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Abstract

This paper presents a density-based topology optimization method for designing 3D

compliant mechanisms and loadbearing structures with design-dependent pressure

loading. Instead of interface-tracking techniques, the Darcy law in conjunction with

a drainage term is employed to obtain pressure field as a function of the design

vector. To ensure continuous transition of pressure loads as the design evolves,

the flow coefficient of a finite element is defined using a smooth Heaviside func-

tion. The obtained pressure field is converted into consistent nodal loads using a

transformation matrix. The presented approach employs the standard finite element

formulation and also, allows consistent and computationally inexpensive calculation

of load sensitivities using the adjoint-variable method. For compliant mechanism

designs, a multi-criteria objective is minimized, whereas minimization of compli-

ance is performed for designing loadbearing structures. Efficacy and robustness of

the presented approach is demonstrated by designing various pressure-actuated 3D

compliant mechanisms and structures.

KEYWORDS:

Topology Optimization; Three-dimensional Compliant Mechanisms; Design-dependent Pressure Load-
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1 INTRODUCTION

Nowadays, the use of topology optimization (TO) approaches in a wide variety of design problems for different applications

involving single and/or multi-physics is continuously growing because of their proven capability and efficacy1. These methods

determine an optimized material layout for a given design problem by extremizing the desired objective(s) under a given set

of constraints. Based on the considered loading behavior, they can be classified into approaches involving design-independent

(invariant) loads and methods considering design-dependent forces. The latter situation often arises in case of aerodynamic loads,

hydrodynamic loads and/or hydrostatic pressure loads, in various applications including aircraft, pumps, ships and pneumatically

actuated soft robotics2–4. Many TO methods exist for the former loading scenarios, whereas only few methods considering

design-dependent loading behaviors have been reported in TO5. Design-dependent loads alter their location, direction and/or

magnitude as optimization progresses and thus, pose unique challenges6. Those challenges get even more pronounced in a 3D

TO setting7,8. Here, our motive is to present an efficient and robust TO method suitable for 3D design problems including

loadbearing structures and small deformation compliant mechanisms involving design-dependent pressure loads.

Compliant mechanisms (CMs), monolithic structures incorporating flexible regions, rely on their elastic deformation to

achieve their mechanical tasks in response to external stimuli. These mechanisms furnish many advantages over their rigid-body
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2 Kumar P. and Langelaar M.

counterparts9–11. Since they are monolithic designs, they require lower assembly and manufacturing cost and by comprising

fewer parts and interfaces, they have comparatively less frictional, wear and tear losses. However, designing CMs is challenging,

particularly in case of design-dependent loading. Therefore, dedicated TO approaches are desired.

To design a CM using TO, in general, an objective stemming from a flexibility measure (e.g., output/desired deformation) and a

load bearing characteristic (e.g., strain-energy, stiffness, input displacement constraints and/or stress constraints) is optimized12.

The associated design domain is described using finite elements (FEs), and in a typical density-based TO method, each FE is

associated with a design variable � ∈ [0, 1], which is considered herein1. � = 1 indicates solid phase of an FE, whereas its void

state is represented via � = 0. Various applications of such mechanisms designed via TO in the case of design-independent loads

can be found in13–18 and references therein. However, in case of design-dependent loading different approaches are required.

Figure 1 illustrates schematic design problems for a pressure-actuated CM and a pressure-loaded structure. For clarity of pre-

sentation, these are shown in 2D. A key characteristic of the problems is that the loaded surface is not predefined, but subject to

change during the TO design process. Accurate calculation of load sensitivities is therefore important for these problems.

Γp0

Γp

Compliant Mechanism

Output

Ω

Pressure loads

Fixed

Fixed

Γpb

(a) Compliant mechanism

Ω

Pressure loads

Fixed

Loadbearing structure

Γp0

Γp

Γpb

Fixed

(b) Loadbearing structure

FIGURE 1 Schematic representation of design domains Ω for finding a pressure-actuated (depicted by gray dash-dotted arrows)

optimized compliant mechanism (black solid continuum) and pressure-loaded structure (black solid continuum) in 2D. Γp0
and

Γp boundaries (surfaces) indicate surfaces with zero and pressure loads. Γpb
is the curve where the pressure loads are applied in

the optimized designs

Hammer and Olhoff6 were first to conceptualize design-dependent pressure-loaded1 2D structures in a TO framework. They

proposed a method based on iso-density curves/surfaces which are determined using a user-defined density threshold. Du and

Olhoff19 modified the iso-density formulation and also were first to extend the method towards designing 3D pressure-loaded

structures7. Fuchs and Shemesh20 used a set of variables to define the pressure-loaded boundary explicitly, in addition to the

design variables, and they also optimized pressure load variables during optimization. For an overview of 2D pressure-loaded

TO approaches for designing structures and/or CMs, we refer to our recent paper on this subject5.

