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Nullspace Property for Optimality of Minimum

Frame Angle Under Invertible Linear Operators
Pradip Sasmal , Prasad Theeda , Phanindra Jampana , and Challa S. Sastry

Abstract—Frames with a large minimum angle between any two
distinct frame vectors are desirable in many present day applica-
tions. For a unit norm frame, the absolute value of the cosine of
the minimum frame angle is also known as coherence. Two frames
are equivalent if one can be obtained from the other via left action
of an invertible linear operator. Frame angles can change under
the action of a linear operator. Most of the existing works solve
different optimization problems to find an optimal linear operator
that maximizes the minimal frame angle (in other words, minimizes
the coherence). In the present work, nevertheless, we consider the
question: Is it always possible to find an equivalent frame with
smaller coherence for a given frame?. In this paper, we derive
properties of the initial unit norm frame that can ensure an equiv-
alent frame with strictly larger minimal frame angle compared
to the initial one. It turns out that the nullspace property of a
certain matrix obtained from the initial frame can guarantee such
an equivalent frame. We also present the numerical results that
support our theoretical claims.

Index Terms—Minimum frame angle, coherence,
preconditioning, compressed sensing, semidefinite programming.

I. INTRODUCTION

F
RAME theory has applications in fields such as signal pro-

cessing, sparse representation theory and operator theory.

A finite frame can be represented as a matrix of full row rank.

The coherence of a frame is defined as the largest absolute

normalized inner product between two distinct frame vectors.

A finite frame with small coherence is said to be an incoherent

frame. For a fixed number of elements, frames with the smallest

coherence are called Grassmannian frames [12]. Grassmanian

frames attaining the Welch bound are known as equiangular tight

frames (ETFs) [7]. Incoherent frames play a significant role due

to their ability in providing sparse representations.

The field of sparse representation theory, popularly known as

compressed sensing (CS) [5], [8], recovers a sparse signal from

a few of its linear measurements. Performance of several sparse
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recovery algorithms such as basis pursuit (BP) and orthogonal

matching pursuit (OMP) depends on the coherence of the under-

lying frame. Frames that satisfy the restricted isometry property

(RIP) [3], [10] are known to allow for exact recovery of sparse

signals from a few of their linear measurements. The coherence

of a frame can assert RIP up to certain order [6].

Two linear systems of equations provided by two frames

are equivalent if the underlying frames are equivalent. How-

ever, the sparse recovery properties like RIP and coherence

of equivalent frames can be significantly different [11], [15].

Consequently, the performances of sparse recovery algorithms

can be different. Several methods exist in the literature [1],

[4], [9], [5], [16] for finding an equivalent frame with optimal

coherence.

The results reported, for example, in [1], [4], [9] proposed

ways of finding the incoherent frames and their relevance to

applications. It was shown in [16] that the incoherence obtained

via preconditioning results in significant improvement in tomo-

graphic image reconstruction.

Although these methods work well in practice, they do not

possess theoretical guarantees for reduction in coherence. In this

work, however, we consider the question: “For a given frame,

when is it possible to find an equivalent frame with smaller

coherence?.” In particular, in contrast to existing results, we

show and demonstrate numerically that it is not always possible

to obtain a strictly incoherent and equivalent frame. In light of

the present contribution, given a frame, one can verify if there

is any scope for obtaining its coherence improvement as low

coherence has a bearing on the quality of the underlying signal

to be reconstructed and/or number of measurements to be used

in such applications as tomographic reconstruction [16].

The main objective of the present work is to derive sufficient

conditions on a frame that can ensure an equivalent frame

possessing smaller coherence. We show that the existence of

such an equivalent frame can be ascertained by checking for

in-feasibility of a linear system of equations. The null space

property of a certain matrix obtained from the initial frame

ensures the existence of an equivalent frame with a strictly

smaller coherence. The main contributions of the paper are

summarized below:
� We derive the sufficient conditions that can guarantee

existence of an equivalent frame having smaller coherence

compared to the initial frame.
� We present numerical results that validate our theoretical

analysis.
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II. BASICS OF FRAME THEORY

