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Abstract: A topology optimization approach for designing large deformation contact-aided
shape morphing compliant mechanisms is presented. Such mechanisms can be used in varying
operating conditions. Design domains are described by regular hexagonal elements. Negative
circular masks are employed to perform dual task, i.e., to decide material states of each ele-
ment and also, to generate rigid contact surfaces. Each mask is characterized by five design
variables, which are mutated by a zero-order based hill-climbing optimizer. Geometric and
material nonlinearities are considered. Continuity in normals to boundaries of the candidate
designs is ensured using a boundary resolution and smoothing scheme. Nonlinear mechanical
equilibrium equations are solved using the Newton-Raphson method. An updated Lagrange
approach in association with segment-to-segment contact method is employed for the contact
formulation. Both mutual and self contact modes are permitted. Efficacy of the approach is
demonstrated by designing four contact-aided shape morphing compliant mechanisms for differ-
ent desired curves. Performance of the deformed profiles is verified using a commercial software.
The effect of frictional contact surface on the actual profile is also studied.

Keywords: Shape morphing compliant mechanisms; Topology optimization; Boundary res-
olution and smoothing; Fourier shape descriptors; Self and mutual contact; Nonlinear finite
element analysis

1 Introduction

A compliant mechanism (CM), monolithic design, performs its task by deriving motions from
elastic deformation of its constituting flexible members. Such mechanisms have many advan-
tages over their traditional linkage-based mechanisms. When mechanisms also exploit available
contact constraints to achieve their objective then those are termed contact-aided compliant
mechanisms (Mankame and Ananthasuresh, 2007, 2004). Contact-aided compliant mechanisms
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(CCMs) can experience either self or mutual (external) or a combination of both contact modes
(Kumar et al., 2019b). The former contact occurs when a CM interacts with itself, whereas in
the later contact mode, the continuum comes in contact with external (rigid/soft) body. For
mutual contact, one can either define external contact surfaces a priori (Mankame and Anan-
thasuresh, 2007) or generate them systematically (Kumar et al., 2016). However, in case of self
contact, one needs to find contact pairs systematically as the members of a candidate design
deform and come in contact. A method for contact pairs detection for both contact modes
can be found in Kumar et al. (2019b). One can design CMs and CCMs for a wide range of
applications (Cannon and Howell, 2005; Kumar, 2017; Kumar et al., 2019a, 2020; Mehta et al.,
2009; Reddy et al., 2012; Saxena and Ananthasuresh, 2001; Tummala et al., 2013, 2014).

There exist various design approaches for CMs, which can be broadly classified into: (i) Pseudo
Rigid Body Model based approaches (Howell, 2001; Midha and Howell, 1994) and (ii) methods
based on topology optimization (Ananthasuresh et al., 1994; Frecker et al., 1997; Saxena and
Ananthasuresh, 2000; Sigmund, 1997). Readers may refer to a review article (Zhu et al., 2020)
on the approaches for designing CMs using topology optimization. The former approaches em-
ploy concepts of kinematics wherein CMs are designed from their initially known rigid-linkage
mechanisms. On the other hand, topology optimization based approaches find the optimum
material layout of a given design domain with know boundary conditions by extremizing a for-
mulated and/or given objective under a set of known constraints. Generally, a CM should be
designed to provide adequate flexibility and also, should sustain under external actuation. One
can achieve the later requirement using constraints on either strain energy, or input displace-
ments or maximum stress, etc, whereas output deformation can be employed to indicate the first
measure. Ananthasuresh et al. (1994) formulated a weighted objective using strain-energy and
output deformation and extremized that to synthesize CMs. Frecker et al. (1997) maximized
the ratio of output deformation and strain energy. Saxena and Ananthasuresh (2000) general-
ized the multi-criteria objective. Sigmund (1997) optimized the objective stemming from the
mechanical advantage with constraints on volume and input displacements. Saxena and Anan-
thasuresh (2001) and Pedersen et al. (2001) synthesized path generating CMs by extremizing
an objective based on a least-square error. To avoid timing constraints arising naturally in least
square based objectives, Ullah and Kota (1997) employed an objective derived using Fourier
Shape Descriptors (Zahn and Roskies, 1972). Rai et al. (2007) used a Fourier Shape Descrip-
tors based objective with curved beam and rigid truss elements to design fully and compliant
partially path-generating mechanisms.

