
royalsocietypublishing.org/journal/rspa

Research

Cite this article: Gautam K, Narayana PAL.

2019 On the stability of carbon sequestration

in an anisotropic horizontal porous layer with

a first-order chemical reaction. Proc. R. Soc. A

475: 20180365.

http://dx.doi.org/10.1098/rspa.2018.0365

Received: 6 June 2018

Accepted: 9 May 2019

Subject Areas:

applied mathematics, mechanical engineering

Keywords:

anisotropic porous media, carbon

sequestration, chemical reaction,

stability theory

Author for correspondence:

P. A. L. Narayana

e-mail: ananth@iith.ac.in

On the stability of carbon
sequestration in an anisotropic
horizontal porous layer with a
first-order chemical reaction
K. Gautam and P. A. L. Narayana

Department of Mathematics, Indian Institute of

Technology-Hyderabad, Kandi, Sangareddy, Telangana 502285,

India

PALN, 0000-0002-1960-0247

Carbon dioxide (CO2) sequestration in deep saline

aquifers is considered to be one of the most promising

solutions to reduce the amount of greenhouse gases

in the atmosphere. As the concentration of dissolved

CO2 increases in unsaturated brine, the density

increases and the system may ultimately become

unstable, and it may initiate convection. In this

article, we study the stability of convection in an

anisotropic horizontal porous layer, where the solute

is assumed to decay via a first-order chemical

reaction. We perform linear and nonlinear stability

analyses based on the steady-state concentration

field to assess neutral stability curves as a function

of the anisotropy ratio, Damköhler number and

Rayleigh number. We show that anisotropy in

permeability and solutal diffusivity play an important

role in convective instability. It is shown that when

solutal horizontal diffusivity is larger than the

vertical diffusivity, varying the ratio of vertical to

horizontal permeabilities does not significantly affect

the behaviour of instability. It is also noted that,

when horizontal permeability is higher than the

vertical permeability, varying the ratio of vertical to

horizontal solutal diffusivity does have a substantial

effect on the instability of the system when the

reaction rate is dominated by the diffusion rate. We

used the Chebyshev-tau method coupled with the QZ

algorithm to solve the eigenvalue problem obtained

from both the linear and nonlinear stability theories.

1. Introduction
It is well known that the gradual increment in the

Earth’s temperature is due to the global emissions

2019 The Author(s) Published by the Royal Society. All rights reserved.
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of anthropogenic greenhouse gases, especially carbon dioxide (CO2), in the Earth’s atmosphere.

The amount of CO2 has increased rapidly over the last three decades, which has led to ocean

acidification and global climate change with severe potential consequences for human society

and nature [1–3].

Carbon capture and storage (CCS) technology is one of the most promising options for

reducing anthropogenic CO2 emissions into the atmosphere by storing it in geological sites

[4–6], and it is receiving increased attention [7]. Under thermodynamic conditions, captured CO2

is injected into underground deep saline aquifers. Upon injection of CO2 into the deep saline

aquifers, the density of supercritical CO2 is lower than that of the brine, which causes the CO2 to

rise above the brine under the impermeable cap-rock.

Weir et al. [8,9] first proposed that, during the storage of CO2 in a subsurface formation, the

dissolution of free-phase CO2 gas into the aqueous phase increases brine density and the same

has been concluded in [10–12]. Since the denser CO2-enriched brine is now overlying unsaturated

brine, this leads to a buoyancy-driven convective instability after some time. Consequently, the

denser CO2-saturated brine is propagated downward in the form of fingers into the unsaturated

brine. Density-driven convective instability is a favourable process for injected CO2 in an aqueous

phase, which accelerates the dissolution rate and convective mixing and reduces the time

available for safe storage of CO2 in saline aquifers [11,13].

The density-driven convection in the above process [14] is analogous to temperature-

driven Rayleigh–Benard convection in porous media, which was first studied independently by

Horton & Rogers [15] and Lapwood [16]. Their investigations led to the conclusion that the onset

of convection takes place at the critical thermal Rayleigh number 4π2.