A. Frame Theory

A family of vectors {φi}
M
i=1 in R

N is called a frame [2] for

R
N , if there exist constants 0 < A ≤ B < ∞ such that

A ‖z‖2 ≤
M
∑

i=1

|〈z, φi〉|
2 ≤ B ‖z‖2 , ∀z ∈ R

N ,

where A and B are called the lower and upper frame bounds

respectively. If A = B, then {φi}
M
i=1 is an A−tight frame. If

there exists a constant d such that | 〈φi, φj〉 | = d, for 1 ≤ i <
j ≤ M, then {φi}

M
i=1 is an equiangular frame. If there exits

a constant c such that ‖φi‖2 = c for all i = 1, 2, . . . ,M, then

{φi}
M
i=1 is an equal norm frame. If c = 1, then it is called a unit

norm frame. If a frame is both unit norm and tight, it is called

a unit norm tight frame (UNTF). If a frame is both UNTF and

equiangular, it is called an equiangular tight frame (ETF). The

coherence of a frame Φ is given by

µ(Φ) = max
1≤ i,j≤ M, i	=j

| φT
i φj |

‖φi‖2‖φj‖2
.

Coherence based techniques are used in establishing the guaran-

teed recovery of sparse signals via Orthogonal Matching Pursuit

(OMP) or Basis Pursuit (BP), as summarized by the following

result [13].

Theorem II.1: An arbitraryk−sparse signalx can be uniquely

recovered using OMP and BP, provided

k <
1

2

(

1 +
1

µ(Φ)

)

. (1)

If G is a nonsingular matrix, then the system Gy = GΦx
is equivalent to y = Φx. The bound in (1) then suggests that

if µ(GΦ) < µ(Φ) both BP and OMP have better performance

guarantees when applied on the equivalent system Gy = GΦx.

III. MAIN RESULTS

In this section, we present the properties of an initial frame that

can ensure strict fall in coherence under the left multiplication

of an invertible linear operator. Our main results concerning the

sufficient conditions on the initial frames can be given by the

following theorem.

Theorem III.1: For a given unit norm frame ΦN×M for R
N

with coherence µ(Φ), let φi denote the ith column of Φ and

suppose

D+
IN

:= {(i, j) : φT
i φj = µ(Φ)}

and

D−
IN

:= {(i, j) : φT
i φj = −µ(Φ)}.

Consider the matrix ΨN2×(M+|D+

IN
|+|D−

IN
|) =

[(

vec(φiφ
T
i )

)M

i=1

(

vec(φ′
ij)

)

(i,j)∈D+

IN

−

(

vec(φ′
ij)

)

(i,j)∈D−
IN

]

,

where φ′
ij :=

φiφ
T
j +φjφ

T
i

2 , and the ‘vec’ operation on a matrix

of size N ×M produces a vector of length NM by stacking the

columns one below the other vertically. If there does not exist a

vector r ∈ R
M+|D+

IN
|+|D−

IN
|
in the nullspace of Ψ satisfying

M
∑

k=1

rk = −µΦ

and

M+|D+

IN
|+|D−

IN
|

∑

k=M+1

rk = 1,

then there exits an invertible operator G such that µ(GΦ) <
µ(Φ).

Proof: Let S be the set of invertible operators G such that

GΦ is a unit norm frame for R
N , that is,

S={G ∈ R
N×N : |G| 	= 0, ‖GΦi‖2 = 1, ∀ i = 1, 2, . . . ,M},

where |G| denotes the determinant ofG. It can be noted thatS 	=
∅ as IN×N ∈ S, where IN×N is the identity matrix. Therefore,

in order to show that there exists an invertible operator G ∈ S
such that µGΦ < µΦ, it is enough to show that IN×N is not an

optimal solution to the following optimization problem:

C0 : arg min
G∈S

max
i 	=j

|〈Gφi, Gφj〉|.

An equivalent formulation of C0 is

arg min
X

max
i	=j

|φT
i Xφj |

subject to φT
i Xφi = 1, ∀i = 1, . . . ,M.

X ≻ 0,

whereX = GTG andX ≻ 0 denotes thatX is positive definite.

The advantage of the equivalent formulation of C0 is that the

constraints are linear in X and the objective function is convex

in X. Since the constraint set

S0 = {X ≻ 0 : φT
i Xφi = 1, ∀i = 1, . . . ,M}

is convex but not closed, we consider

S1 = {X  0 : φT
i Xφi = 1, ∀i = 1, . . . ,M},

where X  0 implies that X is positive semi-definite with the

corresponding convex optimization problem,

C ′
0 : arg min

X

max
i 	=j

|φT
i Xφj |

subject to X ∈ S1.

