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Biomimetic micro-swimmers can be used for various

medical applications, such as targeted drug delivery

and micro-object (e.g. biological cells) manipulation,

in lab-on-a-chip devices. Bacteria swim using a bundle

of flagella (flexible hair-like structures) that form a

rotating cork-screw of chiral shape. To mimic bacterial

swimming, we employ a computational approach

to design a bacterial (chirality-induced) swimmer

whose chiral shape and rotational velocity can be

controlled by an external magnetic field. In our

model, we numerically solve the coupled governing

equations that describe the system dynamics (i.e.

solid mechanics, fluid dynamics and magnetostatics).

We explore the swimming response as a function

of the characteristic dimensionless parameters and

put special emphasis on controlling the swimming

direction. Our results provide fundamental physical

insight on the chirality-induced propulsion, and

it provides guidelines for the design of magnetic

bi-directional micro-swimmers.

1. Introduction
In the modern era of medical science where miniaturized

means to perform diagnosis and non-invasive surgery

are demanded, micro-swimmers and microbots are a

key focus of research and development [1–9]. Many

miniaturized externally powered propulsive devices

have been suggested that have potential applications in

targeted drug delivery and biological cell manipulation

in lab-on-a-chip devices [1–11]. As the fundamental

challenge lies in achieving a non-reciprocal motion

2013 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Inspiration from nature: Bacterial swimming using flagella. Electron microscope image of a salmonella bacterium

with several flagella forming a bundle of chiral shape (Source: http://www.bmb.leeds.ac.uk/illingworth/6form), where each

flagellum is actuated by a base bacterial motor as shown in the inset (Credit: adapted from http://en.wikipedia.org/wiki

(File:Flagellum_base_diagram_en.svg)). (Online version in colour.)

at these small length scales [12,13], inspiration can be drawn from nature to design bioinspired

artificial micro-swimmers [1,4,5,9–11,14–16]. Bacteria swim using a bundle of flagella (flexible

hair-like structures) that form a rotating cork-screw of chiral shape, where each flagellum is

actuated by a molecular motor at the bacterial surface, as shown in figure 1. The quest for a simple

and viable design of biomimetic bacterial micro-swimmers has attracted considerable attention

in the literature [9,13–27]. Various experimental and analytical studies have been performed to

analyse the evolution of the chiral shape for an elastic filament or rod-like structure subjected

to external actuation [18,19,21–23,25–28]. Also, in an experimental study performed by Garstecki

et al. [15] a flexible planar structure is deformed into a chiral shape on-the-fly owing to the

opposing torques imposed by the externally applied magnetic field and the resisting viscous

forces of the surrounding fluid. However, systems that generate chirality ‘on-the-fly’ do not allow

for direction reversal, because the chiral polarity is directly linked to the external actuation. To

obtain swimming direction reversal, one has to uncouple the chiral polarity from the external

actuation, which can be done by resorting to a pre-manufactured chiral shape. Zhang et al. [24]

have proposed an elegant procedure that allows manufacturing of a helical belt at the micrometre-

scale. However, the manufacturing process involves many more steps compared with systems

that feature chirality on-the-fly. This brought us to pose the following question: Can we achieve

propulsion by developing chirality on-the-fly as natural bacteria and still be able to achieve direction-

reversal through external actuation? We address this question in this letter and use a computational

approach to magnetically control the chirality of an artificial bacterial micro-swimmer. We

investigate the swimming response using dimensionless parameters and explore the underlying

physics of the chirality-induced propulsion. We exploit the available physical forces (i.e. elastic,

magnetic and viscous) to form the chiral shape on-the-fly and relate the swimming dynamics to

the intrinsic competition of these forces. The obtained computational results are supported by

analytical expressions derived using resistive force theory [29], which provides the first-order

approximation of the swimming velocity.

The article is organized as follows. In §2, we describe the computational model and approach

used in this study, where the fluid–solid interaction (FSI) problem is solved by properly

accounting for the magnetic forces owing to the external magnetic actuation. Additionally, we

identify the dimensionless parameters that govern the swimming dynamics of chirality-induced

propulsion. Subsequently, in §3, the results associated with the unidirectional (§3a) and the bi-

directional (§3b) swimming are presented and analysed. Finally, conclusions are drawn that

summarize the key points of this work in §4.
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Figure 2. Partially magnetic flexible film subjected to external magnetic actuation (see (a)). The dark grey area represents the

magnetic portion of the film (L0) and the arrow indicates the direction of the magnetization (M). Propulsion will be achieved

by applying an external homogeneous rotating magnetic field (B) with a rotation axis along the x-axis, and the swimming

motion is shown by means of the trace of the swimming path (see (b)). Here, the chirality is formed on-the-fly with the

help of viscous forces and an animation of unidirectional swimming of such a viscosity-induced chiral shape is included as

supplementarymaterial. (See electronic supplementarymaterial at http://dx.doi.org/10.1098/rspa.2013.0547 for the animation

of (a) unidirectional swimming with the viscosity-induced chiral shape and (b) bi-directional swimming with the magnetically

induced chiral shape.) (Online version in colour.)