In this study, we consider the first-order chemical reaction which plays a vital role in convective

mixing. Many researchers have studied analytically and numerically the effect of geochemical

reactions with convective mixing of dissolved CO2 in deep saline aquifers. Geochemical reactions

affect the concentration of other dissolved species, which leads to a change in density. The density

profile then becomes unstable and leads to convective flow, which accelerates the dissolution of

CO2 as first noted in [17] and later confirmed by other researchers [18–26]. Ghesmat et al. [22]

studied the effect of chemical reaction on the buoyancy-driven phenomena in a porous medium

and concluded that, when the Damköhler number is small, the effect of the chemical reaction

is negligible. Several researchers have attempted to investigate the effect of different parameters

on the stability of dissolution-driven convection in a brine-saturated porous medium by linear

instability theory and numerical simulations [11,14,19,21,27–30].

Hill & Morad [14] studied the convective stability analysis in an anisotropic porous medium

by considering the steady state in the presence of a first-order chemical reaction. They discovered

that varying the ratio of the horizontal to vertical solutal diffusivities did not significantly affect

the behaviour of instability. However, when the diffusion rate dominates the solute reaction rate,

a change in permeability has a substantial effect on the instability.

Rossa et al. [29] studied the effect of hydrodynamic dispersion on the development of

convective instabilities in the presence of a first-order reaction in porous media. They concluded

that hydrodynamic dispersion changes the shape of the bifurcation diagram of convective-

enhanced dissolution. Emami-Meybodi [30] extended the analysis of Rossa et al. [29] by

considering the capillary transition zone in a saturated anisotropic porous medium. Their

investigations led to the conclusion that if the geochemical reaction is significantly large then

the diffusive boundary layer is unstable in the presence of both the capillary transition zone

and hydrodynamic dispersion, and they performed nonlinear simulations which confirmed the

prediction of linear stability analysis.

The principal aim of this article is to investigate the effect of anisotropic permeability as well as

anisotropic solutal diffusivity by considering a first-order chemical reaction on the density-driven

convective stability in a fluid-saturated porous medium. We performed both a linear instability

analysis and global stability analysis using the energy functional approach, which helps to bound

the region of stability, on the governing system in the context of carbon sequestration. Since all

the sedimentary geological formations are essentially in anisotropic forms and generally have a
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layered structure, we define the anisotropic permeability parameter as the ratio of the vertical

to horizontal permeability (i.e. γ = kv/kh). Here we consider that the horizontal permeability is

greater than that of the vertical permeability, which represent real geological applications (i.e.

γ < 1). This problem generalizes the physical situation considered by Hill & Morad [14], in the

sense that heterogeneity for the permeability is considered in all directions, whereas only the

variation in vertical permeability was considered in Hill & Morad [14].

Firstly, the effect of anisotropic permeability on steady-state thermal convection was studied

by Castinel & Combarnous [31] through linear analysis, and later this analysis was extended by

Epherre [32] by taking anisotropic thermal diffusivity into account. Kvernvold & Tyvand [33]

extended the above linear analysis to a nonlinear stability analysis. They observed that the

stability region and Nusselt number depend on the anisotropic parameter and also showed that

the impact of the anisotropic parameter on the linear analysis is greater than that on the nonlinear

analysis.

There are only a few researchers who have concentrated on the study of solute convection

in anisotropic porous media due to anisotropic permeability to identify the occurrence of the

onset of convection [11,27,34–38]. Anisotropy in permeability plays a vital role in the onset of

convection in the context of the carbon sequestration in deep saline aquifers. Ennis-King et al. [11]

have studied the effect of anisotropic permeability on the onset of convection using linear and

nonlinear stability analyses subject to a rapid change in boundary conditions. They found that

the critical time for the onset of convection and critical wavelength becomes larger (i.e. the

system becomes unstable) as vertical permeability decreases. However, in the context of carbon

sequestration, a chemical reaction occurs between the supercritical CO2 and a chemical species

in porous rocks. This has not been incorporated in Ennis-King et al. [11]. In order to account for

this effect of the chemical reaction, Andres & Cardoso [23] considered a more realistic situation in

which they identify some conditions where a chemical reaction may significantly delay the onset

of convection. However, their study was restricted to the situation where the porous medium

is homogeneous in nature. In our present study, along with the induced first-order chemical

reaction, we considered non-homogeneity in both permeability and solutal diffusivity. This is

a further generalization of the earlier situations considered by Hill & Morad [14].

