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Abstract

The pressure-driven displacement of a non-Newtonian fluid by a Newtonian

fluid in a two-dimensional channel is investigated via a multiphase lattice

Boltzmann method using a non-ideal gas equation of state well-suited for

two incompressible fluids. The code has been validated by comparing the

results obtained using different regularized models, proposed in the

literature, to model the viscoplasticity of the displaced material. Then, the

effects of the Bingham number, which characterises the behaviour of the

yield-stress of the fluid and the flow index, which reflects the

shear-thinning/thickening tendency of the fluid, are studied. It was found

that increasing the Bingham number and increasing the flow index increases

the size of the unyielded region of the fluid in the downstream portion of the
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channel and increases the thickness of the residual layer of the fluid resident

initially in the channel; the latter is left behind on the channel walls by the

propagating ‘finger’ of the displacing fluid. This, in turn, reduces the

growth rate of interfacial instabilities and the speed of finger propagation.

Keywords: Multiphase flow, Non-Newtonian Fluids, Lattice Boltzmann

Simulation, Immiscible Fluids, Instability, Laminar Flow.

1. Introduction

Pressure-driven displacement flows of one fluid by another having different

fluid properties are common in many industrial processes, such as enhanced

oil recovery [1], the transportation of crude oil in pipelines [2], fixed bed

regeneration, hydrology and filtration. In food processing industries,

cleaning also involves the removal of highly viscous material from conduits

via displacement by water streams. In flow through porous media or in

Hele-Shaw cells, the displacement of a highly viscous fluid by a less viscous

one is accompanied by viscous fingering [3]. Achieving fundamental

understanding of these flows became an active research area for decades [4].

The dynamics of displacement flows have been investigated both

numerically and experimentally by several authors by considering miscible

[5–12] as well as immiscible fluids [13–18]. It is well known that the

displacement flow is always stable when the invading fluid is more viscous

than the resident fluid [2]. When the displacing fluid is less viscous, the

flow becomes unstable and “roll-up” (in miscible flows [1, 19]) and sawtooth

2
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structures (in immiscible flows, [18]) appear at the interface separating the

fluids. The linear instability in the three-layer/core-annular flow, which can

be obtained when the elongated “finger” of the less viscous fluid penetrates

into the bulk of the more viscous one, was also studied in immiscible

[20–22] and miscible [19, 23–26] systems.

In a Hele-Shaw cell, Goyal and Meiburg [7] studied numerically the

miscible displacement flow of a highly viscosity fluid by a less viscous one.

They observed that the two-dimensional instability patterns become

three-dimensional at higher flow rates. The flow field obtained in their

simulation was qualitatively similar to that observed in the experiment of

Petitjeans and Maxworthy [8] and the theoretical predictions of Lajeunesse

et al. [27]. In the context of enhanced-oil recovery, Taghavi et al. [10, 11]

studied analytically and experimentally the displacement flow of two

miscible fluids and observed Kelvin-Helmholtz like instabilities at low

imposed velocities in the exchange flow dominated regime. Sahu et al. [9]

investigated the effects of Reynolds number, Schmidt number, Froude

number and angle of inclination in the pressure-driven flow of two miscible

liquids of different densities and viscosities in an inclined channel. The

behaviour of an infinitesimally small disturbance in such flows was also

investigated by Sahu et al. [19] via a linear stability analysis.

The work discussed above considered only Newtonian fluids. In

literature, to the best of our knowledge, very few studies has been carried

out which investigated the displacement flow of viscoplastic materials.

3
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Below, we briefly review the previous work which studied the displacement

flow of a non-Newtonian fluid by another Newtonian/non-Newtonian fluid.

Dimakopoulos and Tsamopoulos [28] studied the displacement of a

viscoplastic material by air in straight and suddenly constricted tubes.

They have shown that unyielded material arises in front of the air bubble

and in the case of a constricted tube, near the recirculation corner.

Papaioannou et al. [29], on the other hand, have studied the displacement

of air by a viscoplastic fluid and revealed the conditions for the detachment

of the viscoplastic material from the solid wall. Allouche et al. [30] and

Wielage-Burchard et al. [31] studied the displacement flow of Bingham

fluid by another fluid of same density in a plane channel. As the finger

penetrates inside the channel a static residual layer of the displaced fluid is

left behind the finger. They investigated the thickness of this residual layer

for different Bingham numbers and compared their results with those

obtained using the lubrication approximation.

The use of the discontinuous Bingham model for modeling the

viscoplastic behaviour is not trivial because the yield surface is not known a

priori but must be determined as part of the solution. Generally, viscosity

regularisation methods can be used with caution in order to overcome this

difficulty. Frigaard and Nouar [32] studied the effects of different viscosity

regularisation models, such as the simple model [30], the Bercovier and

Engleman model [33] and the Papanastasiou model [34] on the flow

dynamics and found that the latter model performs better than the other

4
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two models. However, Frigaard and Nouar [32] remarked that the

regularization methods should be used carefully in flow configurations, such

as thin-film flows, by choosing very small values of the regularising

parameter.