Locating well-defined surfaces for applying pressure loads, relating pressure loads to the design vector and evaluating consis-

tent nodal forces and their sensitivities with respect to the design vector are the central issues when considering design-dependent

pressure loads in a TO setting. Compared with 2D design problems, providing a suitable solution to these challenges becomes

even more complicated and involved for 3D design problems. In addition, difficulties associated with designing CMs using TO9

contribute further to the above-mentioned challenges. Only few approaches are available in the literature for 3D TO problems

involving pressure loads7,8,21–23. Du and Olhoff7 divided a 3D domain into a set of parallel 2D sections using a group of par-

allel planes to locate valid loading curves using their earlier 2D method19. Thereafter, they combined all these valid loading

1For the sake of simplicity, we write only pressure load(s) instead of design-dependent pressure load(s), henceforward, in this paper .
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Kumar P. and Langelaar M. 3

curves to determine the appropriate surface to construct the pressure loads for the 3D problem. A finite difference method was

employed for the load sensitivities calculation, which is computationally expensive. The boundary identification scheme pre-

sented by Zhang et al.8 is based on an a priori selected density threshold value. Similar to the approach by Du and Olhoff7, a

3D problem is first transformed into series of 2D problems using a group of parallel planes to determine valid loading surface.

The loading surface is constructed by using the facets of FEs, and the load sensitivities are not accounted for in the approach.

Steps employed in Refs.7,8 for determining pressure loading surfaces may not be efficient and economical specially for the large-

scale 3D design problems. Yang et al.21 used the ESO/BESO method in their approach. Sigmund and Clausen22 employed a

displacement-pressure based mixed-finite element method and the three-phase material definition (solid, void, fluid) in their

approach. They demonstrated their method by optimizing pressure-loaded 2D and 3D structures. FEs used in the mixed-finite

element methods have to fulfill an additional Babuska-Brezzi condition for stability24. Panganiban et al.23 proposed an approach

using a non-trivial FE formulation in association with a three-phase material definition. They demonstrated their approach by

designing a pressure-actuated 3D CM in addition to designing pressure-loaded 3D structures.

In order to combine effectiveness in 3D CM designs under pressure loads, ease of implementation and accuracy of load

sensitivities, we herein extend the method presented by Kumar et al.5 to 3D design problems involving both structures and

mechanisms. With this, we confirm the expectation expressed in our earlier study, that the method can be naturally extended to

3D. The approach employs Darcy’s law with a drainage term to identify loading surfaces (boundaries) and relates the applied

pressure loads with the design vector �. The design approach solves one additional PDE for pressure field calculation using

the standard FE method. Because this involves a scalar pressure field, the computational cost is considerably lower than that of

the structural analysis. The pressure field is further transformed to consistent nodal loads by considering the force originating

due to pressure differences as a body force. Thus pressure forces are projected over onto a volume rather than a boundary

surface, but due to the Saint-Venant’s principle this difference is not relevant when evaluating global structural performance.

Note that this force projection is conceptually aligned with the diffuse boundary representation commonly applied in density-

based TO methods. The load sensitivities are evaluated using the adjoint-variable method. For designing loadbearing structures,

compliance is minimized, whereas a multi-criteria objective12 is minimized for CMs.

The layout of the paper introduce 3D method as follows. Sec. 2 presents the proposed pressure loading formulation in a 3D

setting and the transformation of pressure field to consistent nodal loads. A 3D test problem is also discussed for indicating

the role of the drainage term in the presented approach as well as the influence of other problem parameters. The considered

topology optimization problem definitions with the associated sensitivity analysis are introduced in Sec. 3. Sec. 4 subsequently

presents several design problems in 3D settings, including loadbearing structures and compliant mechanisms and their optimized

continua. Lastly, conclusions are drawn in Sec. 5.

2 MODELING OF DESIGN-DEPENDENT PRESSURE LOADS

In a TO setting, to determine the optimized design of a given problem, the material layout of the associated design domain Ω

evolves with the optimization iterations. Consequently, in the beginning of the optimization with design-dependent loads, it may

be difficult to locate a valid loading surface where such forces can be applied. In this section, we present a 3D FE modeling

approach to determine a pressure field as a function of the design vector � using the Darcy law, which allows locating the loading

surfaces implicitly. Evaluation of the consistent nodal loads from the obtained pressure field is also described.

2.1 Concept

In this subsection, first the Darcy-based pressure projection formulation is summarized, following our earlier 2D paper5. The

Darcy law which determines a pressure field through a porous medium is employed. The fluidic Darcy flux q in terms of the

pressure gradient ∇p, the permeability � of the medium, and the fluid viscosity � can be written as

q = −
�

�
∇p = −K ∇p, (1)

where K is called the flow coefficient which defines the ability of a porous medium to permit fluid flow. In a density-based TO

setting, each FE is characterized by a density variable that interpolates its material properties between those of the solid or void

phase. Then it is natural to represent the flow coefficient of an FE with index i in terms of its filtered (physical) material density

�̃i
25 and the flow coefficients of its void and solid phases such that it has a smooth variation within the design domain. Herein,
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4 Kumar P. and Langelaar M.

we define K(�̃i) as

K(�̃i) = Kv

(
1 − (1 − �)Hk(�̃i, �k, �k)

)
, (2)

where

Hk(�̃i, �k, �k) =

(
tanh

(
�k�k

)
+ tanh

(
�k(�̃i − �k)

)

tanh
(
�k�k

)
+ tanh

(
�k(1 − �k)

)
)
, (3)

is the smooth Heaviside function. �k and �k are parameters which control the position of the step and the slope of K(�̃i),

respectively. Further,
Ks

Kv

= � is termed flow contrast which is set to 10−7 as motivated in Appendix 5, where Kv and Ks represent

flow coefficients for void and solid elements, respectively.