2. Computational model and dimensional analysis
The artificial flagellar micro-swimmer is designed as a planar partially magnetic flexible film

that can be easily manufactured with state-of-the-art polymer processing technologies such

as inkjet printing (figure 2). The concept exploits the dynamics of a partially magnetic film

in which the chiral shape is induced on-the-fly through an externally applied magnetic field.

Continuous rotation of such a chiral micro-swimmer leads to a steady-state propulsion subjected

to the magnetic actuation (figure 2). To analyse the swimming dynamics of such a chiral

micro-swimmer, a computational framework is developed that accounts for the fluid–structure

interaction (FSI) between the deforming swimmer and the surrounding fluid, while properly

incorporating the changing magnetic forces imposed by the applied magnetic field. We use a

finite-element-based framework in which the solid mechanics, fluid dynamics and magnetostatics

equations are solved simultaneously. In the model, the micro-swimmer is represented by an

assemblage of shell elements, which act as an internal boundary to the fluid domain. The fluid–

structure interaction is considered by implicitly coupling the fluid dynamics and solid mechanics

equations, where the Stokeslets method is used to account for the viscous environment (and

implemented using a boundary-element method). During the simulations, the application of an

external magnetic field leads to the generation of magnetic body couples that attempt to align the

magnetic portion of the film with the applied magnetic field vector. These magnetic body couples

are considered as input (external force vector) to the FSI model. The approach is summarized in

appendix A; full details can be found elsewhere [30].

The swimming velocity of the micro-swimmer will depend on the system parameters, such

as the geometry and flexibility of the polymer film, viscosity of the aqueous environment, and

the magnitude and angular frequency of the applied magnetic field. To explore the influence of

each variable on the swimming response of the micro-swimmer, the governing (virtual work)

equations can be used to derive a set of characteristic dimensionless numbers that capture the

underlying physics of the chirality-induced propulsion,

L0

L
,

12µω

G

WL2

h3
,

︸ ︷︷ ︸

Fn = fluid number

12MB

G

LW

h2

L0

L
,

︸ ︷︷ ︸

Mn = magnetic number

(2.1)
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in which L0/L is a normalized measure of the magnetized region in the polymer film [31]

(figure 2), Fn is the fluid number and represents the ratio of viscous forces and elastic

forces [31–33] and Mn is the magnetic number and represents the ratio of magnetic forces

and elastic forces [31,32]. The derivation of these characteristic dimensionless parameters is

given in appendix B. Now, Fn can be independently altered by changing the viscosity (µ)

or frequency (ω = 2π/tcycle). Similarly, Mn can be independently controlled by changing the

remanent magnetization (M) or the external magnetic field (B). Here, we choose the following

(fixed) parameters: length (L) = 100 µm, width (W) = 20 µm, thickness (h) = 2 µm, elastic modulus

(E) = 490.6 kPa, Poisson’s ratio (ν) = 0.3 (giving a shear modulus, G = 188.7 kPa), remanent

magnetization (M) = 62.9 kA m−1 and viscosity (µ) = 1.0 mPa s−1. The period of the rotating

magnetic field (tcycle), magnetic size L0 and magnitude of the external magnetic field (B) are

considered as variables in the analysis.

3. Results and discussion

(a) Unidirectional swimming

Once the partially magnetic flexible film is actuated with a rotating external magnetic field, the

chiral shape evolves as a natural consequence of the solid–fluid interaction. The viscous forces

of the fluid hinder the motion of the film, while the magnetic portion of the film follows the

rotating external magnetic field resulting in opposing torques that forms a twisted ribbon of

chiral shape as shown in figure 2. The viscous forces form the chiral shape on-the-fly, which

eventually stabilizes leading to a steady-state and unidirectional propulsion subjected to the

magnetic actuation (figure 2b).

In figure 3a, we show the swimming velocity as a function of the angular frequency of the

applied magnetic field (ω) for three different values of the magnetic field. It can be seen that

the velocity increases with frequency until a critical frequency ωc is reached. This critical

frequency increases with increasing magnetic field. Given the definition of the dimensionless

numbers (see equation (2.1)), the critical frequency corresponds to a specific critical value of

the fluid number, (Fn)c. Here, we can make connection to several experimental studies showing

a critical (step-out) frequency ωc at which the velocity suddenly drops [9,15–17,22,26,27]. In

general, ωc (or, similarly, (Fn)c) quantifies the responsiveness of the system to an externally

applied rotating magnetic field. When Fn > (Fn)c, the magnetic micro-swimmer is not able to

follow the external magnetic field and starts lagging behind, which results in a tumbling motion

and an associated sudden drop of the swimming velocity (figure 3a). The tumbling motion is

owing to the fact that when the actuation frequency becomes larger than the critical frequency

(i.e. Fn > (Fn)c), the magnetization (M) and external magnetic field (B) vectors are not parallel

anymore. Obviously, there is a competition between the magnetic (driving) forces and the viscous

(opposing) forces that governs the responsiveness of a magnetic micro-swimmer. In terms of the

dimensionless numbers, the ratio of the magnetic forces and viscous forces is represented by M∗ =

Mn/Fn ∝ MB/µω—the inverse of the Mason number [34]—which represent the responsiveness of

the magneto-mechanical system. The micro-swimmer will be fully responsive (to the externally

applied rotating magnetic field) when the magnetic forces will fully overcome the viscous

resistance of the fluid (i.e. when M∗ > M∗
c ).