Most of the numerical studies concerning displacement flows in the above

review are for miscible systems, but few computational studies have been

carried out on immiscible systems. Numerical simulation of immiscible

systems are expensive computationally due to the presence of sharp

interfacial dynamics. During the past few decades, lattice Boltzmann

method (LBM) has emerged as a promising technique for multiphase flow

simulations [35]. The LBM is a mesoscopic model of fluid flows, which has

its origins in kinetic gas theory. In the LBM, components of velocity and

density are calculated by taking the moments of the distribution functions.

It is a simple and elegant method having several other advantages, such as

being easy to implement, with no need to resolve the interface explicitly,

and massive parallel efficiency. The LBM involves only three explicit steps:

(i) collision, (ii) streaming, and (ii) calculation of variables. The most

time-consuming step in any conventional Navier-Stokes solver, solution of

the pressure Poisson equation is not there in LBM, which increases the

computational efficiency of this method. Based on the class of problem of

interest, researchers have been using different LBM approaches for

multiphase flows, mainly, the color segregation method of Gunstensen et al.

[36], method of Shan and Chen [37], the free energy approach of Swift et al.

5
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[38] and the method of He and co-workers [39–41]. Using the method of

Shan and Chen [37], the displacement flow of two immiscible liquids have

been studied by several researchers [14–17]. The Reynolds number

considered in these studies are very low, thus they did not observe any

interfacial instabilities. Recently, Redapangu et al. [18] investigated the

displacement flow of two immiscible Newtonian liquids at moderate

Reynolds number using the method of He et al. [39]. They investigated the

effects of the Atwood number, viscosity ratio, and angle of inclination on

the flow dynamics and observed sawtooth-type waves at the interface

separating the liquids. Also the lattice Boltzmann method has been used

for viscoplastic fluid flows (see for examples Vikhansky [42, 43] and Derksen

[44]).

The buoyant displacement flow of one fluid by another fluid has been

studied by several researchers (see [18] and references therein) and

displacement flow of miscible viscoplastic fluids without density contrast

has been studied by Frigaard and co-workers [30, 31] as discussed above.

Also as they were interested in investigating mud removal in the primary

cementing of oil-gas well bore, they considered isodensity fluids in their

studies. In the present work, the pressure-driven displacement flow of two

immiscible liquids of different densities and viscosities is studied using a

multiphase lattice Boltzmann method [39, 45]. In order to achieve high

computational efficiency, our LBM algorithm is implemented on a graphics

processing unit (GPU) [46]. It is also important to note here that the work

6
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of Dimakopoulos and Tsamopoulos [28] and Papaioannou et al. [29] are

restricted to air/viscoplastic material systems, whereas Wielage-Burchard

et al. [31] is for density-matched materials. Our work provides a

generalisation of these studies and considers a different parameter range.

Another important focus here is on the development of the LBM which is

used to study the 2D problem first. This versatile, and

massively-parallelisable method can then be extended readily to study the

fully-3D problem, and to even include the effects of turbulence.

The rest of the paper is organized as follows. The details of the problem

formulation and the LBM approach used to carry out the computations are

provided in Section 3; the results are discussed in Section 3, and concluding

remarks are given in Section 4.

2. Formulation

We consider the pressure-driven displacement of a viscoplastic,

incompressible fluid of viscosity µ2 and density ρ2 (fluid ‘2’) initially filled

inside a horizontal two-dimensional channel. A Newtonian fluid (fluid ‘1’)

of viscosity µ1 and density ρ1 is injected from the inlet through an imposed

pressure-gradient, as shown in Fig. 1. A rectangular coordinate system

(x, y) is used to model the flow dynamics, where x and y denote the

coordinates in the horizontal and the wall-normal directions, respectively.

The channel inlet and outlet are located at x = 0 and L, respectively. The

rigid and impermeable walls of the channel are located at y = 0 and H ,

7
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respectively. The aspect ratio of the channel, L/H , is 48. g is the

acceleration due to gravity acting in the negative y-direction.

2.1. Numerical method

The two-phase lattice Boltzmann method used in the present study is

similar to that of He and co-workers [39–41]. Previously, Sahu and Vanka

[45] modified this approach in order to account for unequal dynamic

viscosity of the fluids and studied buoyancy-driven flow in an inclined

channel. Recently, Redapangu et al. [18] studied pressure-driven

displacement flow of Newtonian fluids using the same approach. The

methodology is briefly described below.