F1

F2

Initial shape
Desired shape

A B

A1

B1

Self contact

External body

Mutual contact

Figure 1: A schematic diagram for illustrating a contact-aided shape morphing compliant mechanism. The initial
and desired shapes of member AB are shown when the CM is subjected to forces F1 andF2. The CM experiences
self and mutual contact while achieving its desired profile A1B1.

The geometrical shapes of the members of a mechanical design determine its performance.
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Typically, these shapes are fixed, however permitting shape changes in the design can enhance
efficiency and/or flexibility, e.g., aircraft wings, antenna reflector (Saggere and Kota, 1999). A
shape morphing compliant mechanism (SMCM) attains desired shapes in predefined member(s)
in response to external stimuli to further increase its performance. A SMCM can be viewed as a
CM having multi-output ports interrelated to each other along a priori defined flexible branches.
Most of the aforementioned work primarily focused on synthesizing CMs to achieve output at
a specific/single location. Larsen et al. (1997) and Frecker et al. (1999) were the first to design
CMs with multiple output ports. The authors in (Larsen et al., 1997) minimized the error
objective stemming from the prescribed and actual geometrical and mechanical advantages,
whereas the latter ones minimized the modified multi-criteria objective (Frecker et al., 1997).
Saxena (2005) used a genetic algorithm to design such mechanisms with multi-materials.

SMCMs have various applications wherein the mechanisms have to undergo different operating
conditions or experience different external loadings/disturbances, e.g., aircraft wings, antenna
reflectors. In addition, such morphing characteristics can be exploited efficiently in associa-
tion with contact constraints (Ramrakhyani et al., 2005; Tummala et al., 2014; Wissa et al.,
2012), i.e., contact constraints can further increase the range of application of such mechanisms.
Lu and Kota (2003); Saggere and Kota (1999) proposed synthesis approaches for such mech-
anisms wherein they employed beam elements to represent the design domain. Mehta et al.
(2008) presented morphing aircraft skin using structures consisting of contact-aided compliant
mechanisms. A CCM helps alleviating stresses and achieving high stiffness in the direction per-
pendicular to the plane of deformation. Ramrakhyani et al. (2005) realized morphing aircraft
structure using tendon-actuated compliant cellular trusses. Wissa et al. (2012) designed and
tested passively morphing ornithopter wings which were modeled using compliant splines. The
contact analyses in Mehta et al. (2008); Ramrakhyani et al. (2005); Wissa et al. (2012) were per-
formed using commercial software. A typical shape morphing compliant design undergoes large
deformation to achieve its desired profile. In addition, some members of the SMCMmay interact
internally (self contact) and also, with external rigid bodies (mutual contact) while deforming
(Fig. 1). Contact may or may not be essential to large deformation SMCMs. However, having
contact constraints included in the approach rather makes the design method more generic and
suitable for a set of different applications including or excluding contact. In case contact is not
desired, one may have to find and penalize the candidate designs whose constituent members
intersect. As a consequence, many potent designs may get ignored, or a desired design may
not be obtained. Contact analysis is mandatory in case of (contact-aided) SMCMs wherein a
subregion must come into contact with another for the latter to produce the desired shape, e.g.,
Example 3 and Example 4 (Sec. 4). The aim is to present a topology optimization approach to
design large deformation SMCMs experiencing self and/or mutual contact using continuum op-
timization. Those mechanisms are termed contact-aided shape morphing compliant mechanisms
(CSMCMs) herein.

The remainder of the paper is organized as follows. Section 2 describes the overall methodology
for the presented approach. The problem formulation is reported in Section 3 wherein bound-
ary smoothing, contact finite element, objective formulation and optimization algorithm are
presented. Section 4 presents four contact-aided shape morphing mechanisms, comparison with
ABAQUS analyses, performance of the optimized designs with different friction coefficients and
pertinent discussions. Lastly, in Section 5, conclusions are mentioned.