As topology optimization progresses, it is expected that the pressure gradient should get confined within the solid FEs directly

exposed to the pressure loading. This cannot be achieved using Eq. 1 only (see Sec. 2.3), as it tends to distribute the pressure drop

throughout the domain. Therefore, we conceptualize a volumetric drainage quantity Qdrain to smoothly drain out the pressure

(fluid) from the solid FEs downstream of the exposed surface. It is defined in terms of the drainage coefficient D(�̃i), the pressure

field p, and the external pressure pext as

Qdrain = −D(�̃i)(p − pext). (4)

The drainage coefficient D(�̃i) is determined using a smooth Heaviside function such that pressure drops to zero for an FE with

�̃e = 1 as

D(�̃i) = ds Hd(�̃i, �d, �d), (5)

where �d and �d are the adjustable parameters, and Hd(�̃i, �d, �d) is defined analogous to Eq. 3. The drainage coefficient of a

solid FE, ds, is used to control the thickness of the pressure-penetration layer and is related to Ks as5

ds =
(
ln r

Δs

)2

Ks, (6)

where r is the ratio of input pressure at depth Δs, i.e., p|Δs = rpin. Further, Δs, the penetration depth for the pressure field, can

be set equal to the width or height of few FEs. This additional drainage term ensures controlled localization of the pressure drop

at the exposed structural boundary.

2.2 3D formulation

This section presents the 3D FE formulation for the pressure field and corresponding consistent nodal loads. The basic state

equilibrium equation for the incompressible fluid flow with a drainage term can be written as (Fig. 2)

dy

qxdzdy qxdzdy + (
∂qx

∂x
dx)dzdy

qydzdx

qydzdx + (
∂qy

∂y
dy)dzdx

qzdxdy

qzdxdy + (
∂qz
∂z

dz)dxdy

Qdrain
dz

dx

x
y

z

FIGURE 2 A schematic diagram for in- and outflow through an infinitesimal element with volume dV = dxdydz. Qdrain is the

volumetric drainage term.
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Kumar P. and Langelaar M. 5

(
qxdydz + qydzdx + qzdxdy + QdraindV

)
=

(
qxdydz + qydzdx + qzdxdy +

(
)qx

)x
+

)qy

)y
+

)qz

)z

)
dV

)

or,
)qx

)x
+

)qy

)y
+

)qz

)z
−Qdrain =0,

or, ∇ ⋅ q −Qdrain =0.

⎫⎪⎪⎬⎪⎪⎭
(7)

In view of Eqs. (1) and (4), the discretized weak form of Eq. (7) in an elemental form gives

∫
Ωe

(
K B⊤

p
Bp +D Np

⊤Np

)
dΩe

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ae

pe = ∫
Ωe

D N⊤
p
pext dΩe − ∫

Γe

N⊤
p
qΓ ⋅ ne dΓe

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
fe

(8)

where, Bp = ∇Np, qΓ represents the Darcy flux through the surface Γe and Np = [N1, N2, N3, ⋯ , N8] are the shape functions

for the trilinear hexahedral elements24 used in this paper. For other FEs, Eq. (8) holds similarly with different Np. In a global

sense, Eq. (8) yields

Ap = f , (9)

where A, p and f are the global flow matrix, pressure vector and loading vector, respectively, obtained by assembling their

respective elemental terms Ae, pe and fe. As pext = 0 and qΓ = 0 are assumed in this work, it follows that f = 0 which leads to

Ap = 0, which is solved with an appropriate input pressure pin boundary condition at a given pressure inlet surface.

The obtained pressure field is transformed to a consistent nodal force as5

Fe = −∫
Ωe

N⊤
u
∇pdΩe = −∫

Ωe

N⊤
u
BpdΩe

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
De

pe, (10)

where Nu = [N1I, N2I, N3I, ⋯ , N8I] with I as the identity matrix in 3, and De representing the elemental transformation

matrix. One evaluates the global nodal loads F using the following equation

F = −Dp, (11)

where D is the global transformation matrix which is independent of the design vector. In summary, the pressure load calculation

involves the following 3 main steps:

1. Assembly of A, which involves K(�̃) and D(�̃) as design-dependent terms (Eqs. 2, 3, 5, 8)

2. Solve Ap = 0 (Eq. 9)

3. Calculation of F = −Dp (Eq. 11)

Note that step 2 involves a linear system with three times fewer degrees of freedom compared to the structural problem, as each

node only has a single pressure state. Hence in terms of computational cost, the structural analysis remains dominant.