Two evolution equations for the index distribution function (f) and the

pressure distribution function (g) are given by:

fα(x+eαδt, t+δt)−fα(x, t) = − fα(x, t)− feqα (x, t)

τ
−2τ − 1

2τ

(eα − u) · ∇ψ(φ)

c2s
Γα(u)δt,

(1)

gα(x + eαδt, t + δt)− gα(x, t) = −gα(x, t)− geqα (x, t)

τ
+

2τ − 1

2τ
(eα − u) ·

[

Γα(u) (Fs +G)− (Γα(u)− Γα(0))∇
(

p− c2sρ
)

]

δt, (2)

where

Γα(u) = tα

[

1 +
eα · u
c2s

+
(eα · u)2

2c4s
− u2

2c2s

]

. (3)

Here u = (u, v) represents the two-dimensional velocity field; u and v

denote velocity components in the x and y directions, respectively; δt is the

time step; τ is the single relaxation time using the Bhatnagar-Gross-Krook

(BGK) model [47]. The kinematic viscosity, ν is related to the relaxation

8
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time as ν = (τ − 1/2)δtc2s, where c2s = 1/3. The corresponding macroscopic

equations describing the evolution equations [Eqs. (1) and (2)] can be

found in Zhang et al. [39].

The evolution equations are simulated with a two-dimensional

nine-velocity model (D2Q9), where

eα =























0, α = 0
[

cos
(

(α−1)π
2

)

, sin
(

(α−1)π
2

)]

, α = 1, 2, 3, 4
√
2
[

cos
(

(α−5)π
2

+ π
4

)

, sin
(

(α−5)π
2

+ π
4

)]

, α = 5, 6, 7, 8.

(4)

The weighing coefficients, tα are given by:

tα =























4/9, α = 0

1/9, α = 1, 2, 3, 4

1/36, α = 5, 6, 7, 8.

(5)

Here α is the number which indicates the position of the node in the lattice.

The equilibrium distribution functions, feqα and geqα are given by

feqα = tαφ

[

1 +
eα · u
c2s

+
(eα · u)2

2c4s
− u2

2c2s

]

and (6)

geqα = tα

[

p+ ρc2s

(

eα · u
c2s

+
(eα · u)2

2c4s
− u2

2c2s

)]

, (7)

The index function (φ), pressure (p) and velocity field (u) are calculated

using:

φ =
∑

fα, (8)

p =
∑

gα − 1

2
u · ∇ψ(ρ)δt, (9)

9
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ρuc2s =
∑

eαgα +
c2s
2
(Fs +G)δt. (10)

The fluid density and kinematic viscosity are calculated from the index

function as:

ρ(φ) = ρ1 +
φ− φ1

φ2 − φ1
(ρ2 − ρ1), (11)

ν(φ) = ν1 exp

[

φ− φ1

φ2 − φ1

ln

(

ν2
ν1

)]

, (12)

where ν1 and ν2 are the kinematic viscosities of fluid ‘1’ and ‘2’,

respectively. φ1 and φ2 are minimum and maximum values of the index

function; in the present study φ1 and φ2 are given values of 0.02381 and

0.2508, respectively [39].

We use the following expression of ψ(φ) using the Carnahan-Starling

fluid equation of state which describes the process of phase separation for

non-ideal gases and fluids [48–52]:

ψ(φ) = c2sφ

[

1 + φ+ φ2 − φ3

(1− φ)3
− 1

]

− aφ2, (13)

where a determines the strength of molecular interactions. The critical

value of Carnahan-Starling equation of state, ac = 3.53374. If a > ac both

the fluids will remain immiscible, however, it should be noted that very

large values of a can lead to loss of convergence. Here we have chosen a to

be 4 in the present study [39]. The gradient of ψ(φ) describes the physical

intermolecular interactions for non-ideal gases or dense fluids. This term

plays a key role in separating the phases [41].

10
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We use the Herschel-Bulkley model in order to describe the flow of the

viscoplastic material, which is being displaced by a Newtonian fluid

injected at the inlet of the channel. There are three commonly used

regularized non-Newtonian fluid models available in the literature [32],

which are given by:

µ2 = µ0(Π + ǫd)
n−1 +

τ0
Π + ǫd

, (14)

µ2 = µ0(Π + ǫd)
n−1 +

τ0
√

Π2 + ǫ2d
, (15)

µ2 = µ0(Π + ǫd)
n−1 + τ0

(

1− e−NΠ

Π

)

, (16)

where τ0 is the yield shear stress; Π ≡ (2EijEij)
1/2 represents the second

invariant of the strain-rate tensor, Eij =
1
2
(∂ui/∂xj + ∂uj/∂xi), where i,j

correspond to the coordinates; n is the power-law flow index of the fluid. µ0

is the flow consistency index (this is same as the viscosity of fluid 2 when

τ0 = 0 and n = 1). N is the stress growth exponent and for n = 1, it is

equivalent to ǫ−1
d . We will refer to eqs. (14), (15) and (16) as the ‘simple

regularized viscosity model’ [30], Bercovier and Engleman’s model [33] and

Papanastasiou’s model [34], respectively.