To further explore the critical responsiveness, we investigate the swimming response of the

chiral micro-swimmer solely in terms of the dimensionless numbers Fn and Mn. The normalized

swimming velocity as a function of responsiveness of the system (M∗ = Mn/Fn) for various values

of Fn and for L0 = 0.1L is shown in figure 3b. The swimming velocity (U) is normalized by the

factor ωW2/L that has been obtained by the first-order calculation based on resistive force theory,

[29], which gives

Uanalytical =
ωθmaxW2

12L

(
Cdh

CdL
− 1

)

, (3.1)
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Figure 3. (a) Swimming velocity (U) as a function of the angular frequency of the appliedmagnetic field for various values of B

and for L0 = 0.1L. A sudden drop in the swimming velocity is observed at a critical frequencyωc (or (Fn)c), which is consistent

with the experimental observations of step-out frequency for the magneto-responsive systems (see text). (b) Normalized

swimming velocity as a function of responsiveness of the system (M∗ = Mn/Fn) for various values of Fn and for L0 = 0.1L.

The M∗ values only give information about the relative strength of the magnetic forces over the viscous forces, while Fn also

captures the ratio of viscous to elastic forces for the micro-swimmer.

where θmax is the maximum twist angle present in the film, and CdL and Cdh are the local drag-

coefficients for a chiral micro-swimmer in the length and thickness direction, respectively (see

appendix C for the derivation). For all Fn values, the swimming velocity (U∗) initially increases

with M∗ followed by a saturation phase and eventually starts decreasing slightly at higher values

of M∗ (figure 3b). The swimming velocity will initially increase as the film starts responding

to the external magnetic field (M∗ regime between 0 and 0.5), and once the film becomes fully

responsive at M∗ ≥ M∗
c = 0.5 (see above in the discussion of figure 3a), any further increase

in M∗ will not get reflected into the corresponding increase in the swimming velocity, and a

saturation will be observed.
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Figure 4. (a) Twist angle variation along themicro-swimmer length as a function ofMn for Fn = 10. Themaximum twist angle

at x = 0 (θmax) increases withMn initially. However, at higherMn values themagnetic portion (L0) of the film becomes difficult

to deform and causes a reduction ofθmax (and a corresponding decrease of the swimming velocity; figure 3b). This effect ismore

prominent for higher values of L0/L and the influence of L0/L on the swimming velocity for Fn = 10 and M∗ = 1 is shown in

the inset, where (L − L0) quantifies the available length of themicro-swimmer to form a chiral shape. (b) Variation of the twist

angle along the length as a function of Fn forM
∗ = 1 and L0 = 0.1L. For a fully responsive micro-swimmer θmax increases with

Fn, which leads to an enhancement of the swimming velocity as shown in the inset.

The analytical expression for the velocity based on the resistive force theory (equation (3.1))

holds for a constant helicity along the swimmer and shows that the swimming velocity is directly

proportional to the maximum twist angle (θmax) accommodated by the film. In the numerical

simulations, however, owing to the elastic and magnetic interactions with the viscous fluid, the

twist angle distribution becomes nonlinear. We therefore did not include θmax in the normalization

for U. To explore the relationship between twist angle and applied magnetic field, we analyse

the twist angle variation along the length of the film as a function of Mn for Fn = 10, L0 = 0.1L

(figure 4a). It can be clearly seen that the twist angle for lower values of Mn (M∗ < M∗
c = 0.5)

is limited as the film is not able to overcome the fluid’s resistance. The twist angle increases

with Mn and eventually attains a saturation at higher values of Mn when the film becomes fully
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responsive (i.e. M∗ ≥ M∗
c = 0.5). Note that the maximum twist angle (θmax) accommodated by

the film depends on the magnitude of the viscous forces (related to Fn) and will be discussed

later. Interestingly, higher values of Mn result into reducing the twist angle variation inside the

magnetic portion of the film and eventually reduce θmax, which explains the slight decrease in

swimming velocity for large Mn values as shown in figure 3b. This is a natural consequence of

the external magnetic torque acting only on the magnetic portion of the film, which ultimately

restrains the deformation of the magnetic part of the film at higher Mn values, and causes the

magnetic portion to behave as rigid. Note that this effect becomes more prominent for higher

values of L0/L as shown in figure 4a. For a fully responsive micro-swimmer (M∗ ≥ 0.5), the

influence of the magnetic portion L0/L on the swimming velocity is shown in the inset of figure 4a.

As L0/L also quantifies the availability of the micro-swimmer’s length to form a chiral shape, the

swimming velocity is linearly dependent on L0/L. L0/L = 0 and 1 represent the extreme cases

for the magnetic portion and in both cases the swimming velocity will be zero owing to either

the absence of external actuation (L0 = 0) or reciprocal motion of the film (L0 = L). Next, we

study the effect of viscous forces in the limit of fully responsive micro-swimmers (M∗ = 1). The

response of the twist angle variation along the micro-swimmer length as a function of Fn (for

M∗ = 1) is shown in figure 4b. The maximum twist angle increases with Fn which leads to an

increase in the swimming velocity, as shown in the inset. Increasing Fn at constant M∗ physically

corresponds to decreasing the stiffness of the micro-swimmer. This leads to an increasing twist

angle, and thus an increasing velocity (inset), in correspondence with equation (3.1).

