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ON THE GAPS BETWEEN NON-ZERO FOURIER

COEFFICIENTS OF CUSP FORMS OF HIGHER WEIGHT

NARASIMHA KUMAR

Abstract. We show that if a modular cuspidal eigenform f of weight 2k is 2-

adically close to an elliptic curve E/Q, which has a cyclic rational 4-isogeny, then

n-th Fourier coefficient of f is non-zero in the short interval (X,X + cX
1

4 ) for

all X ≫ 0 and for some c > 0. We use this fact to produce non-CM cuspidal

eigenforms f of level N > 1 and weight k > 2 such that if(n) ≪ n
1

4 for all n ≫ 0.

1. Introduction

The vanishing or non-vanishing of Fourier coefficients of cusp forms is one of the

fundamental and interesting objects of study in number theory. In this article, we

are interested in a question of Serre in bounding the maximum length of consecutive

zeros of cusp forms of integral weight.

In his paper [Ser81], Serre proposes the study of the non-vanishing of Fourier

coefficients of cusp forms in short-intervals. In particular, if f(z) =
∑∞

n=1 af (n)q
n ∈

Sk(N), then he suggests the problem of finding upper bounds for the function if (n)

defined by

if(n) := max {i : af (n+ j) = 0 for all 0 ≤ j ≤ i}.

In fact, he proved that if f(z) is a cusp form of weight k ≥ 2 which is not a linear

combination of forms with complex multiplication (CM), then

if(n) ≪ n.

In same article, he poses a question, if the bound can be improved to nδ with

0 < δ < 1.

Through various approaches, many mathematicians have contributed in answer-

ing this question. The approaches are either using Rankin-Selberg estimates, or

Chebotarev density theorem, or distribution of B-free numbers, or the bounds on

certain exponential sums, etc., (cf. [BO01], [Alk03], [Alk05], [AZ05a], [AZ08], [DG14]).

For example, the approach to the non-vanishing problem through the distribution of

B-free numbers has been considered by Alkan and Zaharescu ([AZ05b]), Matomäki

([Mat12]), and Kowalski, Robert, and Wu ([KRW07]), and many more. For more

details on the other approaches and the relevant literature on this problem, we urge

the reader to look at the beautiful introductions of [BO01], [KRW07]. Currently,
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the best bound for if (n) is available due to Kowalski, Robert, and Wu and they

proved that for any holomorphic non-CM cuspidal eigenform f on general congru-

ence groups,

if(n) ≪f n7/17+ǫ, (1.1)

holds for all n ∈ N (cf. [KRW07]). It is interesting to note that there is another

aspect of understanding if(n), that is, through the study of averages for if (n)

(cf. [AZ07]).

In [AZ05c], for the first time, the authors have exploited the idea of using congru-

ences to study if(n). There it was shown that i∆(n) ≪ n
1

4 , where ∆ is the unique

normalized cuspidal eigenform of weight 12. The proof of this theorem relies on the

existance of sums of squares in short intervals of the form (x, x+ x
1

4 ).

In [DG14], the authors extended the above idea on the existance of sums of

squares in short intervals of the form (x, x + cx
1

4 ), along with the congruences for

eigenvalues of level 1 Hecke eigenforms, to show that for any non-zero modular form

f ∈ Sk(Γ0(1)) with k ≥ 12, one has

if (n) ≪ n1/4 ∀ n ≫ 0, (1.2)

where the implied constant depends only on k.

If the level N > 1, then there are no similar general results are available with

if (n) ≪ n
1

4 . However, in [DG15], the authors were able to produce infinitely many

non-isogenous elliptic curves for which (1.2) holds. In the same article, the authors

have raised a question about extending the result to cuspidal eigenforms of higher

weights. To our knowledge, there is not even a single example in the literature of

a non-CM (or CM) cuspidal eigenform of level N > 1 and weight k > 2 for which

the (1.2) holds.