2.3 Qualifying the approach

This section presents a test problem for illustrating the method and demonstrating the importance of the drainage term (Eq. 4)

in the presented approach. An additional test problem is included in Appendix 5 to study the effect of flow contrast �.

Figure 3a depicts the design specifications of the test problem. We consider a domain of Lx × Ly × Lz = 0.02 × 0.01 × 0.01

m3, with a pressure load of 1 × 105 Nm−2 is applied on the front face of the domain, and zero pressure on the rear face. The

total normal force experienced by the front face is Fx = 100000 × 0.01 × 0.01N = 10 N. The domain has two solid regions

with dimensions
Lx

6
×Ly ×Lzm

3, which are separated by
Lx

6
(Fig. 3). The remaining regions of the domain are considered void.

The design domain is discretized using 48 × 24 × 24 trilinear hexahedral FEs. The other required parameters are same as those

mentioned in Table 1.

Figure 3b and Fig. 3c depict the pressure field variation within the domain with and without drainage term (Eq. 9). The

pressure and nodal force variations along the center of the domain in the x−axis are depicted with and without Qdrain in Fig. 4.
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6 Kumar P. and Langelaar M.

One notices that if the drainage term is not considered, the pressure gradient does not get confined as soon as the pressure loading

faces the first solid region (Figs. 3b and 4a), which is undesirable for the intended purpose. However, a correct behavior is seen

when including the drainage term (Figs. 3c and 4b). The corresponding nodal force variations are also reported in Fig. 4. It is

found that the total normal force experienced by the design in Fig. 3c is 10N which is equal to the original force applied (Fig. 3a).

p= 0 N
m −2

p= 1 × 10
5

Solid regions

a

a

L

x

y

Pressure loading surface

Lz

Void regions

Void region

(a) (b) (c)

FIGURE 3 (a) Design domain specification to show importance of the drainage term. (b) Pressure field variation (Nm−2)

without drainage term, (c) Pressure field variation (Nm−2) with drainage term. Fixed planes are hatched in (a).
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(a) Pressure fields
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FIGURE 4 The pressure field and respective nodal force variations along the center x−axis with and without drainage term are

depicted. One notices a smooth variation with Qdrain, whereas without the drainage term as expected the pressure field shows a

step variation over two solid regions.
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Kumar P. and Langelaar M. 7

3 PROBLEM FORMULATION

This section presents the optimization problem formulation and the sensitivities of the objectives with respect to the design

vector � using the adjoint-variable method.

3.1 Optimization formulation

The optimization problem is formulated using a density-based TO framework, wherein each FE is associated with a design

variable � which is further filtered using the classical density filter25. The filtered design variable �̃i is evaluated as the weighted

average of the design variable �j as25

�̃i =

∑Ne

k=1
vjw(x)

∑Ne

k=1
w(x)

�j , (12)

where Ne represents the total number of FEs lie within the filter radius Rfil for the ith element, vj is the volume of the j th element

and w(x), the weight function, is defined as

w(x) = max

(
0, 1 −

||xi − xj||
Rfill

)
, (13)

where ||xi − xj|| is the Euclidean distance between the ith and j th FEs. xi and xj indicate the center coordinates of the ith and j th

FEs, respectively. The derivative of filtered density with respect to the design variable can be evaluated as

)�̃i

)�j
=

∑Ne

k=1
vjw(x)

∑Ne

k=1
w(x)

. (14)

The Young’s modulus of each FE is evaluated using the modified SIMP (Solid Isotropic Material with Penalization) formulation

as

Ee(�e) = E0 + �̃e
� (E1 − E0), �̃e ∈ [0, 1] (15)

where, E1 is the Young’s modulus of the actual material, E0 = 10−6E1 is set, and the penalization parameter � is set to 3, which

guides the TO towards “0-1” solutions.

The following topology optimization problem is solved:

min
�

f0

such that: Ap = 0

Ku = F = −Dp

Kv = Fd

g1 =
V (�̃)

V ∗
− 1 ≤ 0

0 ≤ � ≤ 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

, (16)

where f0 is the objective function to be optimized. The global stiffness matrix and displacement vector are denoted by K and u,

respectively. For designing pressure-loaded 3D loadbearing structures, compliance, i.e., f0 = 2SE is minimized2, whereas for

the pressure-actuated 3D compliant mechanism designs a multi-criteria12 objective, i.e., f0 = −�
MSE

SE
is minimized. SE and

MSE represent the strain energy and mutual strain energy of the design, respectively. Further, �, a scaling factor, is employed

primarily to adjust the magnitude of the objective to suit the MMA optimizer, and MSE = v⊤Ku is equal to the output

deformation wherein Fd (= Kv) is the unit dummy force applied in the direction of the desired deformation at the output

location12. Furthermore, V and V ∗ are the actual and permitted volumes of the designs, respectively.