The surface tension (Fs) and gravity (G) forces are given by

Fs = κφ∇∇2φ, and G = (ρ− ρm)g , (17)

where κ is the magnitude of surface tension and ρm ≡ (ρ1 + ρ2)/2. The

11
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surface tension, σ can be related to κ as follows [53]:

σ = κ

∫
(

∂φ

∂ζ

)2

dζ, (18)

where ζ is the direction normal to the interface [39].

The hydrodynamic boundary conditions based on the ghost fluid

approach are used to simulate the boundaries (implementation of no-slip

boundary conditions at the walls) and equilibrium distribution functions

[45]. A Neumann boundary condition for the pressure is used at the outlet,

while the constant volumetric flow rate condition,

(u, v) = (−6Q(y2/H2 − y), 0), is imposed at the inlet. Here, Q is the total

flow rate per unit length in the spanwise direction. A fourth order compact

scheme is used to discretize ∇ψ [54].

The various dimensionless parameters describing the flow characteristics

are the Atwood number, At(≡ (ρ2 − ρ1)/(ρ2 + ρ1)), the Reynolds number,

Re(≡ Qρ1/µ1), the Bingham number, Bn(≡ τ0H
2/µ1Q), the Richardson

number, Ri(≡ gH3/Q2), the viscosity ratio, m = µ0/µ1, and dimensionless

viscosity regularization parameter, ǫ = Qǫd/H
2. The dimensionless time is

defined as t = H2/Q. To accelerate the computational efficiency, the

algorithm is implemented on a Graphics Processing Unit (GPU). Our GPU

based multiphase lattice Boltzmann solver using the double-precision

variable provides a speed-up factor of 12 as compared to a corresponding

CPU based solver [46, 55].

12
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3. Results and discussion

We begin the presentation of our results by conducting a grid

convergence test. In Fig. 2 (a), (b) and (c), the spatio-temporal evolution

of the contours of the index function, φ are shown for grids 3168× 66,

4704× 98 and 6240× 130, respectively, for Re = 100, At = 0.2, Ri = 0.1,

m = 2, κ = 0, Bn = 10, n = 1.1 and ǫ = 10−9. The simple regularized

viscosity model is used to generate this plot. The parameter values used in

generating this figure correspond to a situation where a highly viscous,

denser non-Newtonian fluid (fluid ‘2’) is displaced by a lighter, Newtonian

fluid of lower viscosity (fluid ‘1’). In general, the flow is expected to be

destabilized because of the density and viscosity contrast, via a

Rayleigh-Taylor or a Kelvin-Helmholtz (KH) type instability. It can be seen

that due to the imposed pressure-gradient a ‘finger’ of the less viscous

lighter fluid penetrates into the bulk of the more viscous, denser fluid. The

finger is symmetrical at early times, but becomes asymmetrical at later

times due to the gravity force acting in the vertically downward direction.

At the edge of the trailing film, instabilities of sawtooth-like shape arise,

due to a KH instability, and are being convected downstream. The

interfacial waves resulting from the instabilities at the downstream portion

of the channel (obtained using 6240× 130 grid at t = 50) are shown as the

inset at the bottom of Fig. 2. The flow dynamics obtained using the

different grids exhibit some minor quantitative variations upon

mesh-refinement. However, as it will be shown below that there is very

13
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good convergence with respect to the layer thickness. In addition, we have

conducted a linear stability analysis (similar to the one presented in [18]) in

a core-annular configuration by specifying the thickness of the residual layer

obtained from the numerical simulations, details of the analysis are given in

the appendix. It can be seen in Fig. 3 that the wavelength of the most

dangerous mode in the linear stability analysis is in excellent agreement

with that of the interfacial waves seen in Fig. 2.

In Fig. 4 (a) and (b), we plot the temporal variation of the dimensionless

volume of fluid ‘2’, Mt/M0, and the average residual thickness of the

bottom layer, h̄, for the same values the as those used to generate Fig. 2.

Here, Mt =
∫ L

0

∫ H

0
φ−φ1

φ2−φ1

dydx, M0 denotes the volume of fluid ‘2’ initially

occupying the channel (M0 =
φ−φ1

φ2−φ1

LH), and h̄ = 1
xl−xt

∫ H/2

0

∫ xl

xt

φ−φl

φh−φl

dxdy,

where in, xl and xt are the position of the leading and trailing edges of the

finger, respectively. It can be seen in Fig. 4(a) that Mt/M0 undergoes an

almost linear decrease due the displacement of fluid ‘2’ by fluid ‘1’. It can

also be observed that slope of Mt/M0 versus time plot is steeper than that

of the plug flow line, given by Mt/M0 = 1− tH/L (shown by the dotted

line in Fig. 4(a)).

It can be seen in Fig. 4(b) that the height of the residual bottom layer

remains almost constant throughout the simulation except for very early

times. Moreover, it is shown that the difference in the results obtained

using 4704× 98 and 6240× 130 grids are very small and the latter grid has

been used for generating the rest of the results presented in this paper. It

14
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should be noted here that the present code has been validated extensively

by comparing with other experimental studies of buoyancy-driven flows.