In a similar way, convective stability via linear and global stability analysis of time-dependent

density-driven convection in an isotropic porous medium was studied by Xu et al. [27]. Their

analysis reveals that, when there is an increment in either horizontal or vertical permeability, the

system becomes unstable. Cheng et al. [34] have also studied the effect of anisotropic permeability

on the onset of convection, and they found that their results agree with the results obtained by Xu

et al. [27]. Their analysis conveys that the base state (which is diffusion) becomes more unstable

and solutal convection can occur earlier.

To be more specific about the recent works on anisotropic permeability, Paoli et al. [35] have

investigated the influence of anisotropic permeability on the onset of convection in a two-

dimensional saturated porous medium with the help of numerical simulation. They observed

that, for γ < 1, the vertical convective flux of solute increases significantly and an increase in

horizontal permeability makes the system become unstable (i.e. it increases the horizontal velocity

gradient of the saturated fluid and in turn enhances the solute vertical transport). Here, the value

of 0.25 ≤ γ ≤ 1 is chosen to be representative of a real geological application [35].

The rest of the article is established as follows: in §2, we give basic equations for the present

problem and non-dimensionalize the equations. In §3, we discuss the stability of the system via

linear instability analysis (§3a) and global stability analysis (§3b). We obtain the system of the

eigenvalue problems for linear analysis (3.1) and (3.2) and nonlinear analysis (3.8)–(3.10) with the

corresponding boundary conditions. At the end, we discuss the numerical results in §4.

2. Mathematical formulation of the problem
We consider a simplified saline aquifer which is a homogeneous porous medium and Ω to be a

porous layer saturated with brine. The aquifer is assumed to be confined between two horizontal,
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infinite parallel impermeable planes. Let Oxyz be a Cartesian frame of reference and Ω = R
2 ×

(−d, d), d > 0. The fluid is assumed to be incompressible, and the fluid motion in the porous layer

is assumed to be governed by Darcy’s law, such that

∇ · v = 0 (2.1)

and
µ

K
v = −∇P − bρf g, (2.2)

where v = (u, v, w) is Darcy’s velocity vector, µ is the fluid viscosity, P is the pressure, K is the

second-order permeability tensor, g is the acceleration due to gravity, ρf is the fluid density and

b = (0, 0, 1). In terms of components, equation (2.2) can be written as

µ

kh
u = −

∂P

∂x
, (2.3)

µ

kh
v = −

∂P

∂y
(2.4)

and
µ

kv

w = −
∂P

∂z
− ρf g, (2.5)

where kh and kv are the horizontal and vertical permeabilities, respectively, and are assumed to

be spatially uniform.

We consider the dissolution of CO2 in Ω (brine), where the CO2 undergoes a first-order

chemical reaction with brine, and this dissolution of CO2 increases the density of the brine. When

the reaction is introduced, it should be noted that it has a stabilizing effect on the system because it

consumes a heavy solute. The transport of CO2 into brine is governed by the convection–diffusion

equation, as is given by [14,28]

φ
∂C

∂t
+ v · ∇C = φDH∇2

1 C + φDV
∂2C

∂z2
− βC, (2.6)

where φ is the porosity, C is the concentration of CO2 in brine, β is the reaction rate of CO2 in brine

and DH and DV are the horizontal and vertical solutal diffusivities, respectively. The density of

the brine ρf is affected by the concentration C of CO2, which is assumed to be linear because the

concentration of CO2 has a very small effect on the partial molar volume [39]. In equation (2.6),

we have ∇2
1 = ∂2/∂x2 + ∂2/∂y2. Further, it is assumed that the linear Boussinesq approximation is

valid, which may be written as

ρf = ρ0(1 + βc(C − C0)), (2.7)

where ρ0 is the density of unsaturated brine, C0 is the reference value of the concentration of CO2

and βc is the solutal expansion coefficient.