2For loadbearing structure designs, Kv = Fd is not considered
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8 Kumar P. and Langelaar M.

3.2 Sensitivity analysis

We use the gradient-based MMA optimizer26 for the topology optimization. The adjoint-variable method is employed to deter-

mine the sensitivities3 of the objectives and constraints with respect to the design variables. One can write an aggregate

performance function  for evaluating the sensitivities as

(u, v, �̃) = f0(u, v, �̃) + �⊤
1
(Ku + Dp) + �⊤

2
(Ap) + �⊤

3
(Kv − Fd), (17)

where �1, �2 and �3, the Lagrange multipliers, are determined as5

�⊤
1
= −

)f0(u, v, �̃)

)u
K-1

�⊤
2
= −�⊤

1
DA-1

�⊤
3
= −

)f0(u, v, �̃)

)v
K-1

⎫
⎪⎪⎬⎪⎪⎭

. (18)

For the loadbearing structures and CMs, Eq. 18 yields

�⊤
1
= −2u⊤, �⊤

2
= 2u⊤DA-1, (Structure) ; (19)

�⊤
1
= −�

(
v⊤

SE
+ 2u⊤

MSE

SE

)
, �⊤

2
= �

(
v⊤

SE
+ 2u⊤

MSE

SE

)
DA-1, �⊤

3
= �

u⊤

SE
, (CMs) . (20)

Now, one can evaluate the objective sensitivities as

df0

d�̃
=

)f0

)�̃
+ �⊤

1

)K

)�̃
u + �⊤

2

)A

)�̃
p + �⊤

3

)K

)�̃
v, (21)

where vectors u, p and v also includes their prescribed values. Now, in view of Eqs. 16, 20 and 21, one can subsequently

determine the sensitivities for loadbearing structures and CMs with respect to the filtered design vector �̃ as

df0

d�̃
= −u⊤

)K

)�̃
u + 2u⊤DA-1 )A

)�̃
p

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Load sensitivities

, (22)

and

df0

d�̃
= �

⎡
⎢⎢⎢⎢⎢⎣

MSE

(SE)2

(
−
1

2
u⊤

)K

)�̃
u

)
+

1

SE

(
u⊤

)K

)�̃
v

)
+

MSE

(SE)2

(
u⊤DA-1 )A

)�̃
p

)
+

1

SE

(
−v⊤DA-1 )A

)�̃
p

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Load sensitivities

⎤
⎥⎥⎥⎥⎥⎦

, (23)

respectively. Further, one finds the sensitivities of the objectives with respect to the design vector � using Eqs. 14, 22 and 23.

The load sensitivity terms for both the objectives can be readily evaluated using Eqs.22 and 23. As the pressure loads acting on

the structure depend on the design, it is important to include these terms in the optimization.

4 NUMERICAL EXAMPLES AND DISCUSSION

In this section, various small deformation 3D compliant mechanisms actuated via pressure loads and 3D pressure-loaded struc-

tures are designed to demonstrate the effectiveness and versatility of the presented approach. Trilinear hexahedral FEs are

employed to parameterize the design domains. Optimization parameters with their nomenclature, symbol and unit are mentioned

in Table 1 and any alteration is reported in the respective problem definition. TO is performed using an in-house MATLAB

code with the MMA optimizer. The maximum number of MMA iterations are set to 100 and 250 for optimizing the loadbear-

ing structures and compliant mechanisms, respectively. The linear systems from state and adjoint equations are solved using the

conjugate gradient method in combination with incomplete Cholesky preconditioning.

3A detailed description is given in Ref. 5

A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.



Kumar P. and Langelaar M. 9

Nomenclature Notation Value

Young’s Modulus of a solid FE (�̃ = 1) E1 5 × 108 Nm−2

Poisson’s ratio � 0.40

SIMP Penalization � 3

Young’s Modulus of a void FE (�̃ = 0) E0 E1 × 10−6Nm−2

External Move limit Δ� 0.1 per iteration

Input pressure load pin 1 × 105 Nm−2

K(�̃) step location �k 0.3

K(�̃) slope at step �k 10

D(�̃) step location �ℎ 0.2

D(�̃) slope at step �ℎ 10

Flow coefficient of a void FE kv 1m4 N−1 s−1

Flow coefficient of a solid FE ks Kv × 10−7 m4 N−1 s−1

Drainage from solid ℎs

(
ln r

Δs

)2

Ks

Remainder of input pressure at Δs r 0.1

TABLE 1 Various parameters used in this paper.

Lx

x

y

z

Lz

Ly

Fixed edges

Input pressure

(a)

Lx

x

y

z

Ly

Lz

(b)

FIGURE 5 Design domains and problem definitions of the loadbearing structures. (a) Lid domain, (b) Externally pressurized

domain.

4.1 Pressure loaded structures

In this section, two pressure-loaded structure design optimization problems i.e., a lid (Fig. 5a) and an externally pressurized

structure (Fig. 5b) are presented. The lid design problem appeared initially in the work of Du and Olhoff7, whereas the externally

pressure structure design problem is taken from Zhang et al.8.

