in [Girard et al
1998] show that the input switching activity between two test patterns can be used as
a reasonable estimate of the switching activity of the entire circuit in general though
there are circuits including code converters and decoders that may not adhere to this
property. This has motivated the technique proposed in the paper to fill the don’t cares
with an objective to minimize the input switching activity. A subsequent test pattern
ordering of the n fully specified test vectors may be performed assuming the entire
circuit switching activity. This will involve only nC2 computations to construct a test
pattern graph as shown in Figure 1.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 A. Satya et al.

Objective: Given a sequence of test cubes T1, T2, ...Tn, each of length
m, replace each don‘t care in test cubes by either 0 or 1, such that
max{Hd(T1, T2), Hd(T2, T3) . . . Hd(Tn−1, Tn)} is minimized, where Hd(Ti, Ti+1)
is the Hamming distance between test cubes Ti and Ti+1, after replacing don’t cares
by either 0 or 1.

This problem can be formulated as a variant of interval coloring problem, which we
call Bottleneck Coloring Problem. Next, we define and explain the Bottleneck Color-
ing Problem and show that peak power minimization is an instance of this problem.
Since our objective is to minimize the peak toggles, we call this problem as Bottleneck
Coloring Problem.

7. BOTTLENECK COLORING PROBLEM (BCP)

7.1. Problem Explanation in Terms of Hotel Room Booking

Suppose a hotel received several guest requests for accommodation, each of which has
a start-date and an end-date of a time period, and asks the hotel to provide accommoda-
tion for exactly one day which falls in the given period. The aim of the hotel is to assign
rooms to all guest requests such that the number of guests staying in the hotel on any
given day is minimized, which is a variant of the interval coloring problem [West 2000].

7.2. Mathematical Definition of the Problem

(1) Let S = (s1, e1), (s2, e2) . . . (sk, ek) be a sequence of intervals such that si and ei
are integers corresponding to starting and ending times of interval i respectively,
∀1 ≤ i ≤ k;

(2) Let max color = max(e1, e2, e3, . . . ek);
(3) Let { c1, c2, c3 . . . cmax color } be a set of colors;
(4) For each interval (si, ei), assign a color cj such that si ≤ j ≤ ei;
(5) Let h1, h2, h3 . . . hmax color be a sequence of integers such that hj be the number of

intervals which are assigned color cj ; and
(6) Our objective is to assign colors to intervals such that max(h1, h2 . . . hmax color) is

minimized.

Here, each interval corresponds to an accommodation request (as explained in subsec-
tion 7.1). Each color corresponds to a day. Assigning color cj to the interval (si, ei) is
same as allocation of hotel room on jth day to this request. Note that hj denotes the
number of guests who are assigned room on jth day. Having defined BCP, next we shall
explain how the peak input toggle minimization problem maps to BCP.

7.3. Mapping of Peak Input Toggle Minimization Problem to BCP

(1) Let T1, T2, ...Tn be a sequence of test cubes each of length m;
(2) Construct a m× n matrix A such that ith column of A is equal to the test cube Ti;
(3) for i = 1→ m do

/* Preprocessing of 0XX..X0,1XX..X1 stretches */

If { ith row contains a sub-sequence 0XX...X0} then replace every don‘t care in
this sub-sequence by zero, since there exists an optimal solution, in which all of
these don‘t cares are replaced by zeroes, irrespective of how other don‘t cares are
replaced.

If { ith row contain a sub-sequence 1XX...X1} then replace every don‘t care in this
sub-sequence by one, since there exists an optimal solution, in which all of these
don‘t cares are replaced by ones, irrespective of how other don‘t cares are replaced.

(4) Let S=φ

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Optimal Don’t Care Filling for Minimizing Peak Toggles during At-speed Testing A:11

(5) for i = 1→ m do
/* Creating intervals for 0XX..X1,1XX..X0 stretches */
If there exist k < l such that Ai,k = 0, Ai,l = 1 and Ai,k+1...Ai,l−1 are don‘t cares,
then append an interval (k, l − 1) to sequence of intervals S.
Comment 1 : Note that there exists an optimal solution to Peak Toggle Minimiza-
tion Problem such that Ai,k = 0, Ai,k+1 = 0, . . . , Ai,j = 0, Ai,j+1 = 1, Ai,j+2 = 1, . . . ,
Ai,l = 1, where k ≤ j < l, irrespective of how other don‘t cares are replaced. There
is only one toggle between jth and j + 1th test vectors in this sub-sequence. The
color assigned to this newly added interval in the solution of BCP captures the
location of this toggle in this sub-sequence.

If there exist k < l such that Ai,k = 1, Ai,l = 0 and Ai,k+1...Ai,l−1 are don‘t cares
then append an interval (k, l − 1) to sequence of intervals S.
Comment 2 : Note that there exists an optimal solution to Peak Toggle Minimiza-
tion Problem such that Ai,k = 1, Ai,k+1 = 1, . . . , Ai,j = 1, Ai,j+1 = 0, Ai,j+2 = 0, . . . ,
Ai,l = 0, where k ≤ j < l, irrespective of how other don‘t cares are replaced. There
is only one toggle between jth and j + 1th test vectors in this sub-sequence. The
color assigned to this newly added interval in the solution of BCP captures the
location of this toggle in this sub-sequence.

Each row of the matrix represents an input pin to the circuit (corresponds to a guest
in BCP) and each column represents a test cube (corresponds to a day in the BCP for-
mulation as per section 7.1). A toggle in ith row, from jth position to (j + 1)th position
corresponds to a hotel room allocation for ith customer on jth day. The BCP ensures
that the number of allocations on any given day is minimized, which in the current
context, translates to minimization of number of the peak input toggles on any given
test cycle (launch-capture duration). Having explained how the problem under consid-
eration maps to BCP, next we proceed to explain how to construct solution to the given
problem.

7.4. Constructing Optimal solution for Peak Input Toggle Minimization Problem from Optimal

solution for Bottleneck Coloring Problem

Having known how to construct optimal solution to BCP, the following steps are fol-
lowed in constructing the optimal solution for the given problem:

(1) Suppose color cj is assigned to interval (si, ei) in the given optimal solution for
Bottleneck Coloring Problem;

(2) Look at the row in matrix A, corresponding to interval (si, ei), and make all bits
from column si to column j same as bit value at column si and make all bits from
column j + 1 to column ei + 1 same as bit value at column ei + 1

Having understood the solution for the given problem, through solution to BCP, next
we shall see how to solve BCP optimally.

8. ALGORITHM

The Algorithm used to compute BCP is composed of two phases: (1) lower bound com-
putation; and (2) achieving the lower bound, and thereby the optimal solution. First,
we shall describe the lower bound computation phase.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 A. Satya et al.

ALGORITHM 1: Computing Lower-Bound

Input: S= (s1, e1),(s2, e2) . . . (sk, ek) be a sequence of intervals
Output: Lower-Bound Value.