The objective of this article to extend the results of [DG15] to elliptic curves with

cyclic rational 4-isogeny and show that either if a modular cuspidal eigenform f of

weight 2k is 2-adically close to an elliptic curve E/Q, which has a cyclic rational

4-isogeny or if there is a higher congruence for the prime 2 holds between them,

then (1.2) holds for f as well. We use this fact to produce examples of non-CM, as

well as CM, cuspidal eigenforms f of level N > 1 and weight k > 2 for which (1.2)

holds for f .
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3. Elliptic curves with a cyclic rational 4-isogeny

Let E be an elliptic curve over Q of conductor NE . Let fE denote the cuspidal

eigenform of weight 2 with rational Fourier coefficients corresponding to E, by the

modularity theorem. Through out, we shall use fE to mean only this.

In [DG15], it was shown that if the elliptic curve E has a rational 4-torsion point,

then for all n ≫ 0,

ifE(n) ≪ n
1

4 ,

where the implied constant depends on NE . In this section, we extend this result to

elliptic curves with a cyclic rational 4-isogeny. Before we start stating our results,

let us state useful results from [DG14, Theorem 1] and [KRW07, Lemma 2.2], which

we shall use through out.

Theorem 3.1 (Das-Ganguly). Given any integer N ∈ N, there exists X0 ∈ R+ and

c > 0 (depending only on N) such that there exists an integer n which is a sum of

two squares and co-prime to N in intervals of type (X,X + cX
1

4 ) for all X ≫ X0.

Lemma 3.2 (Kowalski-Robert-Wu). If f =
∑∞

n=1 af(n)q
n is a normalized cuspidal

eigenform in S2k(Γ0(N), χ), then there exists a natural number Mf ≥ 1 such that

for any prime p ∤ Mf , either af(p) = 0 or af (p
r) 6= 0 for all r ≥ 1. If χ is trivial

and f has integer coefficients, then one can take Mf = N .

Given any elliptic curve E over Q of conductor NE, we let ρ = ρE denote the

Galois representation associated to E. For any N ∈ N, we let ρ̄N denote the action

of the Galois group Gal(Q̄/Q) on E[N ], the N -torsion points of E.

Theorem 3.3. If an elliptic curve E over Q of conductor NE has a cyclic rational

4-isogeny, then

ifE(n) ≪ n
1

4

for n ≫ 0 and the implied constant depends only on NE.

Proof. The existence of a cyclic rational 4-isogeny for E implies that there exists an

isogeny ϕ : E → E ′ defined over Q such that ker(ϕ)(Q̄) is isomorphic to Z/4Z and

ker(ϕ) is invariant under the Gal(Q̄/Q)-action. Therefore, the representation ρ̄4 is

reducible and hence the image of ρ̄4 is inside the Borel subgroup of GL2(Z/4Z), and

ρ̄4 ≃

(

χ ∗

0 ∗

)

(mod 4).

For all primes p ∤ 2NE , by calculating the trace and determinant of the representa-

tion at the Frobenius elements Frobp at p, we get the following congruence

aE(p) ≡ χ(p) + pχ−1(p) (mod 4),

where aE(p) denotes the p-th Fourier coefficient of fE . In fact, we obtain a relation

that, for all p ∤ 2NE

aE(p) ≡ 1 + p (mod 4) or aE(p) ≡ −(1 + p) (mod 4) (3.1)
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holds.

Now, we shall show that aE(n) is nonzero for all integers n that are sums of two

squares and are co-prime to 2NE. If an integer n is a sum of two squares then the

prime factors of n that are ≡ 3 (mod 4) occur with an even exponent.

(1) If p ≡ 1 (mod 4) and p ∤ 2NE , then aE(p) ≡ 2 (mod 4) in either cases

(cf. (3.1)). Therefore, aE(p) is non-zero if p ≡ 1 (mod 4). By Lemma 3.2,

we see that aE(p
m) 6= 0 for m ≥ 1, since (p,NE) = 1.

(2) If p ≡ 3 (mod 4) and p ∤ 2NE , then aE(p) ≡ 0 (mod 4). The Hecke relations

aE(p
r) = aE(p)aE(p

r−1)− paE(p
r−2), (3.2)

would imply that aE(p
2r) ≡ aE(p

2r−2) (mod 4). Since aE(p
2) ≡ 1 (mod 4),

we see that aE(p
2r) is non-zero for all r ≥ 1.