(b) Bi-directional swimming

Direction reversibility is a desirable feature for object manipulation in confined flow geometries,

such as in the human arterial system and in miniaturized lab-on-a-chip devices. The approach

studied in the previous section of forming a chiral shape on-the-fly by exploiting the viscous

forces, severely reduces the manufacturing demands for a bacterial micro-swimmer. However,

it does not have the possibility to change/reverse swimming direction. To achieve swimming

bi-directionality, we suggest to magnetically control the initial chirality through two magnetic

sections with opposite remanent magnetization (figure 5). Here, (controlled or non-controlled)

manufacturing imperfections will serve as a perturbation to the system resulting in an initial

chiral shape when the film is brought under the influence of an external magnetic field (figure 5)

and swimming can be achieved by subsequently rotating the magnetic field. As the chiral shape

is now independent of the rotation direction of the magnetic field, forward and backward

swimming can be triggered by inverting the rotation direction. Note that the twist angle (chirality)

is now explicitly induced through the initial application of the external magnetic field and has an

upper limit of 180◦ (figure 5).

The dependence of the swimming velocity (U∗) on the responsiveness of the system

(M∗ = Mn/Fn) for various values of Fn and for L0/L = 0.05L is shown in figure 6a. For all Fn

values, the swimming velocity increases initially with Mn as the system responds to the externally

applied magnetic field and eventually saturates at higher M∗ values. Again, any increase in

the Mn value directly increases the initial twist angle in the film (as the film becomes more

responsive). The upper limit for the twist angle (180◦) is reached at relatively high M∗ values

leading to a saturation in the swimming velocity (as U ∝ θmax, see equation (3.1)). Note that the

lower velocities for M∗ < 100 are not owing to the ‘slipping’ or ‘tumbling’ motion observed for

the previous system (figure 3), but is entirely owing to the elastic resistance that limits the twist

angle. The influence of L0/L on the swimming velocity is linear (see inset of figure 6a), which is

owing to the fact that the magnetized portion of the film does not contribute to the chiral shape

formation as it behaves as rigid under the influence of the large external magnetic field. It is worth

mentioning that there are two significant differences in the new approach; first, the swimming

velocity saturates at relatively high M∗ values (M∗ > 1001), and second the swimming velocity

1For this study, aspect ratio (L/W) of the film is 5. For larger aspect ratios of the film, the M∗ value required for the saturation
in the swimming velocity will be less as the twist angle (for a given external torque) θ ∝ L/W.
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Figure 5. Partially magnetic flexible polymer film where the dark grey areas represent the magnetic portions of the film (L0)

and the arrows indicate the direction of the respectivemagnetizationM (see (a)). The chiral shape is formed by a static external

magnetic field and the swimming is achieved by subsequently rotating the magnetic field with a rotation axis along the x-axis

(see (b)). An animation of bi-directional swimming with a magnetically induced initial chiral shape is included as electronic

supplementarymaterial. (See electronic supplementarymaterial at http://dx.doi.org/10.1098/rspa.2013.0547 for the animation

of (1) unidirectional swimming with a viscosity-induced chiral shape and (2) bi-directional swimming with a magnetically

induced chiral shape.) (Online version in colour.)

does not go to zero when the film becomes fully magnetic (L0/L = 0.5) owing to the novel design

of the micro-swimmer, where both (end) magnetic portions are used to form the chiral shape.

We further explore the influence of Fn on the swimming velocity for a fully responsive system

(Mn ∝ Fn) as shown in figure 6b. The swimming velocity increases with Fn initially and then

saturates, which is followed by small dip at large Fn values. The initial trend can be explained by

the corresponding increase in Mn that increases the induced initial chirality (θmax) in the micro-

swimmer. However, the observed dip at higher Fn values is related to the change in the twist

angle distribution along the micro-swimmer length as shown in the inset of figure 6b for various

values of Fn. It can be clearly seen that at higher Fn values the steady-state chirality distribution

is different from what is initially induced. The large viscous forces of the fluid at higher Fn

values start deforming the magnetically induced (initial) chiral shape, which results in a nonlinear

distribution of chirality along the micro-swimmer length instead of a linear distribution induced

initially. We have analysed the effect of nonlinearity by assuming a power-law relationship for the

twist angle variation, θ = θmax(x/L)n (see appendix C). Analytical results based on resistive force

theory show that the swimming velocity is maximal for a linear distribution of twist angle along

the micro-swimmer length (n = 1), see appendix C.