Let Ti,j , where i ≤ j, denote the number of intervals whose starting time is ≥ i and ending1

time is ≤ j;

If i > j then let Ti,j = 0, else Ti,j can be expressed recursively as follows : Ti,j = Ti,j−1 +2

Ti+1,j - Ti+1,j−1 + Number of intervals whose staring time is equal to i and ending time is
equal to j.
/* Note that Ti+1,j−1 is subtracted since the set of intervals whose starting

time is at least i+ 1 and ending time is at most j − 1, are counted in both
Ti,j−1 , Ti+1,j. */

Let max color = max(e1, e2 . . . ek)3

Lowerbound LB = max{⌈
Ti,j

j−i+1
⌉|1 ≤ i ≤ j ≤ max color}4

/* If we take any interval whose starting time is at least i and ending time at
most j, then we should assign a color ck to this interval, such that

i <= k <= j. This means there exists a color ck, such that at least ⌈
Ti,j

j−i+1
⌉

intervals are assigned color ck, where i <= k <= j */

Result: return LB

ALGORITHM 2: Assigning color to intervals

Input: S= (s1, e1),(s2, e2) . . . (sk, ek) be a sequence of intervals, LB - lower-bound
Output: Intervals with assigned colors

Sort the intervals in S based on starting time.1

Let H be a min heap. Each node of this heap can store information of an interval (starting2

time and ending time). Nodes of this heap are ordered by ending times of intervals i.e
ending time of interval stored in a node is less than or equal to ending times of intervals
stored in that node’s children.

for i = 1 → n do3

Insert into heap H all intervals whose starting time is equal to i.4

/* if we take any interval in H starting time is at most i. */
Remove top l elements from heap and assign color ci, where5

l = min(current heap size, LB);
/* The reason for picking top elements and assigning colors ci is we want to

assign colors to intervals which are ending soon. We prove in section
Proof of correctness that ending times of all these removed intervals are at
least i. */

8.1. Dynamic Programming Approach to compute Lower-Bound (LB) for the Bottleneck

Coloring Problem

Algorithm 1 gives the lower bound on the number of intervals which are assigned the
same color. This algorithm can be implemented such that the running time is O(k2),
where k is the number of intervals. Having described the lower bound computation
phase, we next proceed to describe the next phase of achieving the lower bound, using
a greedy approach.

8.2. Greedy Approach to Bottleneck Coloring Problem

Algorithm 2 assigns a color cj for each interval (si,ei), where si ≤ j ≤ ei, and the
maximum number of intervals which are assigned the same color, is at most the lower

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Optimal Don’t Care Filling for Minimizing Peak Toggles during At-speed Testing A:13

bound value computed in Algorithm 1. Since the lower bound computation involves
dynamic programming (DP), we call this X-filling algorithm as DP-Fill. Running time
of this algorithm is O (k log k), where k is the number of intervals.

8.3. Proof of correctness

In the following paragraph, we will prove that, at the end of ith iteration of Algorithm 2,
ending times of all intervals contained in min heap are greater than i. This means that
each interval (si,ei) is assigned a color cj such that si ≤ j ≤ ei.

Suppose, at the end of some iteration i, min heap contains an interval, whose ending
time is greater than i. Let i be such that it’s value is minimum. Let j < i such that
number of intervals which are assigned color in jth iteration, is less than the lower
bound. Let j be such that it’s value is maximum. If there is no such j, then let j = 0.
Let j < k < i such that in the kth iteration, the above algorithm assigned color to an
interval whose ending time is more than i. Let k be such that it’s value is maximum.
If there is no such k, then let k = j. Ending times and starting times of all intervals,
which are assigned color from k + 1th iteration to ith iteration, are less than or equal to
i and greater than k respectively. Note that the number of intervals which are assigned
colors from k+1th iteration to ith is equal to lowerbound ∗ (i−k) and min heap contains
an interval whose ending time is equal to i and starting time is greater than k. This
implies that the number of intervals, whose starting time is greater than k and ending
time is less than or equal to i, is more than lowerbound ∗(i−k), which is a contradiction.

Hence, we have proposed an optimal algorithm using dynamic programming, for
minimizing peak input toggles during at-speed stuck-at testing, for a given test cube
ordering, under CSP-scan scheme. Thus, we call this algorithm as dynamic program-
ming based don’t care filling (DP-fill) algorithm. As already discussed, CSP-scan sat-
isfies CSP property, thereby making the ordering of the test cubes influence the peak
input toggles during at-speed stuck-at testing. The next section solves the problem of
ordering the test cubes, with large don’t care stretches, for minimizing the peak input
toggles, using the technique of interleaving.

The entire mapping of input toggle minimization, consists of two phases: optimal
test cube ordering, followed by X-filling. It should be noted that the proposed X-filling
algorithm gives the optimal X-filling, after the test cube ordering phase is completed.
Since TSP can be reduced to an instance of the test pattern ordering problem [Girard et
al 1998; Dabholkar et al 1998], hence the test pattern ordering problem is NP-hard.
Hence, it is not possible to prove the optimality of the test pattern ordering, and hence
the optimality of the entire mapping. Thus, our attempt in this paper was to target
optimality on an important sub-space of the mapping i.e, X-filling after the test cube
ordering is completed. So, we propose an optimal algorithm based on interval-coloring
for X-filling for a given test cube ordering, to minimize peak input toggles.

8.4. Test Vector Ordering Algorithm for Large Don’t Care Stretches

For a given vector ordering, Algorithm 2 gives the optimum value of peak input toggles.
Note that if the length of don‘t care stretches in the rows of matrix A (which is defined
in section 7) is high, then the optimum value of peak input toggles is small. To achieve
such a large don‘t cares stretches in the rows of matrix A, we propose Algorithm 3
for test vector ordering. We call this ordering as interleaved test vector ordering (I-
Ordering). The number of times the while loop in Algorithm 3 gets executed is shown
in Figures 6 and 7. These experimental observations show that the number of itera-
tions grow as O(log(n)), where n is the number of test vectors. Figure 8 analyzes the
don’t care stretch statistics in the test cubes of b19 circuit, for different test cube or-
derings. One can observe that I-Ordering increases the sizes of don’t care stretches,

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 A. Satya et al.

ALGORITHM 3: Computing Test vector Ordering for Large Don’t Care Stretches

Input: T = T1, T2,.. Tn be the set of input test vectors.
Output: S = Ordering of input test vectors.

Let T
′

= T 1
1 , T

′

2 ,.. T
′

n be the ascending order of input test vectors, sorted based on the1

number of don’t cares.
Let current optimal value = ∞2

Let k = 03

Let exit flag = false4

while exit flag = false do5

Let k = k + 1 /* Interleaving size */6

Let S = ∅7

for i = 1 → ⌊ n
k+1

⌋ do8

/* pick ith vector from T
′

and append to S */

S = S,T
′

i9

/* pick n− (i− 1) ∗ k th vector to n− (i− 1) ∗ k− k+1 th vector from T
′

and
append to S */

S = S,T
′

n−(i−1)∗k, T
′

n−(i−1)∗k−1, ..T
′

n−(i−1)∗k−k+110

S = S ∪ (T
′

− S).11

Let temp optimal value be the optimal bottleneck value computed on sequence S using12

Algorithm 2
if temp optimal value < current optimal value then13

current optimal value = temp optimal value;14

else15

exit flag = true;16

Result: return S

which are finally exploited by the proposed Algorithm 2, to achieve the best possible
reduction in peak input toggles. The results obtained by using this technique, is shown
for different possible don’t care fillings, in Table II. It can be seen that for test sets with
large number of don’t cares, the combination of I-Ordering and DP-fill, which is pro-
posed in this paper, has best reduction in peak input toggles. Next, we will see how
to reduce peak input toggles, when the test sets have small don’t care stretches. The
next section maps the problem of ordering the test cubes, for minimizing the peak in-
put toggles, when the test sets have small don’t care stretches, to an instance of Max
Scatter Traveling Salesman Problem.