LetLx,Ly andLz represent the design domain dimensions in x−, y− and z−directions, respectively.Lx×Ly×Lz = 0.2×0.1×

0.1m3 is considered for the lid and the externally pressurized design. An inlet pressure pin of 1 bar is applied on the top face of

the domains. Edges depicted in red are fixed for all design domains (Fig. 5). The permitted volume fraction for each example is
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10 Kumar P. and Langelaar M.

Lx

Ly

2

Lz

2

Void region

Output location

xy

z Solid rim

(a)

Lx

Ly

2

Lz

2

Output locationSP2

x
y

z Void region

Void region

Solid rim

(b)

SP2

SP1

Ly

2

Lz

2

Void region

Output location

x
y

z
Solid rim

(c)

FIGURE 6 Design domains and problem definitions of the CMs. (a) Quarter inverter domain (b) Quarter gripper domain, void

non-design region and jaw (green) of the gripper are shown (c) Quarter magnifier domain. Output location for each mechanism

design is displayed, where springs representing stiffness of a workpiece are attached. A void non-design domain with a rim

of solid non-design region around the pressure inlet area is considered for each mechanism design, representing the maximum

pressure inlet geometry. SP1 and SP2 indicate the symmetric planes for the quarter compliant mechanism designs.

set to 0.25. The lid design is optimized considering the full model4, so any tendency of the problem to break the symmetry can be

observed. However, the externally pressurized design is optimized by exploiting one of its symmetric conditions, i.e., only half

the design domain is considered. The full lid and a symmetric half externally pressurized are parameterized by 120×60×60 and

80 × 80 × 80 hexahedral FEs, respectively. The filter radius is set to rmin =
√
3min

(
Lx

Nex

,
Ly

Ney

,
Lz

Nez

)
for all the solved problems.

The optimized designs in different views for the lid and the externally pressurized are depicted in Fig. 7 and Fig. 8, respectively.

To plot the optimized results, an isosurface with the physical density value at 0.25 is used. The exterior parts of the optimized

design are shown in Fig. 7a and Fig. 8a, respectively. In both cases, the optimizer has succeeded in reshaping the pressure-loaded

surface into a configuration that is advantageous for the considered compliance objective. Material distributions for the optimized

lid and externally pressurized loadbearing structures with respect to different cross sections are displayed in Fig. 9. One notices

that the material densities in the cross sectional planes are close to 1.0, which indicates that the optimized designs converge

towards 0-1 solutions (Fig. 9). Near boundaries, intermediate densities are seen due to the density filtering. Nevertheless, the

results allow for a clear design interpretation. The objectives and volume constraints convergence plots are illustrated via Fig. 10a

and Fig. 10b, respectively. It is found that the convergence plots are smooth and stable. The volume constraint remains active at

the end of the optimization for each case and thus, the permitted volume is achieved.

(a) Arbitrary direction (b) +x−direction (c) +y−direction (d) +z−direction (e) −z−direction

FIGURE 7 The optimized lid design is shown in different view directions. The figure in b indicates the material density color

scheme which is kept same for all the solved problems.

4Symmetry conditions are not exploited
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Kumar P. and Langelaar M. 11

(a) Arbitrary direction (b) +x−direction (c) +y−direction (d) +z−direction (e) −z−direction

FIGURE 8 The optimized externally pressurized design is shown in different view directions.

(a) (b)

FIGURE 9 Material distributions of the optimized lid and externally pressurized design with respect to different cross sections

in arbitrary directions are shown in a and b, respectively.
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(a)
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Lid design

Externally pressurized design

(b)

FIGURE 10 Objective and volume fraction convergence plots for loadbearing structure problems. (a) Compliance history, and

(b) Volume fraction history.

4.2 Pressure actuated compliant mechanisms

Herein, three compliant mechanisms, e.g., inverter, gripper and magnifier are designed in 3D involving design-dependent pres-

sure loads using the multi-criteria objective, using the formulation given in Eq. 16. These problems have two symmetry planes

which are exploited herein and thus, only quarter of the design domain is optimized for each mechanism.

Figure 6a, Fig. 6b and Fig. 6c show the design specifications for one quarter mechanism designs. Symmetry planes are also

depicted. An inlet pressure load of 1.0 bar is applied from the left face of each mechanism design domain, whereas apart from

symmetric faces other remaining faces experience zero pressure load. Again as in the previous examples, instead of using a

predetermined pressurized surface, the location and shape of the pressurized structural surface is subject to design optimization
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12 Kumar P. and Langelaar M.

(a) Arbitrary direction (b) Arbitrary direction (c) +x−direction (d) +y−direction (e) −x−direction

FIGURE 11 Optimized inverter design is shown in different view directions.

(a) Arbitrary direction (b) Arbitrary direction (c) +x−direction (d) +y−direction (e) −z−direction

FIGURE 12 Optimized gripper design is shown in different view directions.