3



ρ(ΩH) = 1

ρ(ΩH) = 0

F

Fixed
s j = 1

Desired shape

A

B

(xi , yi)

ri

B1

Initial shape

si = 0

Ωcs

M1

M2

M3

Figure 2: Design procedure for contact-aided shape morphing compliant mechanisms (CSMCMs). The design
domain is discretized by hexagonal elements ΩH. Negative circular masks ΩM (red circles) are used to remove
material and also, to generate contact surfaces. Five parameters (xi, yi, ri, si, fi) define each mask. si = 1
represents a contact surface (circular solids in black) within the ith mask while si = 0 implies no contact surface.
ρ(ΩH) = 0 implies a void element while ρ(ΩH) = 1 indicates a filled element. Contact surfaces (Ωcs) interact
(shown with double head arrows) with the mechanism (mutual contact), e.g., an interaction between member M3

and Ωcs. In addition, the mechanism interacts with itself (self contact), e.g., contact between members M1 and
M2. The desired final configuration of the link AB is shown. Fixed boundary(ies) of the domain, input force(s)
and output path are also shown.

2 Methodology

Hexagonal elements are used to parameterize the design domain. These elements provide edge
connectivity between any two contiguous elements (Kumar and Saxena, 2015; Langelaar, 2007;
Saxena, 2008, 2011; Saxena and Saxena, 2007; Singh et al., 2020; Talischi et al., 2009) and thus,
alleviate checkerboard patterns or alternating filled and void elements, and point connections
naturally. Negative circular masks are employed to remove material and also, to generate
contact surfaces within some of them (Kumar et al., 2016). In cases wherein only material
removal (e.g. self contact) is to be performed, an ith mask is defined via its center coordinates
(xi, yi) and radius ri. Two more parameters (si, fi) are included within the definition of the
mask, if an external (rigid) contact surface is also to be generated. Herein, si and fi are binary
and real fraction (0 < fi < 1) variables, respectively. si = 1 indicates generation of a contact
surface with radius firi within the mask, whereas si = 0 means that no contact surface is
generated. The material state of each element toggles between void, ρ(ΩH) = 0, and solid,
ρ(ΩH) = 1, phases as positions and sizes of negative circular masks get updated. In each
optimization iteration, all unexposed elements, i.e., elements with ρ(ΩH) = 1 constitute the
potential candidate design (Fig. 2). These designs contain many V-notches on their bounding
surfaces (Fig. 3a). A boundary resolution and smoothing scheme (Kumar and Saxena, 2015),
which shifts boundary nodes systematically is implemented, so that normals of the boundaries
become well-defined (Fig. 3b). Mean value shape functions (Hormann and Floater, 2006) are
employed for nonlinear finite element analysis. To evaluate contact forces and corresponding
stiffness matrices, the augmented Lagrange multiplier method in conjunction with segment-to-
segment contact approach is implemented Kumar (2017). The Newton-Raphson method is used
to solve nonlinear mechanical equilibrium equations.
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Prior to the analysis, a set of shape morphing nodes (SMNs) are selected in the design region.
Elements containing those nodes are determined and termed shape morphing elements (SMEs).
SMEs must always be a part of the potential intermediate candidate design, i.e., SMEs constitute
a solid non-design region. The mutated negative masks which overlay on SMEs are shifted
systematically such that all SMEs remain in their solid material state. The design vector is
updated accordingly. An objective based on Fourier shape descriptors (Zahn and Roskies, 1972)
is conceptualized to evaluate the error between the desired and actual shapes. The actual shape
is defined by the updated nodal positions of SMNs after completion of the Newton-Raphson
iterations. The objective is minimized by the stochastic hill-climber method (Kumar et al.,
2015, 2017).

F

Normals

Ω1

Ω2

Serrated boundary

Self contact situation

Mutual contact situation

(a)

F

Ω2

Ω1

Normals

Unaltered element

Self contact situation

Mutual contact situation

(b)

Figure 3: Two bodies Ω1 and Ω2 come into contact. (a) Ω1 without boundary smoothing and (b) Ω1 with
boundary smoothing. Jumps in boundary normals are subdued with a boundary smoothing scheme. Self and
mutual contact sites are depicted with dash-dotted red circles.

3 Problem formulation

When two bodies interact, they experience contact forces at their respective contact boundary
facets (Fig. 4b). Typically, these forces depend on boundary normals (Wriggers, 2006). Jumps
in normals are undesirable because they lead to non-convergence in contact analysis (Wriggers,
2006). Serrated boundary facets lead to discontinuity in boundary normals (Fig. 3a). To subdue
serrations from the bounding surfaces, the boundary resolution and smoothing scheme (Kumar
and Saxena, 2013, 2015) is incorporated.