9. TEST VECTOR ORDERING ALGORITHM FOR SMALL DON’T CARE STRETCHES

In this section, we map the problem of ordering test cubes for minimizing peak in-
put toggles during at-speed stuck-at testing, to an instance of the Maximum Scatter
Traveling Salesman Path (or Max Scatter Hamiltonian Path) Problem (MSTSPP). The
definition of MSTSPP is as follows:
Maximum Scatter Traveling Salesman Path Problem (MSTSPP):
Given an edge-weighted undirected graph G, the Maximum Scatter Traveling Sales-
man Path Problem (MSTSPP) is to find an Hamiltonian path in G such that the small-
est edge cost in this path is maximized. The MSTSPP is NP-Hard [Arkin et al 1997].

Consider an edge-weighted undirected complete graph G = (V,E), with test cubes
representing the vertices, and the edge-cost function shown in Table III, used to rep-
resent the edge weight, ∀1 ≤ i < j ≤ n, where n is the test set size. The intuition is
that, if we solve the Max Scatter Hamiltonian path problem in this graph, we ensure

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Optimal Don’t Care Filling for Minimizing Peak Toggles during At-speed Testing A:15

Fig. 6. Number of Iterations vs Peak Input Toggles

Fig. 7. Optimum Number of Iterations vs log(n)

Fig. 8. Don’t care stretch statistics for b19 circuit
(Tool vs X-Stat[Trinadh et al 2014] vs I-Ordering

that, the test cube pair with the lowest number don’t cares in the ordering, is rich with
don’t cares (min-max optimization), which in turn maximizes the reduction in peak
test power. It is well-known that the problem of test vector ordering, for minimizing
test power in combinational circuits, maps to traveling salesman problem (TSP) [Gi-
rard et al 1998]. The following points clarify the difference between this mapping and
the proposed mapping:

(1) An important difference to note here is that we are not dealing with combinational
circuits, but with sequential circuits. Because of CSP-scan, ordering becomes effec-
tive to reduce test power in sequential circuits also through test vector ordering;

(2) Our claim is that when test cubes are rich with dont care bits, interleaved ordering,
when combined with DP-fill, gives the best savings in launch-capture power. On
the other hand, when test cubes are not rich with dont care bits, max scatter TSP
based ordering, combined with DP-fill, gives the best savings in launch-capture
power. Again, it should be noted that max scatter TSP is not the same as TSP,
because in TSP, we try to reduce the overall tour length, whereas in max scatter
TSP, we try to maximize the smallest edge-weight along the tour;

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 A. Satya et al.

Table II. Peak Input Toggles : I-Ordering with different don’t care
fillings

Circuit MT-fill R-fill 0-fill 1-fill B-fill DP-fill
b01 3 4 4 3 3 3
b02 3 3 3 3 3 3
b03 12 19 15 15 8 6
b04 41 45 43 39 23 15
b05 20 22 21 23 15 14
b06 4 4 4 4 4 4
b07 24 31 38 23 15 11
b08 16 18 16 14 8 6
b09 14 18 16 16 11 11
b10 10 18 14 13 9 7
b11 15 25 22 18 10 9
b12 59 72 99 65 30 15
b13 28 31 28 23 15 10
b14 168 158 208 148 77 40
b15 296 267 314 193 141 33
b17 882 770 953 676 419 85
b18 2030 1741 2200 1550 980 232
b19 3862 3436 4340 3167 1871 364
b20 301 285 352 284 143 65
b21 280 286 333 237 129 67
b22 451 409 475 425 210 91

Table III. Edge cost
function used for
MSTSP

Vi Vj Cost

0 0 +2
1 1 +2
0 X +1
1 X +1
X 0 +1
X 1 +1
0 1 -1
1 0 -1
X X +3

(3) There is another major difference. The standard mapping of test vector ordering to
TSP, to minimize test power in combinational circuits, is when the test cubes are
completely specified. In our case, we are using max scatter TSP, to order the test
cubes which are not completely specified i.e., some of the bits are dont cares; and
finally

(4) The goal of the standard mapping of test vector ordering to TSP, is to reduce tog-
gles. On the contrary, we are using max scatter TSP to order test cubes, in order to
maximize the dont care pairs in the adjacent test cubes along the ordering, so that
the subsequent dont care filling step will effectively reduce toggles.

We used the algorithm for Max Scatter Traveling Salesman Problem (MSTSP) given
in [Larusic et al. 2012] to find the Max Scatter Traveling Salesman Path in G. Since
our requirement is Max Scatter Hamiltonian path, but MSTSP algorithm gives Max
Scatter Hamiltonian cycles, we modified G to G

′

as follows and given G
′

as input to
MSTSP algorithm. Construct a graph G

′

as follows:

— Add an vertex vk+1 to G.
— Place edge between vk+1, vi in G with a cost zero, where 1 ≤ i ≤ k.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Optimal Don’t Care Filling for Minimizing Peak Toggles during At-speed Testing A:17

Note that there is an one to one correspondence between Hamiltonian path in G and
Hamiltonian cycle in G

′

, since vertex vk+1 is connected to every vertex in G. Since
the edge cost of any edge between vk+1 to vertex in G is zero, Optimal Max Scatter

Hamiltonian Cycle cost in G
′

is same as Optimal Max Scatter Hamiltonian Path cost
in G. In [Larusic et al. 2012], efficient heuristic algorithm was developed to solve the
MSTSP problem by converting it to an instance of the Bottleneck TSP (BTSP) [Larusic
et al. 2012]. As part of this algorithm, construct a graph G

′′

as follows:

— Find the maximum edge-weight of all edges in graph G
′

, and let it be emax; and
— Replace each edge, ei,j in G

′

by emax − ei,j to obtain G
′′

.

— Find the Hamiltonian path in G
′′

such that minimum edge cost is maximized. Algo-
rithm 4 gives a brief sketch.

The major idea of this algorithm is controlled shake operation.

9.0.1. Controlled shake operation. Let G
′′

be a graph and δ be a positive number. Con-
trolled shake operation on graph G

′′

with value δ creates a graph Gs as follows

— Vertex set of Gs is the same as vertex set of G
′′

— Edge set of Gs is the same as edge set of G
′′

— cost of an edge e in Gs is zero if the cost of the corresponding edge in G
′′

is less than
or equal to δ

— cost of an edge e in Gs is any positive random number if the cost of the corresponding
edge in G

′′

is greater than δ

9.0.2. Algorithm. Algorithm 4 gives a brief sketch of the MSTSP Algorithm. For de-
tailed description refer [Larusic et al. 2012]. The following are major ideas in this
algorithm

— Let Gs be a graph obtained from a graph G
′′

by controlled shake operation with
value δ. Note that if Gs contains Hamiltonian tour with cost zero then G

′′

contains
a BTSP tour with cost at most δ. In this algorithm we take δ equal to one of the edge
cost in the given graph G

′′

.
— Suppose BTSP tour cost in a graph G

′′

is ≤ δ. Then if we apply controlled shake
operation on G

′′

several times with the same δ then one of the graphs generated by
these operations will have Hamiltonian tour with cost zero with high probability.