By Theorem 3.1, we can obtain an integer n that is co-prime to 2NE and is a sum

of two squares in intervals of type (X,X + cX
1

4 ), where X ≫ 0 and c > 0 depends

only on NE. Hence, we are done with the proof. �

Now, we shall show that Theorem 3.3 holds for infinitely many non-isogenous

elliptic curves E over Q. To do this, let us recall some standard facts about modular

curves.

If a field k is of characteristic zero, then k-points of the curve X0(N) (away from

the cusps) parametrize diagrams (ϕ : E → E ′) where E,E ′ are elliptic curves over

k and ϕ : E → E ′ is a k-rational isogeny with ker(ϕ) over k̄ is isomorphic to a

cyclic group of order N .

For any prime p, let X0(p
2) be the classical modular curve over Q and X+

0 (p
2)

be its quotient by the Atkin-Lehner involution. Let Xsplit(p) be the modular curve

defined over Q which corresponds to the modular curve

Γsplit(p) =
{(

a b
c d

)

∈ SL2(Z)| b ≡ c ≡ 0 (mod p) or a ≡ d ≡ 0 (mod p)
}

,

i.e., Xsplit(p)⊗ C ≃ Γsplit(p)\H ∪ P1(Q).

Proposition 3.4. There exists infinitely many non-isogenous curves over Q which

have a cyclic rational 4-isogenies.

Proof. For any prime p, the rational morphism of modular curves X0(p
2) → Xsplit(p)

induces an isomorphism of modular curves X+
0 (p

2) ≃ Xsplit(p)(cf. the introduction

of [BPR13]). If p ≤ 7, we get that Xsplit(p)(Q) ≃ P1(Q)(cf. [Mom84, Page 115]).

When p = 2, there are infinitely many non-isomorphic elliptic curves over Q which

have a cyclic rational 4-isogeny. Now, the proposition follows from the fact that,

given any elliptic curve E over Q, there are only finitely many elliptic curves over

Q which are isogenous to E. �

Remark 3.5. In the proof of above proposition, one can also use the fact thatX0(4)

is a smooth algebraic curve of genus zero and hence is rational and that it has a

rational point. Therefore, X0(4) has infinitely many rational points and hence so



ON THE GAPS BETWEEN NON-ZERO FOURIER COEFFICIENTS 5

does Y0(4). On the contrary, in [Maz77], Mazur showed that for each prime number

p = 11 or p ≥ 17, there are only finitely many Q-rational points on Xsplit(p).

In [DG15, Corollary 1], the authors have shown the existence of infinitely many

non-isogenous elliptic curves over Q having a rational 4-torsion point. As a conse-

quence, they have produced infinitely many non-isogenous elliptic curves E over Q

with ifE ≪ n
1

4 for all n ≫ 0. We finish this section with a shorter proof of that

result, by producing an explicit family of elliptic curves over Q having a rational

4-torsion point.

Proposition 3.6. For each t ∈ Q− {0, 1
4
}, the elliptic curve Et defined by

Et : y
2 = x3 − (2t− 1)x2 + t2x

has a rational 4-torsion point. In fact, there are infinitely many non-isogenous

elliptic curves in the family {Et}t∈Q−{0, 1
4
}.

Proof. The point (t, t) is a rational 4-torsion point on Et, therefore Et has a rational

4-torsion point. Since the j-invariant of an elliptic curve classifies elliptic curves over

Q̄, up to an isomorphism, we see that there are infinitely many elliptic curves in

{Et}, which are not isomorphic to each other. This is because, given any element

α ∈ Q, then j(Et) = α holds only for finitely many t’s, since j(Et) is a rational

polynomial in Q(t). Now, the last statement follows from the fact that, given

any elliptic curve E over Q, there are only finitely many elliptic curves which are

isogenous to E. �

Remark 3.7. In fact, there is a two variable parametrization of elliptic curves

over Q having m-torsion points, if m 6= 1, 2, 3. This can be found in the work of

Lorenzini (cf. [Lor11] for more details).

4. Higher congruence between f and fE

In this section, we show that if there is higher congruence between f and fE holds

for the prime 2, then (1.2) holds for f as well. In order to make these sense, let us

define the notion of higher congruence between two eigenforms.

For a ∈ N, a commutative ring R, and a formal power series

f =
∞
∑

n=0

cnq
n ∈ R[[q]],

we define, for a prime ideal q of R,

ordqaf = inf{n ∈ N ∪ 0 | qa ∤ (cn)},

with the convention that ordqaf = ∞ if qa | (cn) for all n.