3.1 Boundary resolution and smoothing

The boundary resolution and smoothing is accomplished in two steps. In the first, identification
of boundary edges, which are not shared by two or more elements, is performed and hence,
boundary nodes constituting such edges are recognized. In the second, boundary nodes are
projected along their shortest perpendiculars on the straight segments joining the mid-points of
the boundary edges. Such projections can be performed multiple times on the updated nodal
coordinates (Kumar and Saxena, 2015).

Hexagonal elements are removed in two steps: (1) Elements which are overlaid by negative
masks are removed and then, the smoothing is performed. (2) Elements which are not affected
(Fig. 3b) by smoothing in the former step are also removed subsequently. This is equivalent to
placing additional negative masks over such elements. The latter step helps achieve candidate
CMs with slender members and thus, facilitate in their large deformation. Additionally, overall
volume of the mechanism is reduced. At the end of the second step, all remaining hexagonal
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elements are considered in their regular shape, and boundary smoothing is performed again
before contact finite element analysis is executed. As a consequence of the boundary smoothing,
some boundary elements morph into concave elements (Kumar and Saxena, 2015). Mean value
shape functions (Hormann and Floater, 2006) which can cater to generic polygonal shape finite
elements are used for finite element analysis. For the sake of completeness, we briefly present
the employed contact finite element formulation.

3.2 Contact finite element formulation

t̄1

Γ
e

1

Ω
h

1

b̄1

t̄2

Γ
e

2

Ω
h

2

b̄2

Γ
h

c1

Γ
h

c2

(a)

t̄1

Γ
e
1b̄1

t̄2

Γ
e
2

b̄2

P1

P2

g

x1

x2tc1tc2

(b)

Figure 4: Two bodies Ωk|k=1,2 (in discrete setting, Ωh
k |k=1,2) with known surface tractions t̃k, volumetric body

forces b̃k, and boundary conditions are depicted. When these bodies come into contact then contact surfaces
Γck (or Γh

ck) and respective contact surface tractions tck appear. Consider points P1 ∈ Γc1 and P2 ∈ Γc2 with
position vectors x1 and x2, respectively. Then the gap vector g is evaluated as x2 − x1.

To evaluate contact forces and corresponding contact stiffness matrices, frictionless and ad-
hesionless contact is assumed. Contact is modeled using the augmented Lagrange multiplier
method in association with the Uzawa type (Bertsekas, 2014) algorithm while considering the
segment-to-segment approach. Classical penalty method is employed in the inner loop whereas
in the outer loop, the Lagrange multiplier is updated (Wriggers, 2006). In the classical penalty
method, the contact traction tc is defined as

tc =

{

−ǫngnnp for gn < 0

0 for gn ≥ 0
(1)

where gn = (x − xp) · np is the normal gap. xp is the projection point of x ∈ Γh
c1 on the

surface Γh
c2. np is the unit normal at the projection point xp which is determined by solving

the following minimization problem

xp = {x2 : min
x2∈Γh

c2

||x− x2|| ∀x ∈ Γh
c1}. (2)

In a finite element setting, the virtual work contribution of elemental contact forces can be
written as

f ec = −

∫

Γe
c

NT
t
e
c da, (3)

and by assembling all such f ec , one can find the global contact force fc. N = [N1I, N2I] with
N1 = 1

2(1 − ξ), N2 = 1
2(1 + ξ) and ξ ∈ [−1, 1]. Further, da is the elemental area and I is the

identity tensor.
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The discretized weak form of the mechanical equilibrium equations then leads to the global
finite element equilibrium equations

f(u) = fint + fc − fext = 0, (4)

where fint, fc, and fext are the internal, contact and external forces, respectively. Eq. 4 is solved
using the Newton-Raphson iterative method. One evaluates the elemental internal force f eint as

f eint =

∫

Ωh
k

BT
ULσ dv, (5)

where BUL is the discrete strain-displacement matrix (Bathe, 2006) of an element in the current
configuration2, and dv is the elemental volume. For 2D cases such as plane strain, one can
evaluate da = t ds and dv = t da, where t is the thickness and ds is the arc segment. σ is
the Cauchy stress tensor evaluated using the nonlinear, isotropic, neo-Hookean material model
(Zienkiewicz and Taylor, 2005)

σ =
µ

J
(FF

T − I) +
λ

J
(ln J)I, J = detF (6)

where µ = E/2/(1 + ν) and λ = 2µν/(1− 2ν) are Lame’s constants, and F = Gradu+I is the
deformation gradient. Further, E and ν are Young’s modulus and Possions’ ratio, respectively.