Finally, the two suggested concepts to obtain a chiral shape (viscosity-induced or magnetically

induced) can be compared. The swimming response associated with these concepts as a function

of the fluid number Fn is shown in figure 7 for the fully responsive systems. Note that the

magnetically induced chirality concept should be preferred as (i) it facilitates bi-directionality in

the swimming direction and (ii) the swimming velocity remains independent of the fluid number

(Fn), which allows operational accommodation of different fluid viscosities (µ) and allows tuning

the applied frequency ω, given that the magnetic number (Mn) is large enough to overcome the

elastic resistance of the film and form a chiral shape. It is advisable to increase the length of the

magnetized portion (L0/L) to reduce the deformations owing to the viscous force at higher Fn

values. The micro-swimmers can be fabricated with ink-jet printing or photolithography [35–38]

by using magnetic nanoparticles for the two magnetic domains. However, fabricating a film with

two ends magnetized in opposite directions is not straightforward. A two-step manufacturing

procedure would be required using two opposing directions of the applied magnetization field

in each step. The opposing polarities are established by shielding one end in the first step and the

other end in the second.
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Figure6. (a) Swimming velocity as a functionof responsiveness of the system (M∗ = Mn/Fn) for twovalues of Fn (1 and 10) and

for L0 = 0.05L. Influence of L0/L on the swimming velocity for a fully responsive system (Mn = 300Fn) is shown in the inset.

The circles correspond to Fn = 10 and the squares to Fn = 1. (b) Swimming velocity as a function of Fn for a fully responsive

system (Mn = 300Fn) and for L0 = 0.05L. Chirality distribution along themicro-swimmer length as a function of Fn is shown in

the inset. At higher values of Fn, the magnetically formed initial chiral shape starts deforming during swimming, which causes

a reduction in the swimming velocity at higher Fn values.

4. Summary and conclusion
Artificial micro-swimmers can potentially be used for various bio-medical applications, such as

micro-object manipulation on lab-on-a-chip devices and for targeted drug delivery. A bioinspired

approach has been taken by mimicking bacterial swimming through magnetically driven

chirality-induced propulsion. We have used a computational approach based on a functional

polymer film whose chiral shape and rotational velocity are controlled by a rotating magnetic

field. Furthermore, we have identified the key dimensionless parameters of the chirality-induced

propulsion and investigated the competition between elastic, viscous and magnetic forces that

are responsible for the physical response. The suggested bacterial micro-swimmers form a chiral
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Figure 7. Swimming response (and the twist angle accommodated by the film) as a function of the fluid number Fn for the

fully responsive systems. The magnetically induced chiral system corresponds to figure 2 and the ‘on-the-fly’ chiral system to

figure 5. The solid and dashed lines represent the swimming velocity and the twist angle, respectively. The swimming velocity

is linearly dependent on the twist angle.

shape on-the-fly (from an initial planar geometry) by exploiting the available physical forces

(i.e. elastic, magnetic and viscous). In this on-the-fly system, viscous forces are used to induce

a chiral shape during swimming. However, this does not permit bi-directionality. To overcome

this, a new concept is proposed that uncouples the chiral-polarity from the external actuation

by forming an initial chiral shape through two magnetic sections with opposite remanent

magnetization. Forward and backward swimming can be achieved by tuning the rotation

direction of the magnetic field. The micro-swimmer—a planar functional polymer film—can be

easily manufactured with state-of-the-art polymer processing technologies such as inkjet printing,

and opens possibilities for various bio-medical applications such as micro-object manipulation in

lab-on-a-chip devices.

Funding statement. We acknowledge the Dutch Polymer Institute (DPI) for funding under project code DPI-699

(ARTFLAG).

Appendix A. Computational model
To solve the coupled FSI involved in the swimming of bacterial flagella, we use a three-

dimensional computational framework in which the solid mechanics, fluid-dynamics and

magneto-static equations are solved simultaneously. By implicitly coupling the solid mechanics

and fluid dynamics equations, we incorporate the equivalent drag matrix owing to the fluid into

the stiffness matrix. The magnetic body couples acting on the micro-swimmer owing to external

magnetic-actuation is computed on-the-fly and supplied to the FSI model as an external force

vector. Here, we briefly summarize the computational framework; for full details of the approach,

the reader is referred to Khaderi & Onck [30].

(a) Magnetostatics

The magneto-responsive micro-swimmers are subjected to magnetic body couples (N)

owing to the externally applied magnetic field (B), which can be obtained from the cross-product

of the film remanent magnetization (M) and the external magnetic field, N = M × B. The magnetic

body couples (N) are considered as input to the FSI model and supplied as an external force vector
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Figure 8. Illustration of the parameters involved in the shell element formulation [30].

[30], see equation (A 12). Magnetic interactions between multiple magnetic domains are assumed

to be small and are therefore not accounted for.