— This algorithm uses binary search to find a Zi such that given graph G
′′

contains a
BTSP tour with cost at most Zi.

— In the algorithm when ever we are setting upper bound u equal to mid then we are
certain that BTSP tour cost in G

′′

is at most Zu.
— If we are setting lower bound l to mid+ 1 does not mean that BTSP tour cost in G

′′

is at least Zl. It can be less that Zl with some small probability. This is because we
are using heuristic to test whether the given graph contains a Hamiltonian cycle or
not

— This algorithm terminates when lower bound l equal to upper bound u, and given
graph G

′′

contains a BTSP tour with cost at most Zu, which means that graph G
′

contains an MSTSP tour with cost at least emax − Zu. This effectively means that
graph G has a Max Scatter Hamiltonian path with cost at least emax − Zu.

The results obtained by using the proposed MSTSP based test cube ordering tech-
nique, is shown for different possible don’t care fillings, in Table IV. In this table, MT-
fill stands for Minimum Transition fill, where one would fill all the don’t cares inside

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

ALGORITHM 4: MSTSP Algorithm

Input: Graph G
′

Output: Bottleneck Edge

Replace each edge, ei,j in G
′

by emax − ei,j to obtain G
′′

;

Compute lowerbound lb and upper bound ub using Bottleneck Biconnected Spanning
Subgraph Problem (BBSSP) algorithm and Nearest Neighbor Heuristic(NNH) respectively

in given graph G
′′

;

Let Z1 < Z2 < · · · < Zk be an ascending arrangement of the distinct edge costs in graph G
′′

such that Z1 ≥ lb and ZK ≤ ub;

Let l = 1, u = k;
while l < u do

mid = ⌊(l + u)/2⌋ ;
count = some positive integer say N ;
flag = 1 ;
δ = Zmid ;
while count > 0 and flag==1 do

Apply controlled shake on graph G
′′

with value δ to get graph Gs ;
Find a lowest cost TSP tour in Gs using Lin-Kernighan TSP heuristic ;
Let T be this tour ;
if the length of T is zero then

flag=0;

count = count-1;

if flag == 0 then
u=mid;

else
l=mid+1;

MSTSP cost is equal to emax − Zu.

a don’t care stretch of a test cube, with the filled bit left-adjacent to the stretch. Simi-
larly, 0-fill and 1-fill fill all the don’t cares in the test cubes with ’0’ and ’1’ respectively.
And, R-fill fills the don’t cares in the test cubes with random values, whereas B-fill
stands for balanced X-filling proposed in [Trinadh et al 2014]. Finally, DP-fill refers
to the dynamic programming based X-filling technique proposed in this paper. It can
be seen that the combination of MSTSP-Ordering and DP-fill proposed in this paper,
has best reduction in peak input toggles. Therefore, the test cube orderings produced
by MSTSP lead to very effective reduction in peak test power. Tables V and VI show
the comparison of peak input toggles for various don’t care filling methods w.r.t to test
cube orderings given by the TetraMaxTM tool and the XStat method [Trinadh et al
2014] respectively. Each row in these tables corresponds to a benchmark circuit. The
shaded cell in each row corresponds to best don’t care filling method among all don’t
care filling methods for the given ordering. We can observe that the proposed DP-fill
method consistently performed better than all the other don’t care filling methods, un-
der both the test cube orderings. This is because, under a given ordering, DP-fill is an
optimal algorithm for minimizing peak input toggles. Additionally, it can be observed
from Tables IV, V and VI that the combination of MSTSP-ordering + DP-fill is most
effective in reducing peak toggles, especially for the circuits whose test sets have less
number of don’t cares.

Table IV. Peak Input Toggles : MSTSP-Ordering with different Don’t
care fillings

Circuit MT-fill R-fill 0-fill 1-fill B-fill DP-fill
b01 3 2 2 3 2 2
b02 1 2 2 1 1 1
b03 10 20 19 15 6 4
b04 34 46 42 39 22 13
b05 18 23 19 19 12 8
b06 2 2 2 2 2 2
b07 26 31 39 25 17 11
b08 14 21 18 13 6 6
b09 15 17 15 16 9 8
b10 10 19 12 10 7 6
b11 20 26 22 16 12 8
b12 47 83 90 67 34 16
b13 27 32 28 21 15 9
b14 104 166 208 150 74 39
b15 221 281 298 196 109 47
b17 762 799 908 683 343 167
b18 1515 1766 2200 1567 759 403
b19 2911 3462 4327 3167 1374 646
b20 288 291 323 277 118 76
b21 252 289 340 237 147 82
b22 327 421 470 423 217 120

Table V. Peak Input Toggles : Tool-Ordering with different don’t care
fillings

Circuit MT-fill R-fill 0-fill 1-fill B-fill DP-fill
b01 4 4 4 4 4 4
b02 4 4 4 4 4 4
b03 15 21 17 16 14 14
b04 41 50 47 45 39 39
b05 20 23 19 20 17 17
b06 4 4 5 4 4 4
b07 31 30 34 27 23 23
b08 20 20 20 18 14 12
b09 18 20 22 18 18 18
b10 12 19 17 15 10 10
b11 22 27 29 21 20 20
b12 63 76 62 89 59 58
b13 31 34 38 30 30 29
b14 181 180 194 159 157 156
b15 305 334 344 298 292 282
b17 916 923 943 880 871 841
b18 2134 2167 2251 2114 2066 2009
b19 3926 4099 4201 3955 3819 3753
b20 309 314 315 305 302 299
b21 317 307 315 305 276 260
b22 489 494 507 471 472 466

Next, we will compare MSTSP-ordering + DP-fill and I-ordering + DP-fill with other
existing techniques in the literature. Table VII shows the peak input toggles compar-
ison between the proposed techniques and best known existing techniques. Column
1 shows the benchmark name and column 2 shows minimum peak input toggles ob-
tained among all aforementioned don’t care filling methods, under test cube ordering
given by the TetraMaxTM tool. In the technique proposed in [Trinadh et al 2013], only
the impact of test cube ordering is considered, while in [Wu et al 2011] only the impact

Table VI. Peak Input Toggles : XStat-Ordering [Trinadh et al 2014]
with different don’t care fillings