As we have already assumed that the top and bottom boundaries are impermeable for the fluid

flow, we have v = 0 at z = ±d. The upper boundary condition at z = d is assumed to be a constant

C0 and the lower boundary is assumed to be a no-flux condition with the assumption that the

dissolved CO2 cannot escape through the lower boundary, i.e.

∂C

∂z

∣

∣

∣

z=−d
= 0.

We now introduce the following scaling for the variables to get the non-dimensional governing

equations:

x =
d

√
γ

x∗, y =
d

√
γ

y∗, z = dz∗, C = C0C∗, t =
d2

DV
t∗

and u =
φDV√

γ d
u∗, v =

φDV√
γ d

v∗, w =
φDV

d
w∗, P =

φµDV

kv

P∗.
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Substituting these non-dimensional variables into the governing equations (2.1)–(2.7) and

dropping the star, we obtain a non-dimensionalized system of equations in vector form, as

∇ · v = 0, (2.8)

v = −∇P − b
ρ0gkvd

φµDV
(1 + βcC0(C − 1)) (2.9)

and
∂C

∂t
+ v · ∇C =

∂2C

∂z2
+

γ

η

(

∂2C

∂x2
+

∂2C

∂y2

)

−
βd2

φDV
C, (2.10)

and the boundary conditions get reduced to

v = 0, C = 1 at z = 1 (2.11)

and

v = 0,
∂C

∂z
= 0 at z = −1, (2.12)

where γ = kv/kh is the ratio of vertical to horizontal permeabilities and η = DV/DH is the ratio of

vertical to horizontal solutal diffusivities.

We now consider the basic steady-state solution (v, P, C), where the fluid velocity is zero (i.e.

v̄ = 0) and the concentration field in the base state subject to the boundary conditions is given by

C(z) =
cosh

(

√

d2βc/φDV(z + 1)
)

cosh
(

2
√

d2βc/φDV

) . (2.13)

To asses the stability analysis, a perturbation (u, π , Φ) is introduced to the steady-state solution

(v, P, C) such that

v = v + u, P = P + π and C = C + Φ.

Upon substituting these in the governing equations (2.8)–(2.12), we get the equations for

perturbations as

∇ · u = 0, (2.14)

u = −∇π − bRaΦ (2.15)

and
∂Φ

∂t
+ u.∇Φ +

√
RaDaM1(z)w =

∂2Φ

∂z2
+

γ

η
∇2

1Φ − RaDaΦ, (2.16)

where

u3 = w, ∇2
1 =

∂2

∂x2
+

∂2

∂y2
, M1(z) =

sinh
(√

RaDa(z + 1)
)

cosh
(

2
√

RaDa
)

and Ra =
gρ0βckvdC0

φµDV
, Da =

βdµ

gρ0βcC0kv

,

with Ra and Da being the vertical solutal Rayleigh number and the Damköhler number,

respectively. The boundary conditions for perturbations are now

w = 0, Φ = 0 at z = 1 (2.17)

and

w = 0,
∂Φ

∂z
= 0 at z = −1. (2.18)

We assume that the perturbations (u, π , Φ), defined on (x, y, z) ∈ R
2 × [−1, 1], are periodic

functions in the x- and y-directions of periods 2π/ax and 2π/ay, respectively, with ax > 0, ay > 0,

being wavenumbers in the x- and y-directions. We shall denote the periodicity cell by Ω =
[0, 2π/ax] × [0, 2π/ay] × [−1, 1].
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3. Stability analysis
It is crucial to assess the onset of convection (i.e. instability) after dissolution of CO2 in brine

to understand the processes occurring in CO2 sequestration in saline aquifers. To achieve

this, we perform two different stability analyses: namely the linear instability analysis and

the nonlinear stability analysis using the energy functional approach [40,41]. The literature

reveals that the linear theory gives only a sufficient condition for the instability and nonlinear

analysis via the energy functional gives a sufficient condition for the stability of system. The

reason for studying both the linear and nonlinear stability analyses is to identify the regions of

sub-critical instabilities, if they exist, for the parameter space governing the given flow.