We have also performed finite-volume simulation for this configuration and

compared the results obtained from both approaches. This has been

reported in our previous paper [45].

The thickness of this residual layer, and the removal time, was also

previously studied by Frigaard and co-workers [30, 31] for low Reynolds

number flows. As a part of the validation exercise, we also compared the

thickness of the residual layer obtained from the present simulation with

that of Wielage-Burchard & Frigaard [31] by setting Bn = 20, m = 1,

At = 0 and κ = 0 in our code. We found that the values of the residual

thickness for Re = 100 and 200 are 0.15 and 0.14, respectively. The shape

of the predicted interface as well as the evaluated thickness of the residual

layer are in excellent agreement with the results of Wielage-Burchard &

Frigaard [31]. It is to be noted here that the instabilities seen in Fig. 2 are

due to the non-zero Atwood number considered in the present study.

Next, we investigate the effects of viscosity regularization parameter (ǫ)

in the simple viscosity regularized model (given by Eq. 14) on the flow

dynamics by plotting the spatio-temporal evolution of the φ contours for

different values of ǫ. The rest of the parameter values are Re = 100, Ri = 1,

At = 0.2, m = 2, κ = 0.0075, Bn = 30 and n = 1.1. As discussed by

Frigaard and Nouar [32], the discontinuous Bingham model can be

regularized by adding a small numerical parameter ǫ to the second invariant

15
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of the strain-rate tensor in order to avoid the singularity in the low shear

region. It can be seen in Fig. 5 that the flow dynamics looks qualitatively

similar for 10−6 ≤ ǫ ≤ 10−12. Please note that we have tested the results for

n < 1 and found the same conclusions. The lowest value for ǫ increases the

stiffness of the system of partial differential equations and thus we have

used ǫ = 10−9 to generate the rest of the results in this paper. Inspection of

Fig. 5 also reveals that the sawtooth shape interfacial instabilities which

was observed in Fig. 2 did not appear in this case. On the other hand, we

notice that a few drops of the non-Newtonian fluid arise in the middle of

the channel. Also as Ri = 1 in this case, the flow becomes more

asymmetrical as compared to that in Fig. 2 (Ri = 0.1).

Then, we proceed with the investigation of the effects of various viscosity

regularized models [given by Eqs. (14)-(16)] proposed in literature (see for

instance Ref. [32]) on the flow dynamics. This has been carried out to

investigate the effects of these models in the framework of lattice Boltzmann

method. In Fig. 6(a), (b) and (c), we present the spatio-temporal contours

of the index function obtained using the simple model, Bercovier and

Engleman’s model and Papanastasiou’s model, respectively for the

parameter values Re = 100, Ri = 0.5, At = 0.2, m = 2, κ = 0.0075,

Bn = 30 and n = 1.1. We also plot in Fig. 7 the spatio-temporal evolution

of the unyielded domains (shown in black) obtained using the models above

for the same parameter values as those used in Fig 5. The unyielded

domain is the region where shear stress, τ ≤ τ0. It can be seen that the

16
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black region in the downstream (just after the finger) is the unyielded

region which opposes the motion of the ‘finger’ of fluid ‘1’ into the bulk of

fluid ‘2’. Close inspection of Fig. 7 and the enlarged view of the region

marked by rectangles, shown at the bottom of each panels, reveals that the

thin region just above the interface separating the fluids and the drops of

fluid ‘2’ which appear inside the finger are also surrounded by unyielded

material. This effect will be discussed below. It can be observed that the

thickness of the residual layer, the small scale structures and location of the

yield surface obtained using all rheological models match very well for the

set of parameter values considered. Frigaard and Nouar [32] showed that

for strain rates close to zero (i.e. when a material is stationary) the result

obtained from Papanastasiou’s model is closer to the theoretical prediction.

However, for the flow in hand and for the particular selection of ǫ no

significant differences are found and therefore we prefer to use, for the rest

of this study, the simple regularized model since it is easier to implement.

Next, we investigate the effects of Bn number on the flow dynamics. The

contours of the index function, φ at t = 20 and t = 30 are shown for three

values of Bingham number in Fig. 8. The rest of the parameter values are

Re = 100, At = 0.2, Ri = 1, κ = 0.0075, m = 2 and n = 1. The value of the

flow index, n is set equal to 1 in order to isolate the effects of Bn on the flow

dynamics. The results shown in Fig. 8(a) are associated with the case when

fluid ‘2’ is also Newtonian. It can be seen in Fig. 8 (a) that as the finger of

fluid ‘1’ penetrates inside the channel, the upper elongated region of the

17
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finger becomes unstable, and a sawtooth shape wave is clearly visible at the