Definition 4.1. We say that formal powers series f1 and f2 in R[[q]] are congruent

modulo qa, if ordqa(f1 − f2) = ∞, and we denote this by f1 ≡ f2 (mod qa).
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Let f ∈ S2k(Γ0(N)) be a cuspidal eigenform of weight 2k with k > 1 and level N

with coefficient field K and ring of integers OK . Let Nf := lcm(N,Mf), where Mf

is a natural number corresponding to f as in Lemma 3.2. Let q be a prime ideal of

OK lying above 2 and let e(q/2) denote the ramification index of q.

Let fE be the cuspidal eigenform of level NE corresponding to an elliptic curve

E over Q of conductor NE, which has a cyclic rational 4-isogeny.

Theorem 4.2. Let f and fE be as above. If f ≡ fE (mod qm) for somem > e(q/2),

then

if(n) ≪ n
1

4 , (4.1)

for all n ≫ 0 and the implied constant depends only on NfNE.

Proof. Since f ≡ fE (mod qm), we see that

af (n) ≡ afE(n) (mod q
m),

for all n ≥ 1. By the modularity theorem, we know afE(n) = aE(n) for all n ≥ 1.

Hence,

af (n) ≡ aE(n) (mod q
m).

We show that af(n) is non-zero for all integers n that are sums of two squares

and co-prime to 2NfNE . Observe that, if an odd integer n is a sum of two squares

then the prime factors of n that are ≡ 3 (mod 4) occur with an even exponent.

(1) If p ≡ 1 (mod 4) and p ∤ 2NfNE, then af(p) ≡ ±(p+1) (mod qmin{m,2e(q/2)}),

by (3.1). This implies that, the af(p) is non-zero, because m > e(q/2). By

Lemma 3.2, we see af (p
m) 6= 0 for m ≥ 1, since (p,Nf) = 1.

(2) If p ≡ 3 (mod 4) and p ∤ 2NfNE, then af(p) ≡ ±(p+1) (mod qm), by (3.1).

• If af(p) ≡ 0 (mod qm), then by Hecke relations of Fourier coefficients

of f , we see that

af (p
2n) ≡ (−p)n (mod q

m),

hence af (p
2n) is non-zero for all n ≥ 1, because p and norm of q are

relatively prime.

• If af(p) 6≡ 0 (mod qm), then af (p) is non-zero, and by Lemma 3.2, we

see af (p
2n) 6= 0 for n ≥ 1, since p ∤ Nf .

By Theorem 3.1, we can obtain an integer n that is co-prime to 2NfNE and is a

sum of two squares in intervals of type (X,X + cX
1

4 ), where X ≫ 0 and c > 0

depends only on NfNE . Hence, we are done with the proof. �

As mentioned in the introduction, by using Theorem 4.2, we wish to produce

examples of cuspidal eigenform of level N > 1 and weight k > 2. A special case of

the above theorem is useful in producing examples, because in this case we explicitly

know the integer Mf and hence Nf .
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Corollary 4.3. Let f be as in the theorem above and assume that the Fourier

coefficients of f are integers. If f ≡ fE (mod 4), then

if(n) ≪ n
1

4 ,

for all n ≫ 0 and the implied constant depends only on NNE .

In order to produce examples using the above corollary, one may need to check

congruences for infinitely many coefficients. In the case of mod p congruences, this

problem reduces to checking the congruences for only finitely many coefficients, due

to the work of Sturm. In our situation, to check the higher congruences between

modular forms, one requires similar results. Thanks the work of Rasmussen, we do

have similar results with appropriate bounds, which we refer to them as Sturm’s

bound.

The following proposition is a particular case of [Ras09, Prop. 2.8] and we state

his result only when p = 2 with m = 2e(q/2) and when 12 divides N .

Proposition 4.4. Let f1 and f2 be modular forms of weights 2k1 and 2k2 of level N

and with coefficients in OK. Let q be a prime ideal of OK above 2. If an(f1) ≡ an(f2)

(mod qm) for all n ≤ B := max{2k1, 2k2}[SL2(Z) : Γ1(N)]/12, we have

f1 ≡ f2 (mod q
m).