Once we get the eigenvalue problems in both of these theories, we resort to numerical

schemes such as the Chebyshev-tau method [42], which is coupled with the QZ algorithm [43], to

understand the stability mechanism.

(a) Linear instability analysis

To proceed with the linear instability analysis, it is assumed that the perturbations are too small

and so the quadratic and higher order terms (i.e. nonlinear terms) are neglected to get the

linearized perturbation equations. This approach provides limited information on the behaviour

of the nonlinear system. As the resulting system is linear and autonomous, we may seek solutions

of the form

[u, v, w, π , Φ] = [u(z), v(z), w(z), π (z), Φ(z)]pf (x, y) eσ t,

where pf (x, y) = ei(axx+ayy) is a plan-form which tiles the plane (x, y) with ∇2
1 pf (x, y) = −a2pf (x, y),

such that a2 = a2
x + a2

y (a2 being the overall wavenumber). The plan-forms represent the horizontal

shape of the convection cells formed at the onset of instability. These cells form a regular

horizontal pattern tiling the (x, y)-plane, where the wavenumber a is a measure of the width of

the convection cell and σ is a growth rate parameter and complex time constant.

Taking the double curl to the linearized version of equation (2.15), where the third component

is chosen (i.e. u3 = w and the fact that u is solenoidal) and letting D = d/dz, we derived the

following eigenvalue problem for the linear stability analysis:

(D2 − a2)w − a2RaΦ = 0 (3.1)

and
(

D2 − a2 γ

η

)

Φ − RaDaΦ −
√

RaDaM1(z)w = σΦ, (3.2)

with the boundary conditions w = 0, Φ = 0 at z = 1 and w = 0, (∂Φ/∂z) = 0 at z = −1.

The fourth-order system (3.1) and (3.2) was solved by using the Chebyshev-tau method [42],

which is a spectral technique coupled with the QZ algorithm [43]. We found that the growth rate

parameter σ is real at the onset of convection for all governing parameter ranges considered in

the present problem. We define the critical value of Ra at the onset as the minimum of Ra with

varying a2 for fixing other flow-governing parameters.

(b) Nonlinear stability analysis

We now try to obtain a bound for global nonlinear stability in the L2(Ω) stability measure. To

achieve this bound, we first remove the pressure term from the equation (2.15) by taking the

double curl on it, to get

∇2w + Ra

(

∂2Φ

∂x2
+

∂2Φ

∂y2

)

= 0. (3.3)

To proceed with the global stability analysis of convective flow in the porous medium,

we use the generalized energy technique by adopting the differential constraints approach
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[14,44–46]. Now multiplying equation (2.16) by Φ and integrating over the whole domain Ω using

integration by parts and the boundary conditions, we get

1

2

d

dt
‖Φ‖2 = −

∥

∥

∥

∥

∂Φ

∂z

∥

∥

∥

∥

2

−
γ

η
‖∇1Φ‖2 − RaDa‖Φ‖2 −

√
RaDa〈M1w, Φ〉, (3.4)

where ∇1 = i∂/∂x + j∂/∂y and ‖.‖ and 〈., .〉 denote the norm and inner product on L2(Ω),

respectively. Now we define the energy functional E as

E(t) = 1
2 ‖Φ‖2.

Differentiating E with respect to t and by using equation (3.4), we derive the following identity:

dE

dt
= I − D,

where
I = −

√
RaDa〈M1w, Φ〉 (3.5)

and

D =
∥

∥

∥

∥

∂Φ

∂z

∥

∥

∥

∥

2

+
γ

η
‖∇1Φ‖2 + RaDa‖Φ‖2. (3.6)

We now define the maximization problem as (1/RE) = maxHI/D, where H is the space of

admissible perturbations to equations (2.14)–(2.16) subject to constraint equation (3.3). Now using

the Poincaré inequality, it follows that D ≥ rE for some positive constant r, such that

dE

dt
≤ −

(

1 −
1

RE

)

rE.