3.3 Formulation of objective function and optimization problem

An objective based on Fourier Shape Descriptors (FSDs) (Zahn and Roskies, 1972) is formulated
and minimized. This objective lets a user to exercise individual control on the errors in shape,
size and initial orientation between two curves (Ullah and Kota, 1997). First, a curve is closed
in the clockwise sense such that it does not intersect itself. Then its Fourier coefficients are
evaluated wherein the curve is parameterized using its normalized arc length.

Let Ak
n and Bk

n be the Fourier coefficients, θk and Lk be the initial orientation and total length
of the two curves, k = a , d represent the actual and desired shapes, respectively. Further, n is
the total number of Fourier coefficients. One evaluates the FSDs objective as

f0(v) = λaAerr + λbBerr + λLLerr + λθθerr, (7)

where λa, λb, λL, andλθ are user defined weight parameters for the errors

Aerr =

n
∑

i=1

(Ad
i −Aa

i )
2, Berr =

n
∑

i=1

(Bd
i −Ba

i )
2,

Lerr = (Ld − La)2, θerr = (θd − θa)2,

(8)

and v is the design vector. The units of the λ’s are chosen such that f0 is dimensionless.The
optimization problem then is

min
v

f(v) + λv(V − V ∗),

such that, f(u) = 0; qL ≤ qi ≤ qU |qi=xi, yi, ri

si (= 0 or 1) ; fi [∈ (0, 1)]

(9)

where V ∗ and V c are the desired and current volumes of the CSMCM, and λv is the volume
penalization parameter. λv = 0 is taken, when V ∗ < V c, otherwise λv = 20 is used. qL and qU
denote the lower and upper limits for qi ∈ v.

2using the updated Lagrangian formulation
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3.4 Hill climber search

Let the total number of overlaid negative circular masks be Nm. Each mask is defined via its
x, y, r, s, and f variables. The design vector v consists of 5Nm variables. One sets a probability
parameter pr (= 0.08) for each variable d ∈ v. In each optimization iteration, one generates a
random number χ. If χ < pr, the corresponding variable is altered as dnew = dold ± (κ ×m),
where 0 < κ < 1 is a random number and m is set to 10% of the domain size, max(L1, L2). This
mutation leads to a new design vector vnew. si which indicates a contact surface generation
is mutated as, if χ < pr and κ < 0.50, si = 1, else si = 0. Likewise, fi ∈ [0, 1] is also
mutated. The magnitude of input force F is also taken as a design variable (Mankame and
Ananthasuresh, 2007) and updated as Fnew = Fold ± (κ × m). At this instance, if the input
location, output location (member) and some fixed (boundary) conditions are available in the
new design, then one evaluates the FSDs objective fnew as per design vector vnew, otherwise the
design is penalized. If fnew < fold, the design vector is updated. The process is continued until
the maximum number of iterations is reached or terminated when it is found that the change
in objective value for 10 successive optimization iteration is less than ∆f = 0.01.

Parameter’s name Units Value

Design domain — 30ΩH×30ΩH

Maximum radius of ΩM mm 8.0
Minimum radius of ΩM mm 0.1
Maximum # of iterations — 5000
Young’s modulus (E) MPa 2100
Poisson’s ratio — 0.33

Permitted volume fraction (V
∗

V
) — 0.30

Mutation probability — 0.08
Contact surface radii factor — 0.75
Maximum mutation size (mmax) — 5
Upper limit of the load (FUpp) N 1000
Lower limit of the load (FLow) N -1000
Weight of aerr (λa) rad−2 100
Weight of berr (λb) rad−2 100
Weight of length error (λL) mm−1 1
Weight of orientation error (λθ) rad−2 1
Boundary smoothing steps (β) — 10
Penalty parameter (ǫn) N/mm3 60E/L2

Penalty parameter (ǫs) N/mm3 5E/L2

Table 1: Parameters used in the synthesis for Example 1, Example 2 and Example 3. ǫn and ǫs are the penalty
parameters for mutual and self contact, respectively.