later time. Close inspection of the contours at t = 20 reveals that this wave

originates at early times (t ≈ 20). When the fluid ‘2’ is non-Newtonian it

can be seen in panels (b), (c) and (d) of Fig. 8 that the width of the finger

increases with increasing Bn. This is due to the presence of the unyielded

region at the front of the finger (shown in Fig. 9 for Bn = 50). It is also

shown that the shear stress in this region decreases with increasing Bn,

which in turn decreases the velocity of the tip of the finger (this is evident

in Fig. 8). However, for Bn = 0 it can be seen that the velocity of the

finger tip is slightly lower than that for Bn = 20. An explanation for this is

as follows: in the Newtonian case, there are no unyielded regions, but for

any finite Bn the residual layers become unyielded (see inset at the bottom

of Fig. 9). This creates a three-layer configuration, where the viscosity of

the fluid in the near wall region increases as compared to that of the

Newtonian fluid displacement. This increases the fluid velocity in the core

region in case of non-Newtonian fluid with low Bn, but as the Bn increases

the unyielded region at the front of the finger becomes an important factor,

which decreases the velocity of the finger tip (see Fig. 10). The presence of

the unyielded material in the residual film leads to the suppression of the

interfacial instability at higher Bn.

In Fig. 11 (a), (b) and (c), we plot temporal variation of volume fraction

of the displaced fluid (Mt/M0), the displacement rate of ‘fluid ‘2’, given by

(Mt/M0)
′, where prime represents the differentiation with respect to time,

18
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and the average residual thickness of the bottom layer, h̄, respectively for

different values of Bn. It can be seen in Fig. 11 (a) and (b) that the effects

of Bn is non-monotonic. The displacement rate increases with increasing

the value of Bn upto Bn ≈ 30, but, further increase in Bn decreases the

displacement rate. This is probably due to the formation of three-layer

structure discussed above. It can be seen in Fig. 11 (b) that increasing the

value of Bn increases the average residual thickness of the bottom layer.

The thickness of the residual layer at the bottom is more than that at the

top. The viscosity of this material increases with increasing Bingham

number and becomes unyielded (as shown in Fig. 9). Thus this residual

material becomes increasingly difficult to be removed for higher values of

Bn.

Finally, we investigate the effects of the flow index, n. In Figs. 12 and 13,

the contours of the index function, φ and the unyielded domains (shown in

black), and contours of the axial velocity, u are plotted, respectively at

t = 20 and t = 30 for different values of n. The rest of the parameters are

Re = 100, At = 0.2, Ri = 1, κ = 0.0075, m = 2 and Bn = 30. Here

decreasing the value of n reflects an increase in the shear-thinning tendency

of the non-Newtonian fluid. It can be seen that for n = 0.7 (i.e, for shear

thinning fluid) the interfacial instability becomes vigorous. In this case,

there is a competition between the effects created by the Bingham number

with that of the shear thinning. For n = 0.7 the unyielded material is

absent in the region in front of the finger for the set of parameter values

19
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considered. Thus the finger penetrates freely inside the channel. For

n = 1.3 the effects of Bingham number and the flow index reinforce one

another, i.e. to decrease the shear stress in the flow region. The rate of

displacement, (Mt/M0)
′, and the average residual thickness of the bottom

layer, h̄, for different values of n are shown in Fig. 14. It can be observed in

Fig. 14 (a) that the disappearance of the unyielded material due to the

shear thinning behaviour of the fluid (decreasing the value of n) makes it

easier for the fluid to penetrate inside the channel, thus leading to faster

displacement. In Fig. 14 (b), it can be seen that the average residual

thickness of the bottom layer, h̄ increases almost linearly with time and

decreases with increasing the value of n. Thus increasing the value of n

increases the unyielded region in the downstream of the channel, which in

turn decreases the velocity of the finger tip. As expected, it was found (not

shown) that the instabilities associated with different values of n for

Bn = 0 are more vigorous than those shown in Fig. 12 (for Bn = 30).

4. Summary

The pressure-driven displacement flow of a non-Newtonian fluid by a

Newtonian fluid in a two-dimensional channel is investigated via a

multiphase lattice Boltzmann method using the Carnahan-Starling equation

of state. This method was originally proposed by He and co-workers [39–41]

and recently used by many researchers [45, 51]. This method uses two

distribution functions in order to evaluate the flow variables, hydrodynamic
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pressure and the index function. The index function is used to distinguish

both the fluids. We used three models for the non-Newtonian fluid, namely,

a simple regularized model, the Bercovier and Engleman’s model [33] and

Papanastasiou’s model [34]. The lattice Boltzmann predictions are

validated against the results of linear stability theory and finite volume

simulations. It was found that for the parameter values considered in this

study all the models give very similar results. The effects of the Bingham

number (which characterises the behaviour of the yield-stress of the fluid)

and the flow index (which reflects the shear-thinning tendency of the fluid)