(b) Finite-element formulation for the solid mechanics equations

The micro-swimmer is represented by an assemblage of shell elements, which can undergo large

deformation. For the shell elements, the displacement of any point on the normal can be written

in terms of the displacements on the mid-surface (u0, v0, w0)

u = u0 + zβx, v = v0 − zβy, w = w0, (A 1)

where βx and βy are the rotations of the normal with respect to the x- and y-axes, respectively, as

indicated in figure 8. The associated non-zero components of the Green–Lagrange strain are

ǫx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

, ǫy =
∂v

∂y
+

1

2

(
∂w

∂y

)2

and 2ǫxy =
∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y
. (A 2)

The variation of these Green–Lagrange strains can be obtained in terms of the axial strain ǭ and

the curvature κ using the displacement definitions given in equation (A 1)

δǫx =
∂δu

∂x
+

∂w

∂x

∂δw

∂x
=

∂δu0

∂x
+

∂w0

∂x

∂δw0

∂x
︸ ︷︷ ︸

axial strain

+ z
∂δβx

∂x
︸ ︷︷ ︸

curvature

= δǭx + zδκx. (A 3)

Similarly,

δǫy = δǭy + zδκy and 2δǫxy = δǭxy + zδκxy. (A 4)

The internal virtual work can be written as

δWint =

∫
V0

(σxδǫx + σyδǫy + 2σxyδǫxy) dV, (A 5)

where σx, σy and σxy are the components of the second Piola–Kichhoff stress tensor and dV

represents an elemental volume in the undeformed configuration. Assuming the shell elements

of uniform cross section with thickness h, we can write the above equation using an elemental

area dA in the undeformed configuration as

δWint =

∫
A0

(δǫ · P + δκ · M) dA, (A 6)

where ǫ = [ǭx ǭy ǭxy]T, κ = [κx κy κxy]T, and P and M are the associated membrane forces and

bending moments, respectively [30]. The internal virtual work at time t + �t can be written as

δWt+�t
int =

∫
A0

(δǫt+�t · Pt+�t + δκ t+�t · Mt+�t) dA, (A 7)
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which can be expanded linearly in time by assuming Qt+�t = Qt + �Q, and can be simplified by

neglecting the higher order terms, leading to

δWt+�t
int =

∫
A0

(δǫt · Pt + δκ t · Mt + �δǫ · Pt + δǫt · �P + δκ t · �M) dA. (A 8)

We use the finite-element formulation to discretize the system in terms of the nodal displacements

(u, v, w) and rotations (θx, θy, θz) of three-noded triangular elements with

de = [u1 v1 w1 θx1 θy1 θz1 u2 v2 w2 θx2 θy2 θz2 u3 v3 w3 θx3 θy3 θz3]T, (A 9)

where the subscripts 1, 2 and 3 denote the respective three nodes of the element.

To capture the deformation of the films, both the bending and membrane stiffnesses (stiffness

associated with the in-plane stretching) have to be accurately modelled. To do so, we adopt

the approach proposed by Bathe & Ho [39] and model the bending of the films using discrete

Kirchhoff triangles, while the membrane behaviour is accounted for using constant strain

triangles (CSTs) [30]. To improve the accuracy during in-plane bending, we add drilling degrees

of freedom to the CSTs [40], and adopt an updated Lagrangian framework to arrive at the final

set of equations. The resulting stiffness matrix includes the geometric nonlinearity, which

accounts for large deformations but small strains [30], see below.

δWt+�t
int = (δde)

Tf t
int + (δde)

T(kt
M + kt

G)�de, (A 10)

where kM is the material stiffness matrix, kG is the geometric stiffness matrix and f int is the

internal force vector [30]. After performing the standard finite-element assembly and coordinates

transformation (local-to-global), we obtain

δWt+�t
int = δdTFt

int + δdT(Kt
M + Kt

G)�d. (A 11)

The external virtual work at time t + �t can be written as

δWt+�t
ext =

∫
V

(−Nxδβy + Nyδβx) dVm, (A 12)

where Nx and Ny are the externally applied magnetic body couples (see appendix Aa), and Vm

is the magnetic portion of the film. After discretization and the standard finite-element assembly

procedure, the external virtual work can be written as [30]

δWt+�t
ext = δdTFt+�t

ext . (A 13)

(c) Boundary-element formulation for the fluid dynamics equations

For the fluid we make use of the Stokeslet approach in which the force exerted on the fluid at

the surface of the solid structure is approximated by the distribution of Stokeslets along the

length of the structure. The velocity and force fields are related by a Green’s function that has

a singularity proportional to 1/r in three dimensions [41]. The expression of Green’s function (G)

for the Stokeslets relates the velocity at location r, u̇, to the forces at location r′, f , through

u̇ = Gf and Gij =
1

8πµ

{
δij

R
+

RiRj

R3

}

(i, j = 1, 2, 3), (A 14)

where R = r − r′, R = |R| is the distance between the two locations r and r′, and δij is the Kronecker

delta. By assuming the point force f to be represented by the traction f = T dS over the solid

surface, the boundary-integral equation can be written as

u̇ =

∫
boundary

GT dS =
∑

nelm

∫
S

GT dS =
∑

nelm

∫
S

GN dSt, (A 15)
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where T are the tractions imposed on the fluid [33]. In equation (A 15), the boundary-integral

equation has been discretized using boundary elements (three-noded shell elements), and the

tractions are linearly interpolated using T = Nt with t being the tractions at the nodes. When

equation (A 15) is used to evaluate the velocity in all nodes of the micro-swimmer, we obtain a

system of equations U̇ = Gf t that relates the traction t exerted by the micro-swimmer on the fluid

to its velocity U̇. The integration procedure is adopted from the literature, where the singular

integrals are evaluated using the method of change of variables [41] and the non-singular integrals

are evaluated using standard two-dimensional Gaussian Quadrature [30]. Once the velocity of the

solid surface is known, this relation can be inverted to obtain the nodal tractions [33]: t = G−1
f U̇.