Remark 4.5. We refer to the number B in the above proposition as the Sturm’s

bound. It only depends on the level and weights of the modular forms involved,

but not on the dimension of the space where the modular forms belong to.

In the following examples, we apply Proposition 4.4 with m = 2, and q = (2).

Clearly, we have e(q/2) = 1 < m = 2. Recall that, the Cremona label of an elliptic

curve E over Q is a way of indexing the elliptic curves over Q. The first number

represents the conductor of E, the letter(s) followed by represent the isogeny class

of E and the last number represents the isomorphism class within the isogeny class

of E as it appears in Cremona’s tables.

Example 1. Let E be the elliptic curves over Q defined by y2 = x3−x2−64x+220

of conductor 24 and has a cyclic rational 4-isogeny. Cremona label for E is 24a3.

Let fE denote the cuspidal non-CM eigenform of level 24 corresponding to E. The

dimension of Snew
2 (24) is 1 and the q-expansion of fE is given by

fE = q − q3 − 2q5 + q9 + 4q11 − 2q13 + 2q15 + 2q17 − 4q19 +O(q20). (4.2)

Example 2. The dimension of Snew
4 (24) is 1 and generated by f24,4. The q-

expansion of f24,4 is given by

f24,4 = q+3q3+14q5−24q7+9q9−28q11−74q13+42q15+82q17+92q19+O(q20). (4.3)

Example 3. The dimension of the Snew
10 (12) is 1 and generated by f12,10. The

q-expansion of f12,10 is given by

f12,10 = q − 81q3 + 990q5 + 8576q7 + 6561q9 + 70596q11 − 2530q13 +O(q14) (4.4)
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Theorem 4.6. The cuspidal eigenforms f in (4.2), (4.3), (4.4) are without complex

multiplication and satisfy

if (n) ≪ n
1

4 (4.5)

for n ≫ 0 and the implied constant depends on levels.

Proof. From the tables in [Tsa14], we see that all the cuspidal Hecke eigenforms

in (4.2), (4.3), (4.4) are without complex multiplication. By Proposition 4.4, it is

enough to check the congruences between the eigenforms in (4.2), (4.3), (4.4) for

all coefficients up to the corresponding Sturm’s bound.

(1) By Theorem 3.3, the cuspidal eigenform fE satisfies (4.5).

(2) For the eigenform f24,4, if we show that fE and f24,4 are congruent modulo

4, then the claim follows from Theorem 4.2. By Proposition 4.4, it is enough

to check these congruence for all coefficients up to 128. Using SAGE, we

have checked that these indeed hold and hence the cuspidal eigenform f24,4
satisfies (4.5).

(3) For the eigenform f12,10, if we show that fE and f12,10 are congruent modulo

4, then the claim follows from Theorem 4.2. To check these congruences

between f12,10 and fE , we treat the cuspidal eigenform f12,10 as a cusp form

in S10(24) and apply the Proposition 4.4. Now, by Proposition 4.4, it is

enough to check the congruence for all coefficients up to 320. Using SAGE,

we have checked that these indeed hold and hence the cuspidal eigenform

f12,10 satisfies (4.5).

�

We remark that Theorem 4.2 works for any cuspidal Hecke eigenform f , i.e.,

there is no assumption on the Hecke eigenform f being CM or non-CM. However,

the results of Balog and Ono ([BO01]), Kowalski, Robert, and Wu ([KRW07]) were

proved for Hecke eigenforms without CM. So, we chose to construct cuspidal Hecke

eigenforms of higher weight without CM to show that there are examples with an

improved bound for if (n). Also, note that all the eigenforms in [DG14] are also

without CM, because they are of level 1.

Now we shall give an example of a Hecke eigenform f of weight k > 2 and level

N > 1 with CM and satisfy the condition that if (n) ≪ n
1

4 .

Example 4. Let E be the elliptic curves over Q defined by y2 = x3 − 11x + 14

of conductor 32 and has a cyclic rational 4-isogeny. Cremona label for E is 32a4.