are studied. It is shown that the rate of displacement depends

non-monotonically on the viscoplasticity of the material. In addition, it is

shown that increasing the Bingham number and the flow index increases

the size of the unyielded region ahead of the displacing fluid and the

residual layer adjacent to the walls. This in turn decreases the interfacial

instabilities and the speed of the propagating finger.
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Appendix: Linear stability analysis
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As the elongated ‘finger’ of the injected Newtonian fluid enters into the

bulk of non-Newtonian fluid, a three-layer structure is formed inside the

channel. A linear stability analysis is conducted for this idealised flow. The

governing linear stability equation and boundary conditions are provided in

this section. The readers are refereed to Redapangu et al. [18] for the

relevant details. Applying a symmetry boundary condition at the centreline

of the channel, the bottom part of the channel is only considered for this

analysis. The fully-developed velocity profile for the basic state is assumed,

i.e. streamwise velocity of the residual layer, U1 = U1(y), the Newtonian

layer, U2 = U2(y), and vertical velocity, V = 0 in both the fluids.

Each flow variable is expressed as the sum of a base state and a 2D

perturbation:

(uk, vk, pk)(x, y, t) = (Uk, 0, P )(y) + (ûk, v̂k, p̂k)(x, y, t) (19)

with (k = 1, 2). Similarly h and the viscosity of the non-Newtonian fluid, µ2

can be expanded as follows

h(x, t) = h0 + ĥ(x, t), (20)

µ2(π) = µ0
2 +

∂µ2

∂π
|0(π − Π) = µ0

2 + βπ̂, (21)

where the superscript ‘0’ designates base state quantities,

β = (n− 1)mΠn−2 − BnΠ−2. By following the usual procedure [18, 22], the

linearised stability equations are derived. These are re-expressed in terms of

the stream-function, (uk, vk) = (∂Ψk/∂y,−∂Ψk/∂x) (k = 1, 2) and the
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perturbation variables are decomposed using a normal-mode analysis, such

as Ψk(x, y, t) = Φk(y)e
i(αx−ωt), wherein Φk is the amplitude of the

streamfunction, α and ω are the real wavenumber and complex frequency of

the disturbance.

The linear stability equations are given by

iαrRe
[(

Φ′′
2 − α2Φ2

)

(U2 − c)− Φ2U
′′
2

]

= µ0
2[Φ

′′′′
2 − 2α2Φ′′

2 + α4Φ2] + βU ′
2π

′′ +

2βU ′′
2 π

′ + βU ′′′
2 π + α2βU ′

2π − 2α2µ0
2
′
Φ′

2 + µ0
2
′′
Φ′′

2 + 2µ0
2
′
Φ′′′

2 +

β ′′U ′
2π + 2β ′U ′

2π
′ + 2β ′U ′′

2 π + µ0
2
′′
α2Φ2,(22)

iαRe
[(

Φ′′
1 − β2Φ1

)

(U1 − c)− Φ1U
′′
1

]

=
[

Φ′′′′
1 − 2β2Φ′′

1 + β4Φ1

]

. (23)

Here, the prime represents differentiation with respect to y and r represents

the density ratio, ρ2/ρ1. In the temporal stability analysis considered in

this section, ωi > 0 indicates the presence of a linear instability.

The solution of Eqs. (22) and (23) subject to the following boundary

conditions: the no-slip and no-penetration conditions at the bottom wall:

Φ2 = Φ′
2 = 0, (24)

and

Φ′
1 = Φ′′′

1 = 0, (25)

at the centreline. Using the continuity of the velocity and stress

components for the disturbance in the axial and the wall-normal directions
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at the interface, along with the kinematic boundary condition, we obtained:

Φ1 = Φ2, (26)

Φ′
1 − Φ′

2 +
Φ1

(c− U1)
(U ′

1 − U ′
2) = 0, (27)

µ0
2

(

Φ′′
2 + α2Φ2

)

−
(

Φ′′
1 + α2Φ1

)

+
(µ0

2U
′′
2 − U ′′

1 )

(U1 − c)
+ iαβU ′

2π = 0, (28)

αrRe
[

Φ′
2 (c− U2) +Φ2U

′
2

]

−αRe
[

Φ′
1 (c− U1) +Φ1U

′
1

]

+2iα2(µ0
2Φ

′
2−

3

2
Φ′

1)+

2iα2µ0
2Φ

′
2− i

[

µ0
2(Φ

′′′
2 +α2Φ′

2)+µ0
2
′
(Φ′′

2+α2Φ2)+βU ′
2π

′+β ′U ′
2π+βU ′′

2 π−Φ′′′
1

]

=

(

α2

Ca
+ G

)

iα
(Φ′

1 − Φ′
2)

(U ′
2 − U ′

1)
, (29)

where G ≡ (ρ2 − ρ1)gH
3/µ1Q. The above stability equations, along with

the boundary conditions (given in Eqs. (22)-(29)) constitute an eigenvalue

problem, which is solved using a spectral collocation method using a public

domain software LAPACK. The linear stability solver are then validated by

performing a grid-convergence test and by also comparing with the previous

work on Newtonian and non-Newtonian fluids [22].
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List of figures captions

Fig. 1: Schematic showing the geometry (not to scale) and initial flow

configuration. The inlet and outlet are located at x = 0 and x = L,

respectively. The aspect ratio of the channel, L/H , is 48. Initially the

channel is filled with fluids ‘1’ and ‘2’ from 0 ≤ x ≤ 5 and 5 ≤ x ≤ L of the

channel, respectively.