Adding slack and surplus variables pij ≥ 0 and qij ≥ 0 re-

spectively, one may obtain an equivalent formulation of C ′
0:

max
X,q,pij ,qij

(−q)

subject to φT
i Xφi = 1, ∀i = 1, . . . ,M ;

φT
i Xφj + pij − q = 0, ∀1 ≤ i < j ≤ M ;

C1 : − φT
i Xφj + qij − q = 0, ∀1 ≤ i < j ≤ M ;

X  0

q ≥ 0

pij ≥ 0, ∀1 ≤ i < j ≤ M ;

qij ≥ 0, ∀1 ≤ i < j ≤ M.
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Using M ′ = M(M−1)
2 , let 0 denote the zero matrix of size

N ×N , 0′ a square zero matrix of size M ′ ×M ′, P a diagonal

matrix of size M ′ ×M ′ consisting of pij as diagonal elements,

Q a diagonal matrix of size M ′ ×M ′ containing qij as diagonal

elements. Finally, let1ij be the diagonal matrix of sizeM ′ ×M ′

whose diagonal entries are indexed by arranging the tuples (i, j)
in lexicographic order for 1 ≤ i < j ≤ M so that it contains

1 at the (i, j)−th diagonal element and zero elsewhere. For

simplicity in notation, we consider φ′
ij =

φiφ
T
j +φjφ

T
i

2 and define

the following block matrices:

F0 =

⎛

⎜

⎜

⎜

⎝

0 0 0 0

0 0
′ 0 0

0 0 0
′ 0

0 0 0 1

⎞

⎟

⎟

⎟

⎠

, Fii =

⎛

⎜

⎜

⎜

⎝

φiφ
T
i 0 0 0

0 0
′ 0 0

0 0 0
′ 0

0 0 0 0

⎞

⎟

⎟

⎟

⎠

,

Fij =

⎛

⎜

⎜

⎜

⎝

φ′
ij 0 0 0

0 1ij 0 0

0 0 0
′ 0

0 0 0 −1

⎞

⎟

⎟

⎟

⎠

, Y =

⎛

⎜

⎜

⎜

⎝

X 0 0 0

0 P 0 0

0 0 Q 0

0 0 0 q

⎞

⎟

⎟

⎟

⎠

,

Fji =

⎛

⎜

⎜

⎜

⎝

−φ′
ij 0 0 0

0 0
′ 0 0

0 0 1ij 0

0 0 0 −1

⎞

⎟

⎟

⎟

⎠

.

It is easy to check that, for 1 ≤ i < j ≤ M , Fii, Fij ,Fji and

F0 are symmetric. Using these matrices, we reformulate C1 in

a standard Semi-definite Programming (SDP) [14] form as

max
Y

− Tr(F0Y )

subject to Tr(FiiY ) = 1, ∀ i = 1, . . . ,M ;

SDPC1
: Tr(FijY ) = 0, ∀ 1 ≤ i < j ≤ M ;

Tr(FjiY ) = 0, ∀ 1 ≤ i < j ≤ M,

Y  0,

whereTr(A) represents trace of the matrixA andY  0 implies

that Y is positive semi-definite, that is, ζTY ζ ≥ 0 for all ζ ∈
R

M2−M+N+1. The dual of SDPC1
is given by

min
z={zij}Mi,j=1

cT z

subject to F0 +

M
∑

i=1

ziiFii +

M
∑

i,j=1,i<j

zijFij+

SDPDC1
:

M
∑

i,j=1,i<j

zjiFji  0
′′,

where0′′ is a square zero matrix of sizeM ′′ = M2 −M +N +
1 and c = {ci}

M2

i=1 ∈ R
M2

,where ci is 1 for i = 1, 2, . . . ,M and

0 for i = M + 1, . . . ,M2.
It is easy to check that, if X is the identity matrix, pij =

1− φT
i φj , qij = 1 + φT

i φj and q = 1, then Y becomes a strict

feasible solution of SDPC1
. Similarly, one can verify that with

zii = 1 and zij = zji =
1

M2 , Z becomes a strict feasible solu-

tion ofSDPDC1
. Since both primal and dual have strict feasible

solutions, by strong duality (Theorem 3.1 in [14]), optimal val-

ues of primal and dual optimization problems coincide with each

other. Consequently, the duality gap is zero for any optimal pair

(Y ∗, Z∗), where Y ∗ is an optimal solution for SDPC1
and Z∗ is

an optimal solution for SDPDC1
. The duality gap being zero

implies that 0 = CT
M ′′Z∗ + Tr(F0Y ) =

∑M
i=1 z

∗
ii + q∗ which

implies further that q∗ = −
∑M

i=1 z
∗
ii.