Let fE denote the cuspidal CM eigenform of level 32 corresponding to E. The

dimension of Snew
2 (32) is 1 and the q-expansion of fE is given by

fE = q − 2q5 − 3q9 + 6q13 + 2q17 +O(q20). (4.6)

Example 5. The dimension of Snew
4 (32) is 3 and denote the basis of eigenforms

with f
(1)
32,4, f

(2)
32,4, f

(3)
32,4, respectively. For example, the q-expansion of f

(3)
32,4 is given by

f
(3)
32,4 = q+8q3−10q5+16q7+37q9−40q11−50q13−80q15−30q17+40q19+O(q20). (4.7)
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Theorem 4.7. The cuspidal eigenform fE in (4.6) and one of the 3 eigenforms in

Example 5 are with CM and satisfy

if (n) ≪ n
1

4 (4.8)

for n ≫ 0 and the implied constant depends on the levels.

Proof. From the tables in [Tsa14], we see that the cuspidal Hecke eigenform fE
in (4.6) has CM. By Theorem 3.3, the cuspidal eigenform fE satisfies (4.8).

Interestingly, all the 3 cuspidal eigenforms in Snew
4 (32) and the elliptic curve fE

are congruent modulo 4. By Proposition 4.4, it is enough to check these congruences

up to the corresponding Sturm’s bound, which is 256 in this case. Using SAGE, we

have checked that these indeed hold and hence all these 3 cuspidal eigenforms in

Snew
4 (32) satisfies the identity (4.8), by Theorem 4.2. From the tables in [Tsa14],

we see that, out of these 3 eigenforms f
(1)
32,4, f

(2)
32,4, f

(3)
32,4, 2 are without CM and 1 is

with CM. �

Hence, there is an example of a Hecke eigenform f of weight k > 2 and level

N > 1 with CM and satisfy the condition that if (n) ≪ n
1

4 .

5. f and fE are 2-adically close

In this section, we improvise the result in the previous section and prove that if

a modular cuspidal eigenform f is 2-adically close to an elliptic curve E/Q, which

has a cyclic rational 4-isogeny, then (1.2) holds for f as well. We also produce an

example where this improvised version of the result is needed.

Define a function α : Z → Z as follows:

α(n) =











0 if n ≤ 1,

1 if n = 2,

n− 2 if n > 2.

Now, we shall introduce the notion of 2-adically close.

Definition 5.1. Let k1, k2 be positive integers such that 2k1 ≡ 2k2 (mod 2s) for

some integer s ≥ 1. For i = 1, 2, suppose fi is a cuspidal eigenform on Γ0(Ni) of

level Ni and weight ki with coefficients in OK .

We say that f1 and f2 are 2-adically close, if there exists a prime ideal q over 2 in

OK with ramification index e(q/2) and an integer m with s ≥ α(⌈ m
e(p)/2

⌉) ≥ 1 such

that

af1(p) ≡ af2(p) (mod q
m),

for all primes p ∤ 2N1N2.

Remark 5.2. The condition α (⌈m/e(q/2)⌉) ≥ 1 implies that m > e(q/2).

Let f ∈ S2k(Γ0(N)) be a cuspidal eigenform of level N > 1 and weight 2k with

k > 1 with coefficients in the ring of integers OK . Let Nf := lcm(N,Mf), where
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Mf is a natural number corresponding to f as in Lemma 3.2. Let q be a prime ideal

of OK lying above 2 and let e(q/2) denote the ramification index of q.

Let fE be a cuspidal eigenform of level NE corresponding to an elliptic curve E

over Q of conductor NE , which has a cyclic rational 4-isogeny.

Theorem 5.3. Let f and fE be as above. If f and fE are 2-adically close, then

if(n) ≪ n
1

4 , (5.1)

for all n ≫ 0 and the implied constant depends only on NfNE.

Proof. The proof of this theorem is essentially same as the proof of Theorem 4.2,

by Remark 5.2. This is because, for some m > e(q/2), we have

af(p) ≡ afE(p) (mod q
m)

for all p ∤ 2NfNE. By [Ras09, Prop. 2.10], this congruence can be extended to

af(p
n) ≡ afE(p

n) (mod q
m) ∀ n ≥ 1,

since s ≥ α(⌈ m
e(p)/2

⌉). By the multiplicativity properties of Fourier coefficients, we

get that

af(n) ≡ afE(n) (mod q
m)

for all (n, 2NfNE) = 1. Towards the end of the proof, we are again interested only

in sums of squares n in short intervals (X,X + cX
1

4 ) which are relatively prime to

2NfNE . Hence, we are done with the proof. �

A special case of the above theorem is useful in producing examples of higher

weight and level, because in this case we explicitly know the integer Mf , and hence

Nf .