(d) Fluid–solid interaction and implicit coupling

Coupling of the solid mechanics and fluid dynamics equations will be done in an implicit manner

by incorporating the equivalent drag matrix owing to the fluid into the stiffness matrix. The

external virtual work owing to the fluid’s drag forces (Td) can be given as

δWt+�t
fluid =

∫
(δu)TTt+�t

d dS = −

∫
(δu)TN dStt+�t

≈ −(δde)
T

∫
NTN dStt+�t = −(δde)

TMet
t+�t, (A 16)

where Me =
∫

NTN dS, u is the displacement vector, and de is the local nodal displacement vector

[30]. Note that the minus sign appears because of the change of reference (from fluid to the

structure, Td = −T). After performing the standard finite-element assembly procedure, we obtain

δWt+�t
fluid = −(δd)TMtt+�t = −(δd)TMG−1

f U̇
t+�t

, (A 17)

where the matrix Gf relates the velocity of the solid structure to the traction, see the end of the

previous subsection. Now, using the no-slip boundary condition U̇ = A�d/�t it follows that

δWt+�t
fluid = −(δd)T

MG−1
f A�d

�t
= −(δd)TKt

D�d, (A 18)

where KD = MG−1
f A/�t is an equivalent drag matrix and is the stiffness contribution owing

to the presence of the fluid [30,33]. A is a matrix that eliminates the rotational degrees of

freedom from the global displacement vector �d. Finally, invoking the arbitrariness of the virtual

displacements and equating the internal (equation (A 11)) and the external virtual work (the

sum of equations (A 13) and (A 18)) we obtain the following equation of motion for the FSI

problem, which will be solved to obtain the incremental displacements (�d) after incorporating

the appropriate boundary conditions [30].

(Kt
M + Kt

G
︸ ︷︷ ︸

solid

+ Kt
D

︸︷︷︸

fluid

)�d = Ft+�t
ext − Ft

int. (A 19)

Appendix B. Dimensional analysis for the chiral micro-swimmers
Starting point for the dimensional analysis will be the virtual work expression, given by

δWint = δWext, see equations (A 6), (A 12) and (A 16), for a film of thickness h:

∫
(δǫ · P + δκ · M) dA

︸ ︷︷ ︸

elastic part

=

∫
δu · Td dA

︸ ︷︷ ︸

viscous part

−

∫
(Nxhδβy − Nyhδβx) dA

︸ ︷︷ ︸

magnetic part

. (B 1)
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Assuming the evolved chiral shape is mainly twisting dominated and the in-plane deformations

are negligible, the above equation can be simplified into

∫L

0

∫W

0
δκxyMxy dA =

∫L

0

∫W

0
Tdδw dA −

∫L0

0

∫W

0
Nxhδβy dA, (B 2)

where Mxy = (Gh3/12)κxy, κxy = (∂/∂y)(∂w/∂x) − (∂/∂x)(∂w/∂y), G being the shear modulus, and

L and W are the length and width of the film, respectively. As the film is partially magnetic, the

magnetic body couple will only act on the magnetic portion (L0) of the film. We now introduce

dimensionless variables (.)∗ such that x = X∗L, y = Y∗W and A = A∗LW (or A = A∗L0W for the

magnetic part). From the standard torsion formula, the twist angle follows to be θtwist = TL/GJ,

with T and J being the applied torque and the second polar moment of area, respectively. As

J ∝ Wh3 for rectangular cross sections, [42], θtwist ∝ L/W for a given value of the film thickness,

which leads to w ∝ θtwistW ≈ L or w = W∗L. Substitution yields the following pre-factors for the

elastic, viscous and magnetic parts

Gh3L

12W

∫ 1

0

∫ 1

0
δκ∗

xyκ
∗
xy dA∗ = TdL2W

∫ 1

0

∫ 1

0
δw∗ dA∗ − NxhLL0

∫ 1

0

∫ 1

0
δβ∗

y dA∗. (B 3)

It can be noted that the choice of the characteristic length in the x-direction is not the same for all

integrals in the above equation, which leads to a governing dimensionless (length) parameter,

L0/L, defining the normalized length of the magnetic portion in the elastica. Normalization

with the elastic term reveals the following governing dimensionless (force) parameters [32,33]:

(i) the magnetic number, Mn = 12NxWL0/Gh2, i.e. the ratio of magnetic to elastic forces, and

(ii) the fluid number, Fn = 12LW2Td/Gh3, i.e. the ratio of fluid to elastic forces.2 From dimensional

considerations, Td should scale with µθ̇twist or µωL/W, where µ is viscosity of the fluid and

ω = 2π/tcycle is the angular frequency of the magnetic field actuation. Thus, the final form of the

three governing dimensionless parameters is as follows:

(i) the fraction of film that is magnetic,

L0

L
, (B 4)

(ii) the magnetic number,

Mn =
12Nx

G

LW

h2

L0

L
=

12MB

G

LW

h2

L0

L
, (B 5)

(iii) the fluid number,

Fn =
12µω

G

WL2

h3
. (B 6)

Note that Fn can be independently altered by changing the viscosity (µ) or frequency (ω).