After integration, we have E(t) ≤ E(0) e−αt, α = r(1 − (1/RE)). If RE > 1, then E(t) → 0 as t → ∞. By

the definition of E(t), it is clear that the perturbation Φ decays to zero as t → ∞.

However, for the global nonlinear stability, all perturbations must decay to zero (i.e. the decay

of u must also be demonstrated). Multiplying equation (2.15) by u and integrating over Ω and by

using the Cauchy–Schwartz and Young inequalities, we get

‖u‖2 ≤ Ra

(

ϑ

2
‖Φ‖2 +

1

2ϑ
‖u‖2

)

, (3.7)

for constant ϑ > 0. By choosing the constant ϑ = Ra, we derive

‖u‖2 ≤ Ra2‖Φ‖2.

As Φ → 0, by the definition of E(t) in the stability measure L2(Ω) as t → ∞, it clearly shows the

decay of u. We now introduce the Euler–Lagrange multiplier τ such that

τ (x)

[

∇2w + Ra

(

∂2Φ

∂x2
+

∂2Φ

∂y2

)]

= 0.

The Euler–Lagrange equations for the maximization problem 1/RE are now derived and these are

subject to normal modes as given in section 3a, to get

RE((D2 − a2)w − a2RaΦ) = 0, (3.8)

RE

(

(D2 − a2)τ −
√

RaDaM1Φ

)

= 0 (3.9)

and RE

(√
RaDaM1w + a2Raτ

)

= 2

(

D2 − a2 γ

η

)

Φ − 2RaDaΦ. (3.10)

And the boundary conditions get reduced to

w = 0, τ = 0, Φ = 0 at z = 1 (3.11)

and

w = 0, τ = 0,
∂Φ

∂z
= 0 at z = −1. (3.12)
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The above system (3.8)–(3.12) forms a sixth-order eigenvalue problem for RE, where global

stability holds if RE > 1 for all eigenvalues RE (while maximizing over Ra and minimizing over

a2) and it was numerically solved by using the Chebyshev-tau method [42], which is coupled with

the QZ algorithm [43].

4. Results and discussion
In this section, we present the numerical results of the eigenvalue problems derived in both the

linear and nonlinear stability theories. For the linear instability results, it is always found that,

for the given set of flow-governing parameters, the growth rate parameter σ is real. Since the

sedimentary rocks generally have a layered structure, the permeability in the vertical direction

is often much less than that in the horizontal direction. The studies of Xu et al. [27] and De Paoli

et al. [35] reveal that the typical values of vertical permeability cannot exceed 1; however, one

can have larger values of horizontal permeability. With this restriction, during the numerical

experiment, we set the representative value of the permeability ratio parameter between 0.25

and 1.

Figure 1 gives the variation of critical Ra against Da with varying η for fixed γ = 0.5. From

this figure, it is observed that the behaviour of neutral stability curves for each value of η follow

the same trend for either isotropic or anisotropic permeability in the medium. It is noted that

an increase in the value of η reduces the value of the critical Rayleigh number, which makes the

system unstable. This is clear from the scaling used for η and Ra—that η is linearly proportional

to the vertical diffusivity DV in the medium, whereas Ra is inversely proportional to DV . Here

it is noted that increasing the value of Da up to 0.05 (i.e. in the region where the reaction rate is

much smaller than the diffusion rate) the threshold for onset of convection is decreased, clearly

indicating the instability in the system; this implies that the penetration of dissolved CO2 inside

resident brine becomes very fast (i.e. convective mixing occurs), and thereafter increasing Da

beyond 0.05 the system is stabilized where now the reaction is comparatively stronger than the

diffusion rate. It is noted in Hill & Morad [14] that, for varying log(Da), an increment in the

solutal diffusivity ratio increases the solutal Rayleigh number and hence a stabilization is seen for

smaller values of the vertical permeability parameter. In our case, we observed that increasing the

diffusivity ratio parameter, η, has a destabilization effect. However, we conclude that our results

are in line with those of Hill & Morad [14] as the diffusivity ratio parameter defined in the present

article is exactly the reciprocal of the diffusivity ratio parameter defined in their article.