Corollary 5.4. Let f be as in the theorem above and assume the Fourier coefficients

of f are integers. If f ≡ fE (mod 4), then

if(n) ≪ n
1

4 ,

for all n ≫ 0 and the implied constant depends only on NNE .

Now, we shall produce an example of Theorem 5.3, where we take s = 1, m = 2,

and q = (2).

Let E be the elliptic curves over Q defined by y2+xy+y = x3+x2−80x+242 of

the conductor 15 and has a cyclic rational 4-isogeny. Cremona label E is 15a7. Let

fE denote the cuspidal eigenform of level 15 corresponding to E. The dimension of

Snew
2 (15) is 1-dimensional and the q-expansion fE is given by

fE = q − q2 − q3 − q4 + q5 + q6 + 3q8 + q9 − q10 − 4q11 +O(q12).

The dimension of Snew
4 (15) is 2-dimensional, but we take the form with the fol-

lowing q-expansion

f15,4 = q + q2 + 3q3 − 7q4 + 5q5 + 3q6 − 24q7 − 15q8 + 9q9 + 5q10 + 52q11 +O(q12).
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Observe that in the above eigenforms, the coefficients of q2 in fE and f15,4 are

not congruent mod 4, so one cannot use Theorem 4.2 to prove (5.1). However, we

can use Theorem 5.3 to prove it.

From the tables in [Tsa14], we see that the cuspidal eigenforms fE , f15,4 are

without CM. In order to check whether fE and f15,4 are 2-adically close, it is enough

to check the congruences for all primes p 6= 2, 3, 5 and up to a certain Sturm bound

B by [Ras09, Corollary 2.14] or by [CKR10, Part (ii) of Thm 1]. This verification

was done in the Appendix A of Rasmussen’s Thesis [Ras09, Page 67].

6. Theorem 4.2 for an integral cusp form f

In this section, we would like to see how far Theorem 4.2 is true when the cuspidal

eigenform f is replaced by a cusp form with integral Fourier coefficients and is

congruent to fE modulo 4. Since we are not working any more with an eigenform,

one cannot expect that the result would be as strong as in the Theorem 4.2. Though,

the results are weaker, still one can say some thing about if (n). For our convenience,

we state the results only when f has integer Fourier coefficients, but the same

arguments work even when f has integral Fourier coefficients but by modifying the

hypothesis appropriately.

To our knowledge, all the existing results are known only when f is a cuspidal

eigenform without CM, but not for any integral cusp form f , except when the level

is 1. In order to state the results of this section, we need the following Hypothesis.

Hypothesis 6.1. Given an N ∈ N, there exists δ = δ(N) ∈ R+ and c = c(N) ∈ R+

with the following property: For X ≫ 0, every short interval (X,X+cXδ) contains

an integer n with (n,N) = 1 and of the form 2ipjm2, where p ≡ 1 (mod 4) with

j 6≡ 3 (mod 4) and (p,m) = 1.

Theorem 6.2. Let E denote an elliptic curve over Q of conductor NE. Assume that

E has a multiplicative reduction at 2 and a cyclic rational 4-isogeny. If f ∈ S2k(N)

is a cusp form, with integer Fourier coefficients, is congruent to fE modulo 4 and

the Hypothesis 6.1 holds for NNE, then

if (n) ≪ nδ, (6.1)

for n ≫ 0 and the implied constant depends only on NNE.

Remark 6.3. Since f is only a cusp form, we don’t have any information about

the Hecke relations of the Fourier coefficients of f , but by the hypothesis we know

that f (mod 4) satisfies the Hecke relations.

Proof. Since f ≡ fE (mod 4), we see that af (n) ≡ afE(n) (mod 4), for all n ≥ 1.

By the modularity theorem, we know that afE(n) = aE(n) for all n ≥ 1. Hence,

af(n) ≡ aE(n) (mod 4) for all n ≥ 1.