Fig. 2: Contours of the index function, φ for different mesh densities: (a)

3168× 66, (b) 4704× 98, (c) 6240× 130. The rest of the parameters are

Re = 100, At = 0.2, Ri = 0.1, m = 2, κ = 0, Bn = 10, n = 1.1 and

ǫ = 10−9. The inset at the bottom of each panel represents the enlarged

view of the contours at t = 30 obtained using respective gridsize.

Fig. 3: (a) Growth rate versus wave number of a infinitesimal disturbance

obtained from our linear stability analysis, (b) enlarge view of the contours

at t = 30. The rest of the parameter values are the same as those used to

generate Fig. 2. The wavelength of the interfacial mode observed in the

linear stability analysis and LBM simulation are 1.54 and 1.49, respectively.

Fig. 4: (a) Temporal variation of volume fraction of the displaced fluid

(Mt/M0), (b) the average residual thickness of the bottom layer, h̄,

obtained using different mesh densities. The rest of the parameters are

Re = 100, At = 0.2, Ri = 0.1, m = 2, κ = 0, Bn = 10, n = 1.1 and

ǫ = 10−9. The dotted line in panel (a) represents the analytical solution of

the plug-flow displacement given by Mt/M0 = 1− tH/L.
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Fig. 5: The effects of viscosity regularization parameter (ǫ) on the

spatio-temporal evolution of the φ contours obtained using the simple

model: (a) ǫ = 10−6, (b) ǫ = 10−9 and (c) ǫ = 10−12. The rest of the

parameter values are Re = 100, Ri = 1, At = 0.2, m = 2, κ = 0.0075,

Bn = 30 and n = 1.1.

Fig. 6: Spatio-temporal evolution of φ contours obtained using the (a)

simple, (b) Bercovier and Engleman’s, and (c) Papanastasiou’s model. The

rest of the parameter values are Re = 100, Ri = 0.5, At = 0.2, m = 2,

κ = 0.0075, Bn = 30 and n = 1.1.

Fig. 7: Spatio-temporal evolution of the unyielded domains obtained, shown

in black, using (a) simple model, (b) Bercovier and Engleman’s model and

(c) Papanastasiou’s model. The rest of the parameter values are the same

as those used to generate Fig. 6. The insets at the bottom represent the

corresponding enlarged view of the region shown by rectangles.

Fig. 8: Contours of the index function, φ for (a) Bn = 0, (b) Bn = 20, (c)

Bn = 50 and (d) Bn = 100 at t = 20 and t = 30. The rest of the

parameters are Re = 100, At = 0.2, Ri = 1, κ = 0.0075, m = 2 and n = 1.

Fig. 9: Unyielded domains, shown in black, for Bn = 50 at t = 20 and

t = 30. The rest of the parameters are values are the same as those used in

Fig. 8. The region marked by the rectangular box is shown as the inset in

the third panel.

Fig. 10: Contours of the axial velocity, u, with position of the interface

(shown by black solid line) for (a) Bn = 0, (b) Bn = 20, (c) Bn = 50 and
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(d) Bn = 100 at t = 20 and t = 30. The rest of the parameter values are

the same as those used in Fig. 8.

Fig. 11: (a) Temporal variation of volume fraction of the displaced fluid

(Mt/M0), (b) the rate of displacement, (Mt/M0)
′, and (c) the average

residual thickness of the bottom layer, h̄, for different values of Bn. Here (′)

represents the the derivative with respect to time. The rest of the

parameters values are the same as those used in Fig. 8.

Fig. 12: Contours of the index function, φ (top), and unyielded surface

(bottom) for (a) n = 0.7, (b) n = 1 and (c) n = 1.3 at t = 20 and t = 30.

The rest of the parameters are Re = 100, At = 0.2, Ri = 1, κ = 0.0075,

m = 2 and Bn = 30.

Fig. 13: Contours of the axial velocity, u, with position of the interface

(shown by black solid line) for (a) n = 0.7, (b) n = 1 and (c) n = 1.3 at

t = 20 and t = 30. The rest of the parameter values are the same as those

used in Fig. 12.

Fig. 14: (a) The rate of displacement, (Mt/M0)
′, and (b) the average

residual thickness of the bottom layer, h̄, for different values of n. Here (′)

represents the the derivative with respect to time. The rest of the

parameters values are the same as those used in Fig. 12.
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