Circuit MT-fill R-fill 0-fill 1-fill B-fill DP-fill
b01 3 4 4 3 3 3
b02 4 4 4 4 4 4
b03 15 19 18 15 8 7
b04 45 52 47 43 25 24
b05 21 24 21 23 15 14
b06 5 4 5 5 5 4
b07 27 33 38 25 15 14
b08 16 20 18 15 8 7
b09 20 19 17 16 14 14
b10 14 20 16 14 10 7
b11 18 26 22 20 10 9
b12 60 76 99 68 31 31
b13 37 32 28 23 17 17
b14 181 164 208 152 79 79
b15 308 277 314 198 144 144
b17 912 774 953 680 421 421
b18 2130 1752 2200 1569 1011 1008
b19 3926 3457 4340 3168 1877 1877
b20 314 291 352 297 152 152
b21 288 290 346 237 130 130
b22 483 419 475 440 237 234

of don’t care filling is considered. Columns 3, 4 and 5 show the minimum peak input
toggles obtained using the techniques proposed in [Trinadh et al 2013], [Wu et al 2011]
and [Trinadh et al 2014] respectively. Column 6 shows the minimum peak input toggles
obtained after applying the proposed DP-fill method under the proposed I-Ordering
based test cube ordering scheme. Column 7 shows the percentage improvement of pro-
posed I-ordering+DP-fill technique over the best of existing don’t care filling methods
under the test cube ordering given by the commercial ATPG tool. Columns 8-10 of this
table show the percentage improvement of proposed I-ordering + DP-fill technique over
these best known low power testing techniques. Column 11 shows the minimum peak
input toggles obtained after applying the proposed DP-fill method under the proposed
MSTSP-Ordering based test cube ordering scheme. Column 12 shows the percentage
improvement of proposed MSTSP-ordering+DP-fill technique over the best of exist-
ing don’t care filling methods under the test cube ordering given by the commercial
ATPG tool. Columns 13-15 of this table show the percentage improvement of proposed
MSTSP-ordering + DP-fill technique over the mentioned best known low power testing
techniques in the literature. It is evident that the proposed techniques outperforms all
the existing techniques for most of the benchmark circuits. Among I-ordering + DP-fill
and MSTSP-ordering + DP-fill, the former performs the best benchmarks whose test
sets are dominated by don’t cares (> ≈ 75% don’t cares), and the latter performs the
best otherwise. So, I-ordering + DP-fill is good for circuits whose test sets are domi-
nated for don’t cares and MSTSP-ordering + DP-fill is good circuits whose test sets are
not dominated by don’t cares.

Table VIII shows the comparisons of actual peak power dissipation during test, be-
tween the proposed techniques and the existing techniques. It can be observed that
similar to reduction in peak toggles, the proposed techniques performs better than all
the existing techniques in reducing peak power for most of the benchmarks and per-
centage improvement increases with increase in circuit size. This can be attributed to
the well known fact that there is a good correlation between input toggles and circuit
toggles, as explained in [Girard et al 1998].

T
a

b
le

V
II

.
P

e
a

k
In

p
u

t
T
o

g
g

le
s

:
C

o
m

p
a

ri
s
o

n
o

f
D

P
-fi

ll
M

e
th

o
d

(I
-O

rd
e

ri
n

g
+

D
P

-fi
ll

a
n

d
M

S
T

S
P

-O
rd

e
ri

n
g

+
D

P
-fi

ll)
O

ve
r

E
x
is

ti
n

g
O

rd
e

ri
n

g
+

F
ill

in
g

M
e

th
o

d
s

I-
O

rd
er

in
g

+
D

P
-fi

ll
ov

er
M

S
T

S
P

-O
rd

er
in

g
+

D
P

-fi
ll

ov
er

%
Im

p
ro

v
em

en
t

of
%

Im
p

ro
v
em

en
t

of
I-

O
rd

er
in

g
+

D
P

-fi
ll

M
S

T
S

P
-O

rd
er

in
g

+
D

P
-fi

ll
C

ir
cu

it
T

oo
l

IS
A

A
d

j-
fi

ll
X

S
ta

t
P

ro
p

os
ed

T
oo

l
IS

A
A

d
j-

fi
ll

X
S

ta
t

P
ro

p
os

ed
T

oo
l

IS
A

A
d

j-
fi

ll
X

S
ta

t
[T

ri
n

a
d

h
et

a
l

2
0
1
3
]

[W
u

et
a
l

2
0
1
1
]

[T
ri

n
a
d

h
et

a
l

2
0
1
4
]

[T
ri

n
a
d

h
et

a
l

2
0
1
3
]

[W
u

et
a
l

2
0
1
1
]

[T
ri

n
a
d

h
et

a
l

2
0
1
4
]

[T
ri

n
a
d

h
et

a
l

2
0
1
3
]

[W
u

et
a
l

2
0
1
1
]

[T
ri

n
a
d

h
et

a
l

2
0
1
4
]

b
0
1

4
2

4
3

3
2
5

-5
0

2
5

0
2

5
0

0
5
0

3
3
.3

b
0
2

4
1

3
4

3
2
5

-2
0
0

0
2
5

1
7
5

0
6
6
.7

7
5

b
0
3

1
4

8
6

8
6

5
7
.1

2
5

0
2
5

4
7
1
.4

5
0

3
3
.3

5
0

b
0
4

3
9

3
1

2
9

2
5

1
5

6
1
.5

5
1
.6

4
8
.3

4
0

1
3

6
6
.7

5
8
.0

6
5
5
.2

4
8

b
0
5

1
7

1
2

1
9

1
5

1
4

1
7
.6

-1
6
.7

2
6
.3

6
.7

8
5
2
.9

3
3
.3

5
7
.9

4
6
.7

b
0
6

4
2

4
4

4
0

-1
0
0

0
0

2
5
0

0
5
0

5
0

b
0
7

2
3

1
8

1
7

1
5

1
1

5
2
.2

3
8
.9

3
5
.3

2
6
.7

1
1

5
2
.2

3
8
.9

3
5
.3

2
6
.7

b
0
8

1
4

1
0

9
8

6
5
7
.1

4
0

3
3
.3

2
5

6
5
7
.1

4
0

3
3
.3

2
5

b
0
9

1
8

1
1

1
7

1
4

1
1

3
8
.9

0
3
5
.3

2
1
.4

8
5
5
.6

2
7
.3

5
2
.9

4
2
.9

b
1
0

1
0

9
9

1
0

7
3
0

2
2
.2

2
2
.2

3
0

6
4
0

3
3
.3

3
3
.3

4
0

b
1
1

2
0

1
2

1
8

1
0

9
5
5

2
5

5
0

1
0

8
6
0

3
3
.3

5
5
.6

2
0

b
1
2

5
9

4
6

7
7

3
1

1
5

7
4
.6

6
7
.4

8
0
.5

5
1
.6

1
6

7
2
.9

6
5
.2

7
9
.2

2
4
8
.4

b
1
3

3
0

2
0

2
6

1
7

1
0

6
6
.7

5
0

6
1
.5

4
1
.2

9
7
0

5
5

6
5
.4

4
7
.1

b
1
4

1
5
7

8
9

6
9

7
9

4
0

7
4
.5

5
5
.1

4
2

4
9
.4

3
9

7
5
.2

5
6
.2

4
3
.5

5
0
.6

b
1
5

2
9
2

1
7
2

1
4
9

1
4
4

3
3

8
8
.7

8
0
.8

7
7
.9

7
7
.1

4
7

8
3
.9

7
2
.7

6
8
.5

6
7
.4

b
1
7

8
7
1

5
7
3

4
3
8

4
2
1

8
5

9
0
.2

8
5
.2

8
0
.6

7
9
.8

1
6
7

8
0
.8

7
0
.9

6
1
.9

6
0
.3

b
1
8

2
0
6
6

1
3
8
4

1
0
6
5

1
0
1
1

2
3
2

8
8
.8

8
3
.2

7
8
.2

7
7
.1

4
0
3

8
0
.5

7
0
.9

6
2
.2

6
0
.1

b
1
9

3
8
1
9

2
6
0
9

2
1
0
0

1
8
7
7

3
6
4

9
0
.5

8
6

8
2
.7

8
0
.6

6
4
6

8
3
.1

7
5
.2

6
9
.2

6
5
.6

b
2
0

3
0
2

2
1
4

1
9
8

1
5
2

6
5

7
8
.5

6
9
.6

6
7
.2

5
7
.2

7
6

7
4
.8

6
4
.5

6
1
.6

5
0

b
2
1

2
7
6

1
8
1

1
8
2

1
3
0

6
7

7
5
.7

6
3

6
3
.2

4
8
.5

8
2

7
0
.3

5
4
.7

5
5
.0

3
6
.9

b
2
2

4
7
1

3
2
4

2
3
2

2
3
7

9
1

8
0
.7

7
1
.9

6
0
.8

6
1
.6

1
2
0

7
4
.5

6
3
.0

4
8
.3

4
9
.4

T
a

b
le

V
II

I.
P

e
a

k
C

ir
c
u

it
P

o
w

e
r

(i
n
µ

W
)