We show that af (n) 6≡ 0 (mod 4) for all integers n as in Hypothesis 6.1.
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(1) If p = 2, then af (2) ≡ ±1 (mod 4), since E has a multiplicative reduction at

the prime 2. Therefore, af(2
n) ≡ af (2)

n (mod 2), hence af(2
n) is a 2-adic

unit. In particular, for all n ≥ 1 we have

af(2
n) ≡ ±1 (mod 4). (6.2)

(2) If p ≡ 3 (mod 4) and p ∤ NNE , then af (p) ≡ 0 (mod 4). The mod 4-Hecke

relations among the Fourier coefficients for E and hence for f implies that

af (p
2n) ≡ 1 (mod 4) (6.3)

for all n ≥ 1.

(3) If p ≡ 1 (mod 4) and p ∤ NNE , then af(p) ≡ 2 (mod 4). By using the

mod-4 Hecke relations of f , we get

af (p
m+4) ≡ af (p

m) (mod 4).

One can see that af (p) ≡ 2 (mod 4), af (p
3) ≡ 0 (mod 4) and

af (p
2) ≡ 3 (mod 4), af(p

4) ≡ 1 (mod 4). (6.4)

For any n = 2ipjm2 where p ≡ 1 (mod 4) with j 6≡ 3 (mod 4), (p,m) = 1 and

(n,NNE) = 1, by (6.2),(6.3),(6.4), we have

af (n) ≡ af (2
i)af(p

j)af(m
2) ≡ ±1,±2 (mod 4).

Hence, af(n) is non-zero. By Hypothesis 6.1, we can find such integers n = 2ipjm2

in short intervals (X,X + cXδ), hence we are done with the proof. �

Remark 6.4. The reason for having Hypothesis 6.1 in the statement of the above

theorem is that in part 3 of the above proof, due to the lack of Hecke relations of

Fourier coefficients of f , we don’t get to know the non-vanishing of af (p
n) if n ≡ 3

(mod 4), and of af (p1p2) if both primes p1, p2 are ≡ 1 (mod 4).

In the previous section, we have produced examples for which (5.1) holds. How-

ever, we are not aware of a way to produce infinitely many examples. However,

using Theorem 6.2, one can produce infinitely many cusp forms with δ = δ(N) > 0

if Hypothesis 6.1 holds for some N for which there exists an elliptic curve of con-

ductor N , which has a cyclic rational 4-isogeny. Let us explain what we mean with

the following proposition.

Take E0 : y2 + xy + y = x3 + x2 − 1344x + 18405 whose conductor is 42 and

its torsion subgroup is isomorphic to Z/4Z. There is no specific reason for this

choosing E0, any elliptic curve with the same property will also work.

Proposition 6.5. Assume that Hypothesis 6.1 holds for NE0
= 42 with some δ > 0.

Then, there exists infinitely many cusp forms f in Sk(Γ0(N)), as k,N varies with

k > 2, N > 2 such that

if (n) ≪ nδ,

for n ≫ 0 (depends only on NE0
).
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Proof. Let E4 denote the Eisenstein series of level 1, weight 4. Since E4 ≡ 1

(mod 4), we see that

afE0
En

4
(m) ≡ afE0

(m) (mod 4)

for all m ∈ N. By Theorem 6.2, we have that (6.1) holds for fE0
En

4 as well. Since

the weights of fE0
En

4 ∈ S4n+2(84) are distinct, these cusp forms cannot be the same.

Hence, we are done. �

Finally, we end this article with a possibility of getting rid of the choice of δ

through out, but the author does not know how to implement this idea.

Remark 6.6. For every elliptic curve E over Q with a cyclic rational 4-isogeny,

if there is a lift of the mod 4 eigenform fEE
n
4 (mod 4) to an eigenform gn of level

N and weight 4n + 2, for some n ∈ N, then gn satisfies (5.1) (by Theorem 5.3).

The choice n can depend on the elliptic curve E. Then, by Proposition 3.4, we can

produce infinitely many examples of cuspidal eigenforms weight k > 1 and N > 1

for which (5.1) holds

In case, if the above statement is true for all n ∈ N for some elliptic curve E

over Q with a cyclic rational 4-isogeny, then also we can produce infinitely many

examples of cuspidal eigenforms weight k > 1 and N > 1 for which (5.1) holds.
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