4 Numerical examples and discussion

Efficacy of the presented method is demonstrated via four contact-aided shape morphing compli-
ant mechanisms which are synthesized for different prescribed shapes (i.e. parabolic, elliptical,
and V-shape) shown in Fig. 5. The design specification is also depicted and various parame-
ters are tabulated in Table 1. Plane-strain condition is assumed. The total number of Fourier
coefficients is fixed to 50. The active set strategy in conjunction with contact-pairs detection
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(a)

F
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Desired shape

Non-design void regionL1

5.5

L2

8
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Figure 5: (a) Design specification for Example 1 and Example 2, (b) Design specification for Example 3 and (c) De-
sign specification for Example 4. For Example 1, Example 2 and Example 3, L1 = 30 3

2
mm, L2 = 30

√
3mm, L3 =

L2

3
√

3
mm. For Example 4, L1 = 39 3

2
mm, L2 = 40

√
3mm.

scheme presented in Kumar et al. (2019b) is used to determine activeness and inactiveness of
self and mutual contact modes.

4.1 Example 1

The symmetric half design domain specifications and the desired parabolic profile for this ex-
ample are depicted in Fig. 5a. The left and right corners of the top edge of the symmetric half
design domain are fixed (Fig. 5a). To achieve the optimized compliant mechanism, 12 masks in
horizontal and 8 masks in the vertical directions are employed. Only self contact is permitted
and hence, masks are not required to generate rigid contact surfaces.

The final solution is obtained after 715 optimization iterations. The final symmetric half result is
suitably converted into a full mechanism (Fig. 6a). Various configurations at different deformed
states are shown in Fig. 7. The figure also shows two locations of self contact encircled in
dash-dotted red circles. The obtained optimum actuation force is −100.59 N in the horizontal
direction. Self contact occurs much later in the deformation history and does not influence the
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(a) (b)

(c) (d)

Figure 6: Solutions to Example 1, Example 2, Example 3 and Example 4 with boundary conditions are shown in
figures (a), (b), (c) and (d), respectively. The final positions and sizes of circular masks (red) are also depicted.

actual shape much. One can notice that the final mechanism has some extra appendages that
mechanically may not be contributing significantly and thus, those may be removed in the post
processing step.

4.2 Example 2

The design specifications, optimization parameters, and the number of masks used are the same
as those for Example 1, however, the final desired shape sought is elliptical (Fig. 5a). The
optimized design is shown in Fig. 6b. The final positions and shapes of the negative masks are
also depicted. Deformed configurations of the full mechanism at different states are shown in
Fig. 8. While deforming, the mechanism experiences self contact at two locations (Fig. 8). The
final mechanism is obtained after 782 optimization iterations with −96.64 N actuating force in
the horizontal direction. Self contact happens much earlier in the deformation history, which
helps achieve the actual elliptical profile, very close to the desired shape (Table 2).

10



(a) (b) (c)

Fixed

Fixed

Input force

Figure 7: Example 1: Three deformed configurations (blue) are overlayed on the undeformed mechanism (gray).
Figure (c) depicts the desired (black curve) and actual (green curve) shapes of the specified vertical member.
Active contact locations are depicted using dash-dotted red circles. The input force and boundary conditions are
also shown.

Fixed
Fixed

Fixed

Input force

Fixed

(a) (b) (c)

Figure 8: Example 2: Three deformed configurations (blue) are depicted with the undeformed mechanism (gray).
The desired (black curve) and actual (green curve) shapes of the specified vertical member are shown in (c).
Dash-dotted red circles are used to depict active contact locations. The input force and boundary conditions are
also shown.

4.3 Example 3

The design specifications for the third example are shown in Fig. 5b. The same design param-
eters are used as for Example 1. The top and bottom corners of the right edge of the design
domain are fixed. We take 10 masks in each direction for optimization. The masks are permit-
ted to generate contact surfaces, i.e., 5 design parameters are used for each mask. This example
is solved to achieve a V-shape for the specified edge (Fig. 5b). Note that in a continuum set-
ting, getting such desired shapes is only possible if one uses very fine mesh and/or if there is
discontinuity/notch at that boundary. For coarse meshes this is an extreme test case for the
proposed mechanism design methodology. The optimum solution (Fig. 6c) is obtained after 947
optimization iterations. The mechanism interacts with only one contact surface though many
such surfaces are present (Fig. 9). The final input force in the horizontal direction is −96.30
N. Various deformed configurations with active contact locations, actuation force, boundary

11



Fixed

Fixed

Input force

(a) (b) (c)

Figure 9: Example 3: Three deformed configurations (blue) along with input force and boundary conditions are
overlayed on the undeformed mechanism (gray). Figure (c) depicts the desired (black curve) and actual (green
curve) shapes of the specified horizontal member. The active contact surface is depicted with dash-dotted red
circles.

condition are depicted in Fig. 9. Herein, mutual contact occurs much earlier in the deforma-
tion history. It is reckoned that the relative frictionless slip between the rigid surface and the
loop (top left) contributes significantly to achieving a shape close to the ‘V’ profile. However,
the desired ‘kink’ is not observed, this is because continuum surface deformations are usually
smooth despite the presence of contact.