(a) Arbitrary direction (b) Arbitrary direction (c) +x−direction (d) +y-direction (e) −z−direction

FIGURE 13 Optimized magnifier design is shown in different view directions.

using the proposed formulation. Dimensions of each mechanism are set to 0.2×0.2×0.2m3. We use 120×60×60 FEs to describe

the considered quarter of each mechanism domain. The permitted volume fraction for each mechanism is set to 0.1. A rim of

solid non-design region with size
Lx

8
×

Ly

15
×

Lz

15
is considered around the pressure inlet area in each mechanism design, indicating

its maximum size. To contain the applied pressure loading, a void non-design domain of maximum size
Lx

10
×

14Ly

15
×

14Lz

15
is

considered in front of the loading. The step parameters for the flow and drainage coefficients are set to �k = 0.1 and �d = 0.2,

respectively5. The scaling factor for the objective is set to � = 100. A unit dummy load is applied along the desired deformation

direction of the mechanism to facilitate evaluation of the mutual strain-energy. For the quarter gripper design, a jaw (solid

passive domain) of size
Lx

8
×

Ly

2
×

Lz

20
is considered above a void non-design region with size

Lx

8
×

Ly

1
×

Lz

10
. Each node of the jaw

is connected to springs representing the workpiece with a stiffness of 50Nm−1. The desired gripping motion of the mechanism

is in the z−direction. In case of the compliant inverter and magnifier mechanisms, the respective workpiece is represented via

springs of stiffness 500Nm−1. The desired motion for the inverter mechanism is in the negative x−direction, whereas for the

magnifier an outward movement in the y−direction is sought.
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Kumar P. and Langelaar M. 13

(a) (b) (c)

FIGURE 14 Material distributions of the optimized inverter, gripper and magnifier compliant mechanisms with respect to

different cross sectional planes in arbitrary directions are displayed in a, b and c, respectively.
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(b)

FIGURE 15 Convergence objective and volume fraction plots for compliant mechanisms. (a)−100
MSE

SE
history, and (b) Volume

fraction history.

The symmetric optimized results are transformed into respective final full designs. Figure 11, Fig. 12, and Fig. 13, depict the

3D optimized designs in various views for the compliant inverter, gripper and magnifier mechanisms, respectively. The density

value of the isosurface is displayed at 0.25. While the TO process produces customized pressure-loaded membranes, that at the

same time act as CMs themselves, the largest part of the design domain is filled with more or less traditional CM structures, that

transmit and convert the pressure-induced deformations into the intended output deformations. In our experiments, we have not

found cases where the majority of the design domain became filled with fluid. This is a clear difference from most pressure-loaded

active structures as seen in, e.g., the field of soft robotics, where typically bellows-inspired designs are applied27. It is noted,

however, that the presented designs are based on linear structural analysis which is only valid for a limited deformation range.

Note also that the pressurized membranes are not simply flat but contain corrugations and thicker and thinner regions. Similar

to traditional compliant mechanisms, these geometries provide preferred deformation patterns that assist in the functioning of

the mechanisms. The material distributions with respect to the different cross sections for the optimized inverter, gripper and
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14 Kumar P. and Langelaar M.

(a) +y−direction (b) +y−direction (c) −z−direction

FIGURE 16 Deformed profiles with respective view directions are shown with 500 times magnified displacements. The color

scheme represents displacement field wherein red and blue indicate maximum and minimum displacements, respectively.

magnifier mechanisms are illustrated in Fig. 14a, , which show that the structures have converged to clear solid-void designs,

within the limits of the applied density filter. The convergence plots for the objectives and volume constraints are illustrated in

Fig. 15. One can notice the convergence history plots are smooth and stable. The volume constraint for each mechanism design

is satisfied and active at the end of the optimization.

Figure 16 displays the deformed profiles of the mechanisms. It is seen that in all cases the intended motion is produced. Note

that because linear mechanical analysis is used, scaling of deformations is possible within a certain range. To reach deformations

comparable to the design domain characteristic length, i.e., large deformation, one needs to consider nonlinear mechanics within

the topology optimization setting with high pressure loading, which is left for future research. This also requires configuration-

dependent updating of the applied pressure loads, which could be achieved by solving Eqs. 9 and 11 on the deformed mesh. While

the computational cost of these steps is small compared to the deformation analysis, the two problems become bidirectionally

coupled and possibly a monolithic approach is preferred. Also sensitivity analysis of this coupled problem needs further study.

4.3 Computational cost

As mentioned earlier, we employ the conjugate gradient algorithm with an incomplete Cholesky preconditioner in MATLAB

to solve the 3D TO problems. Herein, we present the computational cost involved in the objective and sensitivity evaluation

for the lid loadbearing structure and gripper mechanism with respect to the different mesh sizes, i.e., with different number of

design variables (NODVs) and degrees of freedom (DOFs). A 64-bit operating system machine with 16.0 GB RAM, Intel(R)

Core(TM) i7-10700U CPU 2.90 GHz is used. For the objective evaluation (i) Ap = 0, (ii) F = −Dp, (iii) Ku = F and (iv)

Kv = Fd are solved, and the corresponding computational cost is noted. Note that solution to (iv) is needed only in case of CM

problems. Displacement vectors u and v are further used in determining �1 and �3 (Eqs. 19 and 20) for the sensitivity calculation.