Figure 2 gives a visual representation of the linear instability threshold for the variety of γ

for a fixed value of η = 0.5. It is clear from this figure that the behaviour of the neutral stability

curves for each value of γ follows a similar pattern when the horizontal solutal diffusion is more

than the vertical solutal diffusion. It is noted that an increment in the value of γ (i.e. horizontal

permeability is much less than vertical permeability) makes the system stable (varying the ratio of

horizontal to vertical permeability does not significantly affect the behaviour of instability). What

is to be noted is that increasing the value of Da up to 0.05 (i.e. in the region where the reaction rate

is much smaller than the diffusion rate) the threshold for the onset of convection is decreased,

clearly indicating the instability in the system. Thereafter increasing Da beyond 0.05 stabilizes the

system where the reaction rate is comparatively dominant. Stability of the system does not imply

a reduction in trapping of CO2 in saline aquifers but instability in the system instigates the onset

of convection and favours convective mixing.

Figure 3 gives the variation of critical Ra against γ with varying Da for fixed η = 1. From

this figure, it is observed that an increase in γ (i.e. vertical permeability dominates horizontal

permeability) stabilizes the system, and this is expected as Ra is linearly proportional to the

vertical permeability. The critical value of Ra is reduced by increasing Da in the interval (0.0005,

0.01) as the solutal diffusion rate dominates the chemical reaction rate in the region where the

horizontal permeability is high compared with the vertical permeability. On the other hand, for

the case where the chemical reaction rate is more dominant than the solutal diffusion rate, it is

noted that increasing the value of Da from 0.1 onwards the critical value of Ra is increased and
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Figure 1. Visual representation of the linear instability threshold for η = 0.5, 1.0 and 1.5 with the critical solutal Rayleigh

number Ra plotted against Da, where γ = 0.5.
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Figure 2. Visual representation of the linear instability threshold forγ = 0.3, 0.5, 0.8 and 1.0 with the critical solutal Rayleigh

number Ra plotted against Da, where η = 0.5.

stabilization is seen. This shows that higher values of Da show a stabilizing effect with increasing

permeability ratio. It has been shown that the chemical reaction between dissolved CO2 and a

solid porous matrix delays the onset of convection in the theoretical works by Ennis-King &

Paterson [20], Ghesmat et al. [22] and Andres & Cardoso [24]. From figure 3, it is observed that

when Da ≪ 1 (diffusion dominates reaction rate) there is no significant effect of chemical reaction

on the stability of the system. However, increasing the vertical permeability increases the critical

value of Ra at the onset between dissolved CO2 and the solid porous matrix. In figures 2 and 3,

we fixed the γ -values between 0.25 and 1, since the sedimentary rocks generally have a layered

structure and the permeability in the vertical direction is often much less than the permeability

in the horizontal direction. Even if γ is increased further, the critical value of Ra at the onset will

increase and the flow gets stabilized.

When the porous medium is homogeneous, Andres & Cardoso [23] pointed out that there

exists a critical value of Da/Ra2, after which the flow is stabilized. This clearly suggests that, when

the reaction rate dominates, the flow can withstand the disturbances and the convective mixing

between supercritical CO2 and the brine gets delayed. Exactly the same kind of observation
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Figure 3. Visual representation of the linear instability threshold for Da= 0.0005, 0.001, 0.01, 0.1 and 0.25 with the critical

solutal Rayleigh number Ra plotted against γ , where η = 1.
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Figure4. Visual representation of the linear instability (solid lines) andnonlinear stability (dashed lines) threshold forη = 0.5,

1.0 and 1.5 with the critical solutal Rayleigh number Ra plotted against γ , where Da= 0.1.

is made in our results even in the presence of anisotropy with respect to both permeability

and solutal diffusivity in the medium. As a consequence, we can conclude that our results in

an anisotropic porous medium are in line with the results of Andres & Cardoso [23] in the

homogeneous porous case.