4.4 Example 4

The design domain specifications for Example 4 are displayed in Fig. 5c. The left edge of the
domain is fixed. A non-design void region of size 39L2

40 × L1

5.5 , symmetric to the center of the
domain, as illustrated in the figure, is considered. An input force is applied on the top edge
as depicted in Fig. 5c. The initial and desired shapes of a potential contact-aided compliant
mechanism are indicated in Fig. 5c. 40×39 hexagonal elements are used to discretize the design
domain. We employ 12 and 10 negative masks along the x− and y−directions, respectively.
Other design parameters are the same as those mentioned in Table 1. Masks are permitted to
remove only material but not to generate contact surfaces, thus contact can only occur as self
contact between flexible members. The final solution of the mechanism with final shape and

Input force

(a) (b) (c)

Fixed

Fixed

Figure 10: Three deformed configurations (blue) are overlayed on the undeformed mechanism (gray). Figure
(c) depicts the desired (black curve) and actual (green curve) shapes of the specified horizontal member. Active
contact locations are depicted using dash-dotted red circles. The input force and boundary conditions are also
shown. The desired shape cannot be obtained unless there is contact between the top and bottom subregions.
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size of the masks with their position is shown in Fig. 6d. Different configurations at different
instances are illustrated in Fig. 10. Self contact sites are also depicted in the figure using the
dash-dotted red circles. The final input force is −25.0N in the y−direction. One can notice
that the mechanism achieves the desired profile while deforming due to self contact. Thus, self
contact can play a vital role in achieving the final desired profile of a SMCM.

4.5 Comparison between the desired and actual curves

The error in shape and size between the two curves is formulated with respect to respec-
tive Fourier coefficients in terms of Rm =

√

A2
m +B2

m, where Rm|(m=1,2,··· ,n) are curve invari-
ants (Zahn and Roskies, 1972). The overall relative change in shape ζs is evaluated as

ζs =

[

1

n

n
∑

m=1

|Rd
m −Ra

m|

Rd
n

]

, (10)

where Rd
m and Ra

m are invariants corresponding to the desired and actual curves respectively.

Likewise, the relative change in lengths is evaluated as ζl =
|Ld−La|

Ld .

Table 2: Percentage change in FSD coefficients and length of actual curve of CSMCMs with respect to their
corresponding desired curves

Mechanisms ζs (%) ζl (%)

Example 1 0.394 4.645
Example 2 0.233 5.962
Example 3 0.557 12.722
Example 4 1.99 3.12

Table 2 depicts the comparison of ζs and ζl for the presented examples. One notices for each
problem ζs is within 2% (Table 2), indicating good shape agreement between the actual and
desired curves. We notice 12.72% length error between the desired and actual curves for Ex-
ample 3.

4.6 Verification of the deformed profiles

ABAQUS is used to appraise the accuracy of the presented design approach by comparing the
deformed profiles for the optimized designs with those obtained by ABAQUS analyses.

Table 3: Percentage change in FSDs coefficients and length of actual curve of CSMCMs with respect to their
corresponding curves obtained using ABAQUS

Mechanisms ζs (%) ζl (%)

Example 1 0.1808 7.043
Example 2 0.1126 5.817
Example 3 0.047 0.67
Example 4 1.97 3.01

To perform the ABAQUS nonlinear contact analyses, (i) the optimal forces, (ii) boundary
conditions, and (iii) active contact locations (self and/or mutual) of the optimized solutions
(Fig. 6) in association with the neo-Hookean material model, are used. Using the information
of boundary nodes, the optimized results are converted into respective CAD models. Four-
noded plain-strain elements (CPE4I) are employed to describe the extracted CAD model of the
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Figure 11: The deformed profiles of the actual curves for Example 1, Example 2, Example 3 and Example 4 and
those obtained using ABAQUS are depicted in (a), (b), (c), and (d), respectively. Horizontal and vertical axes
of the plots represent x− and y−positions of the curves, respectively.

mechanism. The actual profiles and those obtained using ABAQUS for the respective examples,
are depicted in Fig. 11. The analyses indicate that the obtained deformed shapes closely follow
the respective actual deformed shapes for the presented examples (Fig. 11 and Table 3).