However, one needs to solve a system of equations to evaluate �2 and thus, sensitivity is evaluated using Eqs. 22 and 23, and

the corresponding computation time is recorded.

The computational expenses for the loadbearing structure and gripper CM are displayed in Table 2 and Table 3, respec-

tively. One can notice that evaluation of the objective is more expensive than that of the sensitivity calculation, for the reasons

discussed above. In addition, it can be noted that objective evaluation for the CM needs comparatively more time than that of

loadbearing structures for the same number of NODVs and DOFs.
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TABLE 2 Computation time of objective and sensitivity evaluation for lid loadbearing structure with different NODVs and

DOFs.

Lid design

NODVs DOFs
Computation time (s)

Objective evaluation Sensitivity evaluation

16000 54243 2.24 0.060

54000 175863 12.6 0.25

128000 408483 40.38 1.17

250000 788103 108.42 2.66

432000 1350723 263.15 5.32

TABLE 3 Computation time of objective and sensitivity evaluation for the gripper mechanism with different NODVs and DOFs.

Gripper mechanism

NODVs DOFs
Computation time (s)

Objective evaluation Sensitivity evaluation

16000 54243 5.08 0.33

54000 175863 36.32 1.27

128000 408483 170.60 3.52

250000 788103 634.13 8.52

432000 1350723 1769.15 14.03

5 CLOSURE

This paper presents a density-based topology optimization approach for designing design-dependent pressure-actuated (loaded)

small deformation 3D compliant mechanisms and 3D loadbearing structures. The efficacy and versatility of the method in the 3D

case is demonstrated by designing various pressure-loaded 3D structures (lid and externally pressurized design) and pressure-

actuated small deformation 3D compliant mechanisms (inverter, gripper and magnifier). For a loadbearing structure, compliance

is minimized whereas a multi-criteria objective is employed for designing CMs.

The Darcy law in association with a drainage term is employed to convert the applied pressure loads into a design-dependent

pressure field wherein the flow coefficient of an FE is related to its design variable using a smooth Heaviside function. It has

been illustrated how the drainage term with the Darcy flux gives an appropriate pressure field for a 3D TO setting. The presented

approach provides a continuous pressure field which is converted into consistent nodal forces using a transformation matrix.

The method finds pressure loading surfaces implicitly as topology optimization evolves and also, facilitates easy and compu-

tationally cheap evaluation of the load sensitivities using the adjoint-variable method. As pressure loading changes its location

and magnitude, it is important to consider the load sensitivity terms while evaluating the objective sensitivity. For the presented

numerical examples, it is noted that the objective evaluation is computationally more expensive than sensitivity calculation. The

obtained 3D pressure-actuated mechanisms resemble a combination of a tailored pressurized membrane for load transfer, and
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16 Kumar P. and Langelaar M.

a more conventional compliant mechanism design involving flexure hinges. It is suggested that different design solutions may

emerge once larger deflections can be included. Extension of the approach with nonlinear continuum mechanics is therefore one

of the prime directions for future work.
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APPENDIX

FLOW CONTRAST

Herein, an additional test problems is presented to illustrate the influence of flow contrast � using an internally pressurized arc

design (Fig. 1a). We consider a 2D setting for the sake of simplicity and ease of result visualization, but the findings extend

naturally to the 3D case. The design domain is described via Nex × Ney = 200 × 100 bi-linear rectangular FEs, where Nex

and Ney represent the number of FEs in the x− and y−directions, respectively. The filter radius and volume fraction are set

to 2 × min(
Lx

Nex

,
Ly

Ney

), and 0.2, respectively. The maximum number of iterations for the optimization is set to 100. The design

parameters mentioned in Table 1 are used.

This optimization is performed for a range of � values. Fig. 1b depicts the convergence curve for the compliance objective

minimization with the different flow contrasts. As examples, Figs. 1c and 1d depict final solutions with respective pressure fields

obtained using flow contrast � = 10−1 and � = 10−7, respectively. In Fig. 1c it can be seen that also in void regions, a clear

pressure gradient occurs. This is a direct result of the low flow contrast (Eq. 9). Since a pressure gradient leads to nodal force

contributions (Eq. 11), the optimization process creates semi-dense structures to increase the stiffness of the loaded regions,

in order to minimize the total compliance. However, this is not a practical or realistic solution. These artifacts disappear with

increased �. Based on this study, we recommend that
Ks

Kv

∈ [10−5, 10−8]. In all other numerical examples in this paper, � = 10−7

has been used.
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FIGURE 1 (a) Design domain for 2D internally pressurized arc. The optimized results with final pressure distribution using

� = 0.1 and � = 10−7 are shown in (c) and (d), respectively.
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