:
C

o
m

p
a

ri
s
o

n
o

f
D

P
-fi

ll-
M

e
th

o
d

(I
-O

rd
e

ri
n

g
+

D
P

-fi
ll

a
n

d
M

S
T

S
P

-o
rd

e
ri

n
g

+
D

P
-fi

ll)
O

ve
r

E
x
is

ti
n

g
O

rd
e

ri
n

g
+

F
ill

in
g

M
e

th
o

d
s

I-
O

rd
er

in
g

+
D

P
-fi

ll
M

S
T

S
P

-O
rd

er
in

g
+

D
P

-fi
ll

%
Im

p
ro

v
em

en
t

%
Im

p
ro

v
em

en
t

of
I-

O
rd

er
in

g
+

D
P

-fi
ll

ov
er

of
M

S
T

S
P

-O
rd

er
in

g
+

D
P

-fi
ll

ov
er

C
ir

cu
it

T
oo

l
IS

A
A

d
j-

fi
ll

X
S

ta
t

P
ro

p
os

ed
T

oo
l

IS
A

A
d

j-
fi

ll
X

S
ta

t
P

ro
p

os
ed

T
oo

l
IS

A
A

d
j-

fi
ll

X
S

ta
t

[T
ri

n
a
d

h
et

a
l

2
0
1
3
]

[W
u

et
a
l

2
0
1
1
]

[T
ri

n
a
d

h
et

a
l

2
0
1
4
]

[T
ri

n
a
d

h
et

a
l

2
0
1
3
]

[W
u

et
a
l

2
0
1
1
]

[T
ri

n
a
d

h
et

a
l

2
0
1
4
]

[T
ri

n
a
d

h
et

a
l

2
0
1
3
]

[W
u

et
a
l

2
0
1
1
]

[T
ri

n
a
d

h
et

a
l

2
0
1
4
]