4.7 Influence of friction

In this section, we present a study of frictional contact surfaces on the performance (the ability
to obtain the desired deformed profiles) of the final mechanisms in ABAQUS by considering
different friction coefficients. The presented topology optimization approach though does not
account for frictional contact, it can be readily added using the formulation mentioned in (Sauer
and De Lorenzis, 2015).

The deformed shapes of the pre-sepcified constituting members of the respective examples with
µf = 0,µf = 0.25 and µf = 0.35 are overlaid and compared in Fig. 12. Percentage change in
the FSDs coefficients and lengths of the deformed profiles with respect to µf = 0, are given in
Table 4. One notices that friction does not alter the quantitative and/or qualitative behavior
of the deformed shapes (Fig. 12 and Table 4). However, this may not be the case in a situation
where contact surfaces are comparatively bigger in shape.
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Table 4: Percentage change in FSD coefficients and length of curve obtained with friction to those without friction
using ABAQUS

Mechanisms µf = 0.25 µf = 0.35
ζs (%) ζl (%) ζs (%) ζl (%)

Example 1 0.00023 0.0015 0.00030 0.0018
Example 2 0.0003 0.0016 0.00035 0.0017
Example 3 0.0173 2.038 0.0207 2.1314
Example 4 0.0054 0.083 0.0077 0.12
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Figure 12: The obtained deformed profiles of the actual curves with different frictional coefficients µf using
ABAQUS are overlaid and depicted for Example 1, Example 2, Example 3 and Example 4 in (a), (b), (c),
and (d), respectively. Horizontal and vertical axes of the plots represent x− and y−positions of the curves,
respectively.

4.8 Presence of small holes

One notices a few small holes in the final designs of Example 2, Example 3 and Example 4
(Fig. 6). These holes appear due to the localized removal of either one/two FEs by (a group
of) circular masks or one/two unaffected FEs (Fig. 3b). The respective modified designs are
obtained after removing those small holes. The nonlinear contact FE analyses in ABAQUS are
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performed using the final and their respective modified designs. The obtained end-compliance3

values are reported in Table 5. The differences in values of the end-compliance for all these
examples are found to be below 1%, thus those small holes can be removed in a post processing
step.

Table 5: End-compliance values

Mechanism
Original design Modified design

Difference (%)
End-compliance (Nmm)

Example 2 1107.50 1194.47 0.79

Example 3 1093.97 1088.20 0.053

Example 4 497.87 495.66 0.045

5 Closure

An approach to synthesize contact-aided shape morphing compliant mechanisms using hexago-
nal elements and negative circular masks, is presented. Self and/or mutual contact modes are
permitted. Geometric and material nonlinearities are considered wherein a neo-Hookean mate-
rial model is employed. Versatility of the presented method is demonstrated via four examples
with various desired shapes. The optimized mechanisms for Example 1, Example 2 and Exam-
ple 4 experience self contact while achieving their desired shapes, whereas mutual contact helps
achieve the actual shape similar to the its desired one for Example 3. By and large, there is a
good agreement between the desired and actual curves as differences in shape and size measure
for these curves are within 1%.

The augmented Lagrange multiplier method is used considering a segment-to-segment contact
model. The implemented boundary smoothing reduces jumps in the normals of the boundary
facets thereof and facilitates convergence of the contact analysis. The nonlinear mechanical
equilibrium equations are solved using the Newton-Raphson method. An FSDs based objective
is formulated and minimized, which permits to have individual control over the characteristics
of a curve. Hill-climber, a zero-order search algorithm, is used.

The optimized mechanisms are analyzed in ABAQUS using the respective actuating force,
boundary conditions, and active contact locations. It is noticed that the deformed profiles
obtained by the approach and those by ABAQUS are very close to each-other. Analyses con-
sidering frictional contact surfaces are also performed in ABAQUS. It is noted that friction
does not alter the behavior of the deformed curves much. In future, we aim to design special
characteristic mechanisms, e.g., with negative stiffness or zero-stiffness and statically balanced
mechanisms in association with contact constraints, which can find applications in medical
devices.
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