The threshold values of Ra in both linear and nonlinear theories against γ with varying η and

for varying Da are shown in figures 4 and 5. In these graphs, the solid lines represent the linear

stability results and the dashed lines represent the nonlinear stability results. From figure 4, it

is to be noted that varying γ increases the threshold values of the onset of convection in both

the linear and nonlinear theories and thereby favours the stability, whereas increasing the value

of η reduces the critical value of Ra in both the linear and nonlinear theories. Hence η has a

destabilizing effect on the system, which is also observed in figure 1. It is further noted that both

the linear and nonlinear stability thresholds coincide for smaller values of γ , but as the value of

γ is increased the gap between these two theories increases. This confirms that γ is a potential

candidate to generate sub-critical instabilities in the medium (i.e. higher vertical permeability can
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Figure 5. Visual representation of the linear instability (solid lines) and nonlinear stability (dotted lines) threshold for Da=
0.08 and 0.1 with the critical solutal Rayleigh number Ra plotted against γ , where η = 1.
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Figure6. Visual representation of the linear instability (solid lines) andnonlinear stability (dashed lines) threshold forγ = 0.3

and 1.0 with the critical solutal Rayleigh number Ra plotted against η, where Da= 0.1.

cause sub-critical instability), whereas the parameter η has the completely opposite effect on this

phenomenon. In other words increasing η reduces the region of sub-critical instabilities. From

figure 5, it is observed that varying γ has precisely the same impact on the stability thresholds

as discussed in the previous case, but Da plays a stabilizing effect on the system in the region

where chemical reaction is dominant. Also, the region of sub-critical instabilities is widened with

increasing Da. In conclusion, for a fixed value of γ , it is observed that η and Da have precisely

opposite effects on the stability of the system as well as on the region of sub-critical instabilities.

In figure 6, the response of Ra against η is shown for varying γ for fixed Da = 0.1, where

the reaction dominates diffusion in the medium for both linear and nonlinear theories. For

smaller values of η up to 0.5, increasing the γ increases the region of the sub-critical instabilities.

In addition, this region of sub-critical instabilities is narrowed with increasing η and after a

certain stage both the linear and nonlinear stability thresholds coincide and hence, for higher

values of η, linear stability analysis alone is capable of predicting the onset of convection. When

vertical solutal diffusion is higher than the horizontal solutal diffusion, both linear and nonlinear
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thresholds at the onset of convection coincide and yield no sub-critical region of instability.

However, for the case where horizontal solutal diffusion is more than that of vertical solutal

diffusion, an increase in the vertical permeability yields the region of sub-critical instabilities.

It is natural to expect a higher value of vertical permeability kv to enhance fluid motion, and

hence favour instability as it consumes more solute, and a higher value of vertical diffusivity

to have a stabilizing effect on the system because it reduces the concentration gradients, and

hence density gradients. However, in the present analysis, we observe a reverse pattern in the

regime diagrams. This is due to the scaling used in §2. When we redefine Ra and Da as (Ramγ /η)

and (Dam/η), respectively (where Ram = (gρ0βckhdC0/φµDH) and Dam = (βdµ/gρ0βcC0kh)), we

do confirm the expected phenomenon (i.e. increasing kv decreases the value of Ram and as a

consequence destabilization is recovered). With this observation, we confirm that the numerical

results presented in the problem are correct and validate the physical phenomenon which is

already available in the literature. This is because the entire scaling is done using kv and DV

in the paper while in the literature scaling is performed using kh and DH [27,36,37]. This is why

our numerical results show a reverse trend to the known results in the literature.

When the permeability ratio γ to diffusivity ratio η is less than 1, the threshold value for onset

is less than the threshold value of Ra for γ /η > 1. In general, we cannot predict a particular value

of the permeability and diffusivity ratio because anisotropy in permeability depends on the rock

structure, which changes from place to place. From this analysis, we can suggest that carbon

sequestration system will be more stable with increasing permeability ratio and will be unstable

with increasing diffusivity ratio, leading to faster CO2 dissolution into the brine.
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