The standard optimality condition (Equation (33) in [14])

concerning the primal and dual solutions can be written as

Tr(FiiY
∗) = 1, ∀ i = 1, . . . ,M ;

Tr(FijY
∗) = 0, ∀ 1 ≤ i < j ≤ M ;

Tr(FjiY
∗) = 0, ∀ 1 ≤ i < j ≤ M,

Y  0.

and

Y ∗

⎛

⎝F0 +

M
∑

i=1

z∗iiFii +

M
∑

i,j=1,i<j

z∗ijFij +

M
∑

i,j=1,i<j

z∗jiFji

⎞

⎠

= 0
′′,

(c∗)T z∗ = q∗.

The above condition results in the following equations:

1) Tr
(

X∗(φiφ
T
i )

)

= 1, ∀ i = 1, . . . ,M
2) Tr(X∗φ′

ij) + p∗ij − q∗ = 0, ∀ 1 ≤ i < j ≤ M
3) Tr(−X∗φ′

ij) + q∗ij − q∗ = 0, ∀ 1 ≤ i < j ≤ M

4) X∗
(

∑M
i=1 z

∗
iiφiφ

T
i +

∑M
i,j=1,i<j(z

∗
ij − z∗ji)φ

′
ij

)

= 0

5) z∗ijp
∗
ij = 0

6) z∗jiq
∗
ij = 0

7) q∗
(

1−
∑M

i,j=1,i<j(z
∗
ij + z∗ji)

)

= 0

8) −
∑M

i=1 z
∗
ii = q∗.

If X∗ is assumed to be positive definite, then the fourth

equality above reduces to

M
∑

i=1

z∗iiφiφ
T
i +

M
∑

i,j=1,i<j

(z∗ij − z∗ji)φ
′
ij = 0. (2)

For a positive semi-definite matrix X = GTG, let D+(X, q)
and D−(X, q) be the sets of tuples of indices for which the

corresponding entry of ΦTXΦ (equivalently the inner-product

between two corresponding columns of GΦ) is equal to q and

−q respectively, that is,

D+(X, q) = {(i, j) : φT
i Xφj = q}

and

D−(X, q) = {(i, j) : φT
i Xφj = −q}.

It is clear that

p∗ij = 0 if and only if (i, j) ∈ D+(X∗, q∗)

and

q∗ij = 0, if and only if (i, j) ∈ D−(X∗, q∗).

From the definition of D+(X∗, q∗) and D−(X∗, q∗), it follows

that

z∗ij = 0, if (i, j) /∈ D+(X∗, q∗) (3)
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and

z∗ji = 0, if (i, j) /∈ D−(X∗, q∗). (4)

Since q∗ > 0,

1 =
M
∑

i,j=1,i<j

(z∗ij + z∗ji)

=
∑

(i,j)∈D+(X∗,q∗)

z∗ij +
∑

(i,j)∈D−(X∗,q∗)

z∗ji.

(5)

Therefore, a positive definite matrix X∗ is optimal if and only

if (2), (3), (4), (5) and −
∑M

i=1 z
∗
ii = q∗ are satisfied. In other

words, if there exists z∗ satisfying the above equations then X∗

is optimal. Hence, if X∗ = IN×N is not an optimal solution

there do not exist scalars {z̃ij}
M
i,j=1 satisfying the following

conditions

1) z̃ij = 0 for (i, j) /∈ D+(IN , µΦ),
2) z̃ji = 0 for (i, j) /∈ D−(IN , µΦ),

3)
∑M

i,j=1,i<j(z̃ij + z̃ji) = 1,

4)
∑M

i=1 z̃iiφiφ
T
i +

∑M
i,j=1,i<j(z̃ij − z̃ji)φ

′
ij = 0,

5) −
∑M

i=1 z̃ii = µ(Φ).
The above conditions can be written as a linear system of

equations Ψ̃z̃ = y, where Ψ̃(N2+2)×(M+|D+

IN
|+|D−

IN
|) =

⎡

⎢

⎢

⎣

(

vec(φiφ
T
i )