Similarly, Mn can be independently controlled with the remanent magnetization (M) or with the

external magnetic field (B), which eventually influences the magnetic body couple (Nx).

Appendix C. Analytical study for chirality-induced propulsion
Resistive force theory suggested by Gray & Hancock [29] can be used to get the first-order

approximation of the swimming velocity associated with the chirality-induced propulsion. As

the chirality is induced owing to the twisting of the film, it can be assumed that the twist angle (θ )

varies along the length of the micro-swimmer leading to a twist gradient of (θ2 − θ1)/dx as shown

in figure 9. Assuming that the local drag-coefficients for a chiral micro-swimmer are CdL, CdW and

Cdh in the length, width and thickness direction, respectively, the x-component of total force on

2Note that the factor 12 can be removed without loss of generality. Here, we decide to keep it in for historical reasons.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

5
 O

ct
o
b
er

 2
0

2
2
 



15

rspa.royalsocietypublishing.org
P
ro
c.
R
.So

c.
A
470:20130547

...................................................

q2

q1

w

z

x
dx

U

y

Figure 9. Illustration of the twist angle (θ ) variation along the length of a chiral micro-swimmer. The micro-swimmer has a

steady-state swimming velocity of magnitude U and is subjected to an external torque that has an angular frequency ofω.

the chiral micro-swimmer of length L and width W can be written as

∫L

0

∫W/2

−W/2
dFx dx dy, (C 1)

where,

dFx = Cdh{U sin θy + ωy cos θy} sin θy + CdL{U cos θy − ωy sin θy} cos θy, (C 2)

with dFx being the force acting on a segment of length dx and width dy, and θy = y dθ/dx is the

developed helix or the pitch angle. Note that the propulsion force in the direction perpendicular

to the plane of actuation (Fx) results from the difference of the viscous drag in the tangential and

normal directions, CdL and Cdh, respectively (see equation (C 2)). The above expression is derived

assuming that the micro-swimmer is swimming with a velocity U and is externally actuated with

ω being the angular frequency of actuation (the angular frequency of the external magnetic field in

this case; figure 9). In addition, the total force consists of a propulsive part owing to the actuation

forces and a retarding part owing to the drag forces opposing the horizontal swimming velocity

(the part associated with U). When the micro-swimmer reaches a steady-state swimming velocity

U, the propulsive and retarding forces are in (dynamic) equilibrium, so that the total force must

be zero [33].

For the general case of chirality-induced propulsion, we account for the nonlinear variation

of twist angle by assuming a power-law relationship, θ = θmax(x/L)n, where the power-law-

exponent (n) quantifies the nonlinearity of the twist angle variation. We begin with obtaining a

closed-form expression for the swimming velocity assuming a linear variation for the twist angle

(i.e. n = 1) and considering only the first-order terms (i.e. higher order terms are neglected), which

leads to

U =
ωθmaxW2

12L

(
Cdh

CdL
− 1

)

. (C 3)

The above expression suggests that the swimming velocity (U) scales linearly with the frequency

of actuation ω and quadratically with the width of the film W. Additionally, the swimming

velocity is directly proportional to the maximum twist gradient in the film θmax/L. Next, we

explore the influence of nonlinearity in the twist angle variation (i.e. n �= 1) on the swimming

velocity. Here, we consider the full form of the total force without neglecting the higher order

terms and solve the equation numerically using Mathematica.3 The results are shown in

figure 10 for Unormalized = U/Un=1, where we explicitly assume Cdh = 2CdL. It can be clearly seen

that the swimming velocity will be maximal when n ≈ 1. In other words, the linear variation of

the twist angle along the micro-swimmer length gives the maximal velocity for a given set

of parameters (ω, θmax, L and W). This can be interpreted in the following way. For the cases

3Mathematica is a trademark of Wolfram Research, Inc.
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Figure 10. Influence of nonlinearity exponent (n) in the twist angle variation, θ = θmax(x/L)
n, on the swimming velocity,

and Unormalized = U/Un=1. The swimming velocity is maximumwhen n≈ 1. The illustrated cross (×) on the micro-swimmer’s

image represents the location where θ = θmax/2.

of n ≈ 1, the whole length of the micro-swimmer will be effectively used to generate propulsion

as the twist gradient is uniform along the length. However, once we deviate from linearity (n �= 0),

the portion of the film having the maximum twist gradient is responsible for propulsion, while

the rest of the film with a lower twist gradient (mainly) contributes to the opposing drag forces,

which leads to a decrease in the swimming velocity. Note that the swimming velocity will be zero

for n = 0 owing to reciprocal motion of the film in the absence of any twist gradient along the

length.

Note that the analytical study does not provide a complete picture for the physical

phenomenon. For instance, the elasticity of the film is not accounted for and the role of viscous

and magnetic forces are not clearly distinguished. Nevertheless, it is interesting that such a simple

analysis can give useful insights on the physics of the problem and can provide an accurate

measure of the scaling U ∝ ωθmaxW2/L.
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