b
0
1

3
.8

2
.3

3
.3

3
.1

3
.1

1
8
.8

-3
3
.1

6
.1

0
2
.3

3
8
.4

-0
.9

2
8
.8

2
4
.2

b
0
2

2
.4

1
.5

2
.8

2
.6

2
.6

-6
.2

-6
8
.3

7
.3

0
1
.4

4
2
.8

9
.4

5
0
.1

4
6
.2

b
0
3

5
.6

4
4
.6

3
.9

4
.2

2
5

-5
.5

9
.2

-5
.6

3
.0

4
5
.9

2
3
.9

3
4
.5

2
3
.8

b
0
4

1
7
.2

1
7
.1

1
5
.8

1
6
.9

1
4
.8

1
4

1
3
.9

6
.6

1
2
.7

1
3
.1

7
2
3
.3

2
3
.2

1
6
.6

2
2
.1

b
0
5

1
5
.6

1
3
.6

1
6
.4

1
4
.6

1
4
.9

4
.4

-9
.8

9
-2

1
2
.7

1
9
.0

6
.9

2
2
.9

1
3
.5

b
0
6

4
.4

2
.6

4
.4

4
.3

4
.4

0
.9

-6
7
.2

-0
.1

-1
.7

2
.2

4
9
.4

1
4
.5

4
8
.8

4
8
.0

b
0
7

1
5
.7

1
4
.8

1
3
.1

1
4
.6

1
3
.3

1
5
.7

1
0
.6

-1
.5

8
.9

1
3
.0

1
1
7
.3

1
2
.3

0
.4

1
0
.6

b
0
8

7
.8

6
.8

8
.1

7
.7

6
.3

1
8
.5

6
.8

2
1
.5

1
8
.1

5
.5

1
2
9
.1

1
8
.9

3
1
.7

2
8
.7

b
0
9

9
.8

8
.4

1
0
.7

8
.9

7
.4

2
4
.7

1
2
.1

3
0
.8

1
7
.2

8
.0

1
8
.1

4
.4

2
4
.8

9
.9

b
1
0

9
.3

8
.8

9
8
.7

8
.2

1
1
.6

6
.5

9
.2

6
.3

7
.1

2
3
.3

1
8
.9

2
1
.3

1
8
.7

b
1
1

1
6
.4

1
5
.4

1
5
.2

1
4
.6

1
3
.9

1
5
.2

9
.6

8
.9

4
.8

1
2
.8

2
1
.6

1
6
.4

1
5
.8

1
2
.0

b
1
2

5
6
.5

4
9
.4

5
8
.4

3
9
.3

3
6
.4

3
5
.5

2
6
.3

3
7
.6

7
.2

3
5
.9

3
6
.6

2
7
.4

3
8
.6

8
.7

b
1
3

1
8

1
3
.7

1
5
.1

1
4
.7

1
0
.9

3
9
.4

2
0
.1

2
7
.6

2
5
.3

1
0
.3

4
3
.1

2
5
.0

3
2
.0

8
3
0
.0

b
1
4

9
9
.3

1
0
1
.7

9
9

8
6
.5

8
5
.4

1
4

1
6
.1

1
3
.8

1
.3

8
4
.9

1
4
.5

1
6
.5

1
4
.2

1
.8

b
1
5

1
9
7
.1

1
7
1

1
5
5
.3

1
4
0
.4

1
2
2

3
8
.1

2
8
.7

2
1
.4

1
3
.1

1
2
4
.2

3
7
.0

2
7
.4

2
0
.0

1
1
.5

b
1
7

1
0
8
5
.5

8
4
7
.1

6
6
5
.5

6
4
1
.7

4
3
1
.6

6
0
.2

4
9
.1

3
5
.1

3
2
.7

5
1
9
.6

5
2
.1

3
8
.7

2
1
.9

1
9
.0

b
1
8

3
3
5
0
.7

2
4
0
5
.3

2
0
1
2
.2

1
7
6
1

1
1
9
2

6
4
.4

5
0
.4

4
0
.8

3
2
.3

1
4
0
6
.5

5
8
.0

4
1
.5

3
0
.1

2
0
.1

b
1
9

7
6
2
1
.6

6
7
0
8
.3

5
8
8
5

4
1
3
5

2
6
9
9
.4

6
4
.6

5
9
.8

5
4
.1

3
4
.7

3
3
5
1
.0

5
6
.0

5
0
.1

4
3
.1

1
9
.0

b
2
0

2
5
2
.8

2
4
3

2
1
4
.8

2
0
2
.6

1
9
5
.3

2
2
.7

1
9
.6

9
.1

3
.6

1
9
3
.6

2
3
.4

2
0
.3

9
.9

4
.4

b
2
1

2
4
8
.4

2
2
6
.1

2
2
3
.8

1
8
3
.2

1
6
6
.4

3
3

2
6
.4

2
5
.6

9
.2

1
7
0
.1

3
1
.5

2
4
.8

2
4
.0

7
.1

b
2
2

3
9
5
.6

3
7
2
.8

3
2
8
.9

3
0
4
.8

2
7
7
.1

3
0

2
5
.7

1
5
.8

9
.1

2
8
5
.5

2
7
.8

2
3
.4

1
3
.2

6
.3

Additionally, we can observe that the magnitude of improvement in Tables VII
and VIII is not same. The difference is due to the fact that the relation between in-
put toggles and circuit toggles is not perfectly linear and while computing actual power
dissipation of the circuit, we need to take interconnect capacitances into account. How-
ever, our proposed techniques outperforms all the existing techniques considerably, in
both peak input toggles as well as actual peak circuit power.

Thus, in reducing peak input toggles during testing, while MSTSP-ordering is effec-
tive when test sets have small don’t care stretches, while I-ordering is effective when
test sets have large don’t care stretches.

In [Girard et al 1998], it was shown that there is a strong correlation between input
toggles and internal toggles inside the circuit. Under this assumption, we have pro-
posed an optimal algorithm that will minimize the input toggles to the circuit during
the testing phase. In the next section, we relax this assumption and try to search for
solutions near the solution so-far obtained, using the local search technique.

10. LOCAL SEARCH USING ITERATIVE 1-BIT NEIGHBORHOOD

Although for a given test cube ordering, DP-fill gives the optimal X-filling for mini-
mizing peak input toggles, and there is a good correlation between input toggles and
circuit toggles [Girard et al 1998], there is no guarantee that this solution also opti-
mally minimizes peak circuit toggles. However, from the results observed in previous
sections, we observed that there is a significant reduction in peak circuit toggles also
by the proposed DP-fill method. In this section, we will explore and analyze the quality
of solutions obtained by DP-fill, for peak circuit toggle reduction, by pruning using the
local search technique.

We denote SDP−fill as the solution obtained using DP-fill suggested in this paper.
In every iteration, Scur stands for the best-so-far solution in the current iteration of
the local search technique. The 1-bit neighborhood of a test vector T contains all those
vectors that can be obtained by flipping exactly 1-bit in T . The local search technique
searches for better solutions in the 1-bit neighborhood of the vectors in the test vector
pair, that contribute to the peak power dissipation in Scur. This local search technique
was used to prune the solutions generated by DP-fill is outlined in Figure 9.

Fig. 9. Flow chart description of the local search technique with 1-bit neighborhood

Although we have adhered to 1-bit neighborhood in this paper, in principle, the local
search technique shown in Figure 9, can be extended to a more general case of n-
bit neighborhood, for a given n, in a straightforward manner. However, it should be
noted that searching all the possible n-bit neighborhoods (1 ≤ n ≤ T , where T is

test vector size) is intractable, because the size of the search space is
∑T

n=1
n! = 2n.

The results obtained by applying the described local search technique for greedy as
well simulated annealing (SA) strategies is shown in Table IX. It can be seen that
the savings is marginal, thereby validating our idea of optimizing input toggles as an
effective technique for minimizing peak power dissipation during testing.

Table IX. Additional Peak Power Savings obtained by the Local Search Technique with 1-bit Neighborhood

Greedy Pruning Simulated Annealing (SA) Pruning
Circuit DP-fill DP-fill + %Improvement Additional DP-fill + %Improvement Additional

(in µW) Greedy Pruning (in µW) Simulation time SA Pruning (in µW) Simulation time
b01 3.07 3.07 0 0s 3.07 0 0.001s
b02 2.6 2.19 15.67 0m0.03s 2.19 15.59 0m0.481s
b03 4.17 4.12 1.18 0m0.64s 4.12 1.3 0m4.728s
b04 14.76 13.23 10.36 0m6.83s 13.23 10.39 1m49.907s
b05 14.92 14.91 0.09 0m0.91s 14.86 0.43 0m13.423s
b06 4.35 4.28 1.68 0m0.06s 4.28 1.63 0m0.208s
b07 13.26 12.24 7.71 0m3.10s 12.24 7.68 0m26.645s
b08 6.89 6.79 1.47 0m0.48s 6.79 1.54 0m8.717s
b09 7.4 6.94 6.15 0m0.17s 6.94 6.1 0m0.790s
b10 8.19 8.03 1.92 0m0.41s 8.03 1.93 0m13.768s
b11 13.88 13.88 0 0m1.023s 13.88 0 0m26.877s
b12 36.42 36.12 0.82 0m30.62s 36.12 0.83 4m23.086s
b13 10.94 10.79 1.39 0m1.68s 10.79 1.36 0m21.156s
b14 85.37 82.78 3.03 2m47.09s 81.48 4.56 8m13.430s
b15 122.01 113.73 6.78 66m14.21s 117.18 3.96 39m20.670s
b17 431.6 422.17 2.19 45h37m37s 424.57 1.63 28h10m45s
b18 1192.03 1179.93 1.02 46h7m22s 1184.7 0.61 28h40m35s
b19 2699.35 2696.11 0.12 47h35m47s 2696.11 0.12 30h14m20s
b20 195.34 190.22 2.62 57m0.19s 189.76 2.86 56m56.429s
b21 166.38 161.54 2.91 3m35.40s 161.54 2.91 20m44.411s
b22 277.07 265.98 4.0 14h15m51s 267.39 3.5 9h12m25s

Average - - 3.39 3.28 -

Finally, the results obtained by applying the described local search technique for
greedy as well simulated annealing (SA) strategies is shown in Table IX. It can be
seen that the savings is marginal, thereby validating our idea of optimal minimization
of input toggles as an effective technique for minimizing peak power dissipation during
testing.

11. CONCLUSIONS

We address the problem of peak capture power reduction during at-speed stuck-at test-
ing, that leads to false delay failures. Under Combinational State Preservation (CSP-
scan) based design for testability (DFT) technique, we show that test cube ordering
produced by the proposed Max Scatter Hamiltonian path algorithm gives best reduc-
tion in peak test power when the test cubes are not dominated by don’t cares, and the
proposed I-ordering algorithm gives the best reduction in peak test power otherwise.
When test cubes have significant don’t care bits and there is a good correlation of input
toggles to circuit toggles, don’t care filling is very effective for reducing peak capture
power. We have mapped the problem of optimal don’t care filling for a given test cube
ordering, to a variant of interval coloring problem, so as to minimize peak input toggles
of the circuit. The algorithm uses Dynamic Programming to obtain a lower bound, and

uses pigeon-hole principle to fill the don’t cares (DP-fill), such that the lower bound is
achieved. The algorithm is proven to be correct and optimal.

The proposed techniques were applied to all the benchmarks from ITC suite, and
found to produce significant reductions in peak capture power dissipated inside the
circuit during at-speed stuck-at testing. To the best of our knowledge, DP-fill is the first
ever reported don’t filling algorithm that is optimal. We have relaxed the assumption
that circuit toggles is closely correlated to input toggles, and performed local search on
the 1-bit neighborhood of the solution produced by the proposed technique. Both greedy
and simulated annealing strategies are adopted to perform the search, and found to
have very minimal extra savings. From this, we can conclude that the proposed tech-
nique not only optimally minimizes peak input toggles, but also produces significant
savings in peak power dissipation during at-speed stuck-at testing.

REFERENCES

N. Ahmed, M. Tehranipoor, and V. Jayaram. 2006. Timing-based delay test for screening small delay defects.
In Design Automation Conference. ACM/IEEE, 320–325.

S. Almukhaizim et al. 2008. Peak Power Reduction Through Dynamic Partitioning of Scan Chains. In Inter-
national Test Conference. IEEE, 1–10.

Esther M. Arkin et al. 1997. On the Maximum Scatter TSP. In Symposium on Discrete Algorithms. ACM-
SIAM, 211–220.

Fang Bao et al. 2013. Efficient Pattern Generation for Small-Delay Defects Using Selection of Critical Faults.
Journal of Electronic Testing 29, 1 (2013), 35–48.

Swarup Bhunia, Hamid Mahmoodi, Arijit Raychowdhury, , and Kaushik Roy. 2004. First Level Hold: A
Novel Low-overhead Delay Fault Testing Technique. In Defect and Fault Tolerance. IEEE, 314–315.

Swarup Bhunia, Hamid Mahmoodi, Arijit Raychowdhury, , and Kaushik Roy. 2005. A Novel Low-overhead
Delay Testing Technique for Arbitrary Two-Pattern Test Application. In Design Automation and Test in
Europe. IEEE, Munich, Germany, 1136–1141.

S. Bhunia et al. 2005. Low-power scan design using first-level supply gating. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 13, 3 (2005), 384–395.

V. Dabholkar et al. 1998. Techniques for minimizing power dissipation in scan and combinational circuits
during test application. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 17, 12 (1998), 1325–1333.

B. Dervisoglu and G. Stong. 1991. Design for Testability: Using Scanpath Techniques for Path-Delay Test
and Measurement. In International Test Conference. IEEE, Nashville, TN, USA, 365–374.

V. R. Devanathan, C. P. Ravikumar, and V. Kamakoti. 2007. A Stochastic Pattern Generation and Optimiza-
tion framework for Variation-Tolerant, Power-Safe Scan Test. In International Test Conference. IEEE,
Santa Clara, CA, USA, 1–10.

V.R. Devanathan et al. 2007. A stochastic pattern generation and optimization framework for variation-
tolerant, power-safe scan test. In International Test Conference. IEEE, 1–10.

Jayashree Saxena et al. 2003. A Case Study of IR-Drop in Structured At-Speed Testing. In International
Test Conference. 1098–1104.

Kuen-Jong Lee et al. 2000. Peak-power reduction for multiple-scan circuits during test application. In Asian
Test Symposium. IEEE, 453–458.

V. R. Devanathan et al. 2007. Glitch-Aware Pattern Generation and Optimization Framework for Power-Safe
Scan Test. In VLSI Test Symposium. IEEE, Berkeley, CA, USA, 167–172.

Xijiang Lin et al. 2008. Test Power Reduction by Blocking Scan Cell Outputs. In Asian Test Symposium.
IEEE, 329–336.

S. Gerstendorfer and H. J. Wunderlich. 1999. Minimized Power Consumption for Scan-based BIST. In Inter-
national Test Conference. IEEE, Atlantic City, NJ, USA, 77–84.

P. Girard, N. Nicolici, and X. Wen. 2009. Power-Aware Testing and Test of Low Power Design. Springer.

P. Girard et al. 1998. Reducing power consumption during test application by test vector ordering. In Inter-
national Symposium on Circuits and Systems. IEEE, 296–299.

P. Girard et al. 1999. Circuit partitioning for low power BIST design with minimized peak power consump-
tion. In Asian Test Symposium. IEEE.

S.K. Goel et al. 2010. Circuit Topology-Based Test Pattern Generation for Small-Delay Defects. In Asian Test
Symposium. IEEE, 307–312.

John Larusic, Abraham P. Punnen, and Eric Aubanel. 2012. Experimental analysis of heuristics for the
Bottleneck Traveling Salesman Problem. Journal of Heuristics 18, 3 (June 2012), 473–503.

X. Liu. 2004. ATPG and DFT Algorithms for Delay Fault Testing. Ph.D. Dissertation. Virginia Polytechnic
Institute and State University, Virginia, USA.

E.J. McCluskey and Chao-Wen Tseng. 2000. Stuck-fault tests vs. actual defects. In International Test Con-
ference. IEEE, 336–342.

P. Pant et al. 2010. Lessons from at-speed scan deployment on an Intel Itanium microprocessor. In Interna-
tional Test Conference. IEEE, 1–8.

N. Parimi and Xiaoling Sun. 2004. Toggle-masking for test-per-scan VLSI circuits. In International Sympo-
sium on Defect and Fault Tolerance in VLSI Systems. IEEE, 332–338.

I. Pomeranz. 2015. Static Test Compaction for Low-Power Test Sets by Increasing the Switching Activity.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 23, 9 (2015), 1936–1940.

S. Potluri. 2015. Power:Its Manifestations during Digital Systems Testing. Ph.D. Dissertation. Indian Insti-
tute of Technology Madras, Chennai, India.

S. Potluri, S.T. Adireddy, C. Rajamanikkam, and S. Balachandran. 2013. LPScan: An algorithm for sup-
ply scaling and switching activity minimization during test. In International Conference on Computer
Design. IEEE, 463–466.

S. Potluri et al. 2015. DFT Assisted Techniques for Peak Launch-to-Capture Power Reduction during
Launch-On-Shift At-Speed Testing. ACM Transaction on Design Automation of Electronic Systems (TO-
DAES) 21, 1 (2015).

K. Sankaralingam and N.A. Touba. 2002. Controlling peak power during scan testing. In VLSI Test Sympo-
sium. IEEE, 153–159.

A. Satya Trinadh et al. 2013. An Efficient Heuristic for Peak Capture Power Minimization During Scan-
Based Test. Journal of Low Power Electronics 9, 2 (2013), 264–274.

A. Satya Trinadh et al. 2014. XStat: Statistical X-Filling Algorithm for Peak Capture Power Reduction in
Scan Tests. Journal of Low Power Electronics 10, 1 (2014), 107–115.

Vlado Vorisek et al. 2004. At-Speed Testing of SOC ICs. In Design, Automation and Test in Europe. IEEE,
30120.

Douglas B. West. 2000. Introduction to Graph Theory. Prentice Hall.

F. Wu et al. 2011. Power reduction through X-filling of transition fault test vectors for LOS testing. In
International Conference on Design Technology of Integrated Systems in Nanoscale Era. IEEE, 1–6.

C. Yao et al. 2011. Power and Thermal Constrained Test Scheduling Under Deep Submicron Technologies.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 30, 2 (2011), 317–322.

Mahmut Yilmaz et al. 2010. Test-Pattern Selection for Screening Small-Delay Defects in Very-Deep Submi-
crometer Integrated Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 29, 5 (2010), 760–773.

Received ; revised ; accepted