)M

i=1

(

vec(φ′
ij)

)

(i,j)∈D+

IN

−
(

vec(φ′
ij)

)

(i,j)∈D−
IN

01×M 11×|D+

IN
| 11×|D−

IN
|

11×M 01×|D+

IN
| 01×|D−

IN
|

⎤

⎥

⎥

⎦

,

z̃(M+|D+

IN
|+|D−

IN
|)×1 =

[(z̃ii)
M
i=1 (z̃ij)(i,j)∈D+

IN

(z̃ji)(i,j)∈D−
IN

]T ,

and y(N2+2)×1 = [0N2×1 11×1 − µ(Φ)]T .

Therefore, the infeasiblity of the linear system Ψ̃z̃ = y guar-

antees the existence of an operator Ĝ such that ĜΦ is a unit norm

frame and µ(ĜΦ) < µ(Φ). Despite this, there is no guarantee

that Ĝ is positive definite. Nevertheless, there exist nonsingular

matrices Gn so that Gn → Ĝ in the Frobenious norm. Since

coherence µ(GΦ) is a continuous function of G in the Frobe-

nious norm, we haveµ(GnΦ) → µ(ĜΦ). This ensures that there

exists a non-singular matrix G for which µ(GΦ) < µ(Φ). �

The following corollary follows from the main theorem III.1.

Corollary III.2: If Ψ has a trivial nullspace, then there exits

an invertible operator Ĝ such that µ(ĜΦ) < µ(Φ).
Proof: The proof follows from the fact that if Ψ has a trivial

nullspace then the two equations given in Theorem III.1 can not

be satisfied. �

So far, we discussed our theoretical findings. In the next

section, we present numerical results in support of our analytical

results.

IV. NUMERICAL OBSERVATIONS

In this section, we present the effect of coherence on random

Gaussian matrices by invertable linear operators G, obtained by

solving the C ′
0 problem (See Section III). To begin with, we

TABLE I
SOLVING C ′

0
FOR GAUSSIAN RANDOM MATRICES WITH ROW SIZE 10 AND

COLUMN SIZE INCREMENTED BY 10 STARTING WITH 20

TABLE II
APPLYING OPTIMIZATION METHOD IN [9] ON GAUSSIAN RANDOM MATRICES

WITH ROW SIZE 300 AND DIFFERENT COLUMN SIZES STARTING WITH 610

considered random Gaussian matrices Φ ∈ R
N×M for different

row sizes N along with varying value for the column size M.
As examples, we fixed row size as 10, while varying the col-

umn size, and generated the Table I. From Table I, for M ≤ 50,
it may be noted that the rank of the corresponding matrix Ψ (as

defined in Theorem III.1) and M + |D+
IN

|+ |D−
IN

|, the column

size of Ψ, are the same. As a result, Ψ has trivial nullspace.

Consequently, from Corollary III.2, one can expect a strict fall

in coherence. In Table I, we observe the similar behaviour

on the coherence as predicted by Corollary III.2, that is, for

M ≤ 50, µ(GΦ) is strictly smaller than µ(Φ). For M > 50,
M + |D+

IN
|+ |D−

IN
| becomes strictly greater than rank ofΨ and

we observe from Table I that the coherence remains unchanged.

For a given frame Φ, the authors in [9], proposed a method

to find an invertible operator G for which the associated gram

matrix of the transformed frame becomes close to the identity

matrix. In other words, the transformed frame becomes close

to a unit norm frame and has small coherence. For the frames

obtained via solving optimization problem described in [9], we

observe similar behaviour on the coherence provided in Table II

as predicted by Corollary III.2. Therefore, we can justify the

fall in coherence as described in [9] via proposed null space

property.

V. CONCLUDING REMARKS

In the present work, we derived properties of an initial frame

that ensure strict fall in coherence via left multiplication by an

invertible linear operator. It turns out that the infeasibilty of

a linear system of equations obtained from the initial frame

results in an equivalent frame with a larger minimum frame

angle. In particular, if a certain matrix obtained from initial

frame possesses trivial nullspace, then there exists an equivalent

frame with strictly smaller coherence. The numerical results also

support our theoretical